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Abstract

In this study, using a system of delay nonlinear ordinary differential equations, we introduce
a new compartmental epidemic model considered effect of filiation (contamination) control
strategy to the spread of Covid-19. Firstly, the formulation of this new SIuIaQR epidemic
model with delay process and the parameters arised from isolation and filiation is formed.
Then the disease-free and endemic equilibrium points of the model is obtained. Also, the
basic reproduction number R0 is found by using the next generation matrix method and the
results on stabilities of the disease-free and endemic equilibrium points are investigated.
Finally some examples are presented to show the effect of filiation control strategy.

1. Introduction

In December 2019, Hubei province in Wuhan, China, became the centre of an outbreak of Covid-19. Then the disease caused
by the new type coronavirus has affected hundreds of countries by spreading rapidly all around the world. The World Health
Organization (WHO) declared the epidemic as a pandemic (global epidemic) on March 11, 2020 due to the fact that it caused
the loss of thousands of lives. Since it could not be found exactly being effective drugs or vaccine in today’s stages for Covid-19,
to control of spreading of the disease, the governments with the support of its health authorities have immediately tried to made
effective control measures including procedures such as isolating of people suspected to have the disease, closely tracking of
contacts, collecting of epidemiological and clinical data from patients, boosting of diagnostic and providing treatment services.

Mathematical modelling has an important role in understanding of problems and phenomenons in some areas such as
medicine, biology and epidemiology, [1]-[3]. Especially, epidemic diseases such as Covid-19, the global agenda in 2020, are
some of the main threats that are seriously affecting humanity. Various studies have been introduced to overcome the problems
caused by such diseases for a long time, [4]-[6]. Modelling of epidemic diseases as mathematically is quite important in terms
of controlling and reducing effects of the outbreaks, [7]-[10]. Looking at the literature, there are many compartmental models
determined the basic principles for the spread of a disease in a population. Kermack and Mc Kendrick with their study [7] have
pioneered these compartmental mathematical models which are used extensively. They have tried to explain the spreading
of an infectious disease in the course of time for a closed population. In the model, the population exposed to an infectious
disease has been divided into three groups. First group (S : Susceptibles) consists from individuals who are not yet infected
and have not immune to the pathogen. In the other group (I : Infectious) consisting of infectious individuals, the members can
be transmitted the disease to the susceptible individuals via effective contacts. The last group (R : Recovered) is formed from
individuals who recovered and have immune against the pathogen. This model is called as “SIR” model with the initials of the
group names.
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After, many authors have studied intensively on this model and in detail to carry further forward this model, [11]-[15].

In recent years, various complemental models have been considered in order to explain the more complex phenomena in
diseases. In this sense, by giving some additional circumstances which will have more reality to the basic epidemic models,
many studies have been obtained. For instance, a lot of SEIR epidemic models constructed by taking into account a latent
compartment (E : Exposed) have been considered. This compartment consists of individuals who are infected but are not
yet infectious although an effective contact has occurred between the infectious. Many SEIR models have been studied with
various meaningful details, [16]-[22].

On the other hand, “quarantine” is another factor affecting to control of the spreading of diseases. This transaction is one of
commonly used method for preventing and controlling spread of diseases. In today’s society, with increasing the effectiveness
of the quarantine process, spreading of some diseases has significantly decreased. This fact entails to consider the quarantine
process in the models by giving an additional compartment Q represented the quarantined individuals. Recently, the epidemic
models with quarantine has been investigated by some authors, [23]-[26].

During the early stages of the Covid-19 outbreak, a lot of studies, such as [27]-[33],[35], on its transmission dynamics has
been revealed. In this study, using a system of delay nonlinear ordinary differential equations, we aim to introduce a time delay
compartmental epidemic model considered the effect of filiation control strategy via quarantine in spreading of Covid-19 and
other diseases. In the literature, there exist some compartmental models including the quarantine class consisting of some of
the exposed or infectious, [33, 34]. However, in the model presented in this study depends on the fact that individuals who
contacted with the infectious but whose exposure status is not yet known are quarantined. The model differs from many studies
in the literature with this feature. Considering that the latent period for Covid-19 can be completed before the incubation
period and the rate of asymptomatic infectious is quite high, it can be seen that the model is competent in modeling diseases
such as Covid-19.

In the next section, firstly, the formulation of this new SIuIaQR epidemic model with delay process and the parameters
arised from isolation and filiation is formed. Then the feasible region which is being positive invariant set for the model and
guaranteeing the boundedness of the functions is determined.

In the third section, disease-free and endemic equilibrium points of the model are obtained. After the basic reproduction number
R0 is found by using the next generation matrix method, the local stabilities of the disease-free and endemic equilibrium
points are proved using the corresponding characteristic equation. Then the global stability of disease-free equilibrium point
is handled via LaSalle’s Invariance Principle associated with the Lyapunov function. In the last section, some examples are
presented to show the effect of filiation control strategy.

2. Description of the model

In this part instruction of the model, defining the parameters and the transitions between the compartments are introduced.

As it is known that some individuals may have no symptoms throughout their infectiousness and these individuals are called as
asymptomatic infectious. We use the notations Iu (who are unaware of their infectious) and Ia (who are aware of their infectious)
to denote the compartment of asymptomatic and symptomatic infectious, respectively. Indeed Ia consists of symptomatics, and
some of asymptomatic individuals whose positivity is known via test (i.e. confirmed cases). Further, asymptomatic individuals
are unaware of the fact that own being infectious, and what is worse they may not avoid contact with susceptibles.

Also we assume that the all members of Ia have been isolated during the treatment in a hospital or home, and any members of
Ia have not contacted with susceptibles. So the class Ia can be seen as the treatment compartment. Thus it is assumed that the
disease spreads only via Iu. As a result of this fact, it is very important detecting of asymptomatics (members of Iu) for the
course of the disease.

On the other hand we should mention the latent and incubation period. Incubation period is the time elapsed between exposure
to a pathogen and when symptoms and signs are first apparent. Depending on the disease, the person may or may not be
infectious during the incubation period. The latent period is the time interval between when an individual or host is infected by
a pathogen and when he or she becomes infectious, i.e. capable of transmitting pathogens to other susceptible individuals.

According to our model it is assumed that all new cases born from the contact between susceptibles and asymptomatics
infectious (Iu). The individuals who are infected at time t are asymptomatic at the rate r. So, the number of new individuals
who are symptomatic (i.e, known to be positive) is (1− r)βS (t) Iu (t) at each time t. Where β is the effective contact rate
between susceptibles and asymptomatics infectious (Iu). Also, when an individual who became infectious is detected, the
persons who are contacted to him in the past several days should be taken to quarantine from S and controlled during one
incubation period.
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In serious cases, quarantine of individuals suspected of being exposed to an epidemic disease is one of the most important and
effective public health measures used in struggle against the disease. We assume that the number of individuals who contact
with an individual identified as positive yet is m and the part of them at the rate q are taken to quarantine. We are called q as
“filiation (chain of contamination) control rate” such as 0≤ q≤ 1. So (1− r)mqβS (t) Iu (t) is the number of new individuals
transferred to Q from S. Also some of individuals, who are not quarantined although they contact with newly positive cases,
may be asymptomatic (at the rate p). We represent this transmission with (1− r)m(1−q) pβS (t) Iu (t) .

On the other hand it is assumed that all individuals in the quarantine (Q) do not contact with each other and susceptibles. In
addition, according to our model, the individuals who have completed the quarantine process (this is one incubation period) are
tested at the rate y and it is assumed that there exist positive cases at the rate p of them.

We should immediately note that, of course there will the individuals who have not been tested but have the risk in the sense of
becoming positive. (Even if they may think that no there is any positivity risk). So these individuals will take part in Iu. Thus it
is assumed that the individuals whose quarantine process has been completed but who have not been tested have join to Iu at
the rate (1− y)p (the rate of positivity of not tested individuals) and to S at the rate (1− y)(1− p) (the rate of negativity of not
tested individuals). In addition, taking into account that rate of individuals who have been tested and negative is y(1− p), the
individuals whose quarantine process has been completed turn to S at the rate (1− p) .

Also, taking into account that the time taking in quarantine is τ and some individuals will death at the rate d with nat-
ural causes (not caused by disease), it is obtained that the total number of individuals who leave from Q at time t is
(1− r)mqβS (t− τ) Iu (t− τ)e−dτ . This number is obtained by the solution of following initial value problem(

∂

∂ t
+

∂

∂τ

)
Q(t,τ) =−dQ(t,τ) , Q(t,0) = (1− r)mqβS(t)Iu(t).

Where Q(t,τ) describes the number of individuals who are joined to quarantine at time t− τ and still surviving at the time t.

Under these assumptions, the system of ordinary differential equations which reflects the model is as follows. In order to better
understand, in the first stage, the transitions between compartments, simplifications have not been made intentionally in the
equations.

dS (t)
dt

= Λ− (1− r)βS (t) Iu (t)− [r+(1− r)m(1−q) p]βS (t) Iu (t)− (1− r)mqβS (t) Iu (t)

−dS (t)+(1− p)(1− r)mqβS (t− τ) Iu (t− τ)e−dτ ,

dIu (t)
dt

= [r+(1− r)m(1−q) p]βS (t) Iu (t)+(1− y) p(1− r)mqβS (t− τ) Iu (t− τ)e−dτ

−(d +θ) Iu (t) ,
dIa (t)

dt
= (1− r)βS (t) Iu (t)+ yp(1− r)mqβS (t− τ) Iu (t− τ)e−dτ (2.1)

−(d +µ + γ) Ia (t) ,
dQ(t)

dt
= (1− r)mqβS (t) Iu (t)− (1− y) p(1− r)mqβS (t− τ) Iu (t− τ)e−dτ

−(1− p)(1− r)mqβS (t− τ) Iu (t− τ)e−dτ

−yp(1− r)mqβS (t− τ) Iu (t− τ)e−dτ −dQ(t) ,
dR(t)

dt
= θ Iu (t)+ γIa (t)−dR(t) ,

Where S(t), Iu(t), Ia(t), Q(t) and R(t) denote the number of the susceptible, unaware infectious, aware infectious, quarantined
and recovered individuals at time t, respectively. The total population size at time t is N(t) and N(t) = S(t)+ Ia(t)+ Iu(t)+
Q(t)+R(t) for all t > 0, such that all these functions are nonnegative. Also, all newborn individuals is be included the
population by entering with the rate Λ to the compartment S. µ represents the death rate derived from the disease. θ denotes
the transition rate to R from Iu. On the other hand, all parameters in the model are nonnegative constants. After necessary
simplifications and abbreviations, the transition diagram between compartments of the model is as follows.
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Figure 2.1: Transition diagram of the SIuIaQR model for spreading of the disease

Now, we determine the feasible region which is being positive invariant set for system (2.1).
Summing equations in (2.1), we obtain

dS
dt

+
dIu

dt
+

dIa

dt
+

dQ
dt

+
dR
dt

=
dN
dt

= Λ−dN (t)−µIa (t)

≤ Λ−dN (t) . (2.2)

If we use the fact that

x(t) =
Λ

d

(
1− e−dt

)
+ x(0)e−dt

is the solution of the equation

x′ (t) = Λ−dx(t)

then we get the maximal solution of (2.2) as

N (t) =
Λ

d

(
1− e−dt

)
+N (0)e−dt

for all t ≥ 0. Then we can say N (0) ≤ Λ

d implies N (t) ≤ Λ

d , for all t ≥ 0. This means that all solutions of system (2.1) are
eventually confined in this region bounded with Λ/d. So

Γ =

{
(S, Iu, Ia,Q,R) ∈C

(
[−τ,∞) ,

[
0,

Λ

d

]5
)

: N (t)≤ Λ

d

}
is positively invariant set for the model (2.1) and to concentrate on this restricted area will be enough for analysing of the
model.
It can be seen that functions Ia, Q and R do not appear in the other equations of the system (2.1). Also there is no nonlinear
relationship between these functions. So the dynamics of (2.1) are the same as the following reduced system (2.3), and it is
sufficient to study on the system (2.3). Dynamics and behaviour of functions S and Iu determine the state of the others. Also
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taking into account that the disease spreads only contacts between S and Iu, this reducing is meaningful epidemiologically as
well. 

dS
dt = Λ− [1+(1− r)m(q+ p(1−q))]βS (t) Iu (t)−dS (t)

+(1− p)(1− r)mqβS (t− τ) Iu (t− τ)e−dτ

dIu
dt = [r+(1− r)m(1−q) p]βS (t) Iu (t)− (d +θ) Iu (t)

+(1− y) p(1− r)mqβS (t− τ) Iu (t− τ)e−dτ

t ≥ 0

S (t) = g1 (t)
Iu (t) = g2 (t)

−τ ≤ t ≤ 0

(2.3)

Where gi ∈ C
(
[−τ,0] ,

[
0, Λ

d

])
, i = 1,2 and (S, Iu) ∈ C

(
[−τ,∞) ,

[
0, Λ

d

]2)
. If we choose x = (x1,x2), xt (θ) = x(t +θ),

g = (g1,g2) and f : Ω→
[
0, Λ

d

]2
such that Ω⊂C

(
[−τ,0] ,

[
0, Λ

d

]2)
then finding the solution of the system (2.3) is equivalent

to solving the following equation

x′ (t) = f
(
xt) , t ≥ 0 (2.4)

x0 = g.

Where f is defined by

f1 (x) = Λ− [1+(1− r)m(q+ p(1−q))]βx1 (0)x2 (0)−dx1 (0)+(1− p)(1− r)mqβx1 (−τ)x2 (−τ)e−dτ

f2 (x) = [r+(1− r)m(1−q) p]βx1 (0)x2 (0)− (d +θ)x2 (0)+(1− y) p(1− r)mqβx1 (−τ)x2 (−τ)e−dτ

for x = (x1,x2) = (S, Iu)∈Ω. Also, as known C
(
[−τ,0] ,

[
0, Λ

d

]n)
is a Banach space of continuous functions, and ‖·‖C denotes

the norm on C
(
[−τ,0] ,

[
0, Λ

d

]n)
and is defined by

‖x‖C = sup

{
n

∑
i=1
|xi (t)| :−τ ≤ t ≤ 0

}
.

3. Analysis of the model

In this section, we interest with qualitative analysis of the model (2.3). We firstly show the uniqueness of the solution of the
model (2.3).

Theorem 3.1. There exists a unique solution of the eqution (2.3) with initial function x1(t) = g1(t), x2(t) = g2(t) for−τ ≤ t ≤ 0.

Proof. It sufficient to show that f , given in (2.4), is Lipschitz continuous in every compact subset M ⊂Ω. Let x = (x1,x2) ,
y = (y1,y2) ∈M, then we can write from the description of f

‖ f (x)− f (y)‖
= | f1 (x)− f1 (y)|+ | f2 (x)− f2 (y)|
= [1+(1− r)m(q+ p(1−q))]β |x1 (0)x2 (0)− y1 (0)y2 (0)|

+d |y1 (0)− x1 (0)|
+(1− p)(1− r)mqβe−dτ |x1 (−τ)x2 (−τ)− y1 (−τ)y2 (−τ)|
+[r+(1− r)m(1−q) p]β |x1 (0)x2 (0)− y1 (0)y2 (0)|
+(d +θ) |y2 (0)− x2 (0)|
+(1− y) p(1− r)mqβe−dτ |x1 (−τ)x2 (−τ)− y1 (−τ)y2 (−τ)|

≤ [1+(1− r)m(q+ p(1−q))]β (|x2 (0)|+ |y1 (0)|)‖x− y‖C
+(d +θ)‖x− y‖C
+(1− p)(1− r)mqβe−dτ (|x2 (−τ)|+ |y1 (−τ)|)‖x− y‖C
+[r+(1− r)m(1−q) p]β (|x2 (0)|+ |y1 (0)|)‖x− y‖C
+(1− y) p(1− r)mqβe−dτ (|x2 (−τ)|+ |y1 (−τ)|)‖x− y‖C

= [1+ r+(1− r)m(q+2p(1−q))]β (|x2 (0)|+ |y1 (0)|)‖x− y‖C
+(d +θ)‖x− y‖
+[(1− r)mq(1− p+ p(1− y))]βe−dτ (|x2 (−τ)|+ |y1 (−τ)|)‖x− y‖C (3.1)
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Taking into account the fact |xi (t)| ≤ Λ

d for −τ ≤ t ≤ 0, i = 1,2 then we conlude

‖ f (x)− f (y)‖ ≤
(

2Λ

d
(A+B)+d +θ

)
‖x− y‖C

from (3.1), where A = [1+ r+(1− r)m(q+2p(1−q))]β and B = [(1− r)mq(1− p+ p(1− y))]βe−dτ .
So if we take

l ≥ 2Λ

d
(A+B)+d +θ ,

the inequality
‖ f (x)− f (y)‖ ≤ l ‖x− y‖C

hold in every compact subset M ⊂Ω. This completes the proof.

3.1. Disease-free equilibrium point and basic reproduction number

The disease-free equilibrium point of the model (2.3) is easily found as

ε0 =
(
S0, I0

u
)
=

(
Λ

d
,0
)
.

The number of secondary infections produced by a single infected individual introduced into a population is a threshold value
and very significant for providing information about the course of the disease in the population. This number represented by
R0 is also known as the basic reproduction number. Now, let us get the basic reproduction number R0 of system (2.3) by
means of the next generation matrix method.
Let X = (Iu,S)T . Then the system (2.3) can be written in the form

dX
dt

= F (X)−V (X).

such that

F (X) =

 [r+(1− r)m(1−q) p]βS (t) Iu (t)+(1− y) p(1− r)mqβS (t− τ) Iu (t− τ)e−dτ

0


and

V (X) =

 (d +θ) Iu (t)

[1+(1− r)m(q+ p(1−q))]βS (t) Iu (t)+dS (t)−Λ− (1− p)(1− r)mqβS (t− τ) Iu (t− τ)e−dτ

 .

The basic reproduction number belonging to the model (2.3) is based on the linearization of the system about disease-free
equilibrium. The jacobian matrices of F (X) and V (X) at the disease-free equilibrium ε0 =

(
Λ

d ,0
)

are respectively found as

dF (ε0) =

[
F11 F12
F21 F22

]
,

dV (ε0) =

[
V11 V12
V21 V22

]
.

Where

F11 = [r+(1− r)m(1−q) p]βS0 +(1− y) p(1− r)mqβS0e−dτ

F12 = [r+(1− r)m(1−q) p]β I0
u +(1− y) p(1− r)mqβ I0

u e−dτ

F21 = 0
F22 = 0

and

V11 = d +θ ,
V12 = 0,
V21 = [1+(1− r)m(q+ p(1−q))]βS0− (1− p)(1− r)mqβS0e−dτ ,
V22 = [1+(1− r)m(q+ p(1−q))]β I0

u +d− (1− p)(1− r)mqβ I0
u e−dτ .
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Then

F = F1×1 =
[
(r+(1− r)m(1−q) p)βS0 +(1− y) p(1− r)mqβS0e−dτ

]
,

V = V1×1 = [d +θ ]

and

FV−1 =

[[
r+(1− r)m(1−q) p+(1− y) p(1− r)mqe−dτ

]
βS0

d +θ

]
.

Following Diekmann and Heesterbeek [36], the matrix FV−1 is referred to as the next generation matrix for the system at the
disease-free equilibrium and the basic reproduction number is defined as the spectral radius of the matrix FV−1. Now let us
find maximum of the eigenvalues of this matrix. The characteristic polynomial of FV−1 is

det
(
λ I1−FV−1)= λ −

[
r+(1− r)m(1−q) p+(1− y) p(1− r)mqe−dτ

]
βS0

d +θ
.

Then, the spectral radius of the next generation matrix is

ρ
(
FV−1)= [

r+(1− r)m(1−q) p+(1− y) p(1− r)mqe−dτ
]

βS0

d +θ
.

Taking into S0 = Λ/d account that, the basic reproduction number of the model (2.3) is found as

R0 =
βΛ
{

r+(1− r)m
[
(1−q) p+(1− y) pqe−dτ

]}
d (d +θ)

.

Now, let us open another matter and consider its results. It is clear that

∂R0

∂y
=−p(1− r)mqe−dτ ≤ 0

and

∂R0

∂q
= m(1− r) p

[
(1− y)e−dτ −1

]
≤ 0,

taking into account that (1− y)e−dτ < 1. So we can say that the test rate y and the filiation (chain of contamination) control
rate q have opposite effects on R0.
On the other hand

∂R0

∂ r
=

βΛ
[
1−mp

(
1−q+(1− y)qe−dτ

)]
d (d +θ)

and so, if 1 > mp
[
1−q

(
1+(1− y)e−dτ

)]
then increasing of asymptomatic individuals increases the value R0. As a result of

this fact, it should be aimed that the following inequality is hold

mp
[
1−q

(
1+(1− y)e−dτ

)]
≥ 1. (3.2)

Hence, it can be concluded what is relation of the test rate y and the filiation control rate q according to other parameters from
(3.2). In other words, this relation can give an answer to the question: “What should filiation control rate q is required with the
test rate y so that the disease brought under control and does not turn into an epidemic?”

3.2. Existence of endemic equilibrium point

It can be seen that, from in subsection 3.1, the system (2.3) always has a disease-free equilibrium point. Now, we investigate
the existence of endemic equilibrium point of the system (2.3).
If we take S (t) = S∗ and Iu (t) = I∗u 6= 0, the endemic equilibrium point of the system (2.3) can be calculated via following
system of algebraic equations

0 = Λ− [1+(1− r)m(q+ p(1−q))]βS∗I∗u −dS∗+(1− p)(1− r)mqβS∗I∗u e−dτ ,

0 = [r+(1− r)m(1−q) p]βS∗I∗u +(1− y) p(1− r)mqβS∗I∗u e−dτ − (d +θ) I∗u . (3.3)
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From the second equation of the system (3.3), we write

I∗u
{
[r+(1− r)m(1−q) p]βS∗+(1− y) p(1− r)mqβS∗e−dτ − (d +θ)

}
= 0.

Since I∗u 6= 0 for endemic equilibrium point, we can say

[r+(1− r)m(1−q) p]βS∗+(1− y) p(1− r)mqβS∗e−dτ − (d +θ) = 0

and obtain

S∗ =
(d +θ)

β {r+(1− r)m [(1−q) p+(1− y) pqe−dτ ]}
=

Λ

dR0
. (3.4)

Substituting expression in (3.4) into first equation of (3.3) and arranging, we get

I∗u =
Λ−dS∗

βS∗ [1+(1− r)m(q+ p(1−q))− (1− p)(1− r)mqe−dτ ]

=
d (R0−1)

β {1+(1− r)m [q(1− e−dτ)+ p(1−q)+ pqe−dτ ]}
.

Then taking into account that q,r < 1 and e−dτ < 1, it can be obtain I∗u > 0 for R0 > 1.
Therefore, we say the system (2.3) has a unique endemic equilibrium point ε∗ = (S∗, I∗u ) when R0 > 1.
ε∗ = (S∗, I∗u ) can be written as

(S∗, I∗u ) =
(

Λ

dR0
,

d (R0−1)
β {1+(1− r)m [q(1− e−dτ)+ p(1−q)+ pqe−dτ ]}

)
according to R0.

3.3. Stabilities of the equilibrium points

In this part it is examined the stability behaviour of system (2.3). Firstly, for local stabilities of disease-free and endemic
equilibrium points, the characteristic equations which correspond to Jacobian matrices at the equilibrium points are analysed.
Next by using the Lyapunov functional technique, global stability of disease-free equilibrium point is proved.

Theorem 3.2. The disease-free equilibrium ε0 of the system (2.3) is locally asymptotically stable in the positively invariant
region Γ for R0 < 1, and unstable for R0 > 1.

Proof. The Jacobian matrix at the disease-free equilibrium point ε0 =
(
S0, I0

u
)

of the system (2.3) is

J (ε0) =

[
J11 J12
J21 J22

]
,

where

J11 = − [1+(1− r)m(q+ p(1−q))]β I0
u −d +(1− p)(1− r)mqβ I0

u e−dτ ,

J12 = − [1+(1− r)m(q+ p(1−q))]βS0 +(1− p)(1− r)mqβS0e−dτ ,

J21 = [r+(1− r)m(1−q) p]β I0
u +(1− y) p(1− r)mqβ I0

u e−dτ ,

J22 = [r+(1− r)m(1−q) p]βS0 +(1− y) p(1− r)mqβS0e−dτ − (d +θ) .

Taking into account
(
S0, I0

u
)
=
(

Λ

d ,0
)
, the characteristic equation which is correspond to this matrix is

(−d−λ )

(
β

Λ

d

[
(r+(1− r)m(1−q) p)+(1− y) p(1− r)mqe−dτ

]
− (d +θ)−λ

)
= 0. (3.5)

This equation always have negative eigenvalue −d. The other eigenvalue of characteristic equation (3.5) is determined by

λ2 = (d +θ)

(
βΛ
{

r+(1− r)m
[
(1−q) p+(1− y) pqe−dτ

]}
d (d +θ)

−1

)
= (d +θ)(R0−1) .

If R0 < 1, then two roots of Eq. (3.5) are negative. If R0 = 1, then we say that one of roots of Eq. (3.5) is zero. In the
case R0 > 1, one of roots of Eq. (3.5) has positive real parts. Therefore, the disease-free equilibrium point ε0 is locally
asymptotically stable for R0 < 1, is stable for R0 = 1, and is unstable for R0 > 1.
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Theorem 3.3. The endemic equilibrium ε∗ is locally asymptotically stable in the positively invariant region Γ for R0 > 1.

Proof. The Jacobian matrix at the endemic equilibrium point ε∗ of the system (2.3) is

J (ε∗) =
[

J11 J12
J21 J22

]
,

where

J11 = − [1+(1− r)m(q+ p(1−q))]β I∗u −d +(1− p)(1− r)mqβ I∗u e−dτ ,

J12 = − [1+(1− r)m(q+ p(1−q))]βS∗+(1− p)(1− r)mqβS∗e−dτ ,

J21 = [r+(1− r)m(1−q) p]β I∗u +(1− y) p(1− r)mqβ I∗u e−dτ ,

J22 = [r+(1− r)m(1−q) p]βS∗+(1− y) p(1− r)mqβS∗e−dτ − (d +θ) .

If we take into account that

(S∗, I∗u ) =
(

Λ

dR0
,

d (R0−1)
β {1+(1− r)m [q(1− e−dτ)+ p(1−q)+ pqe−dτ ]}

)
,

and make necessary arrangements, we obtain the followings:

J11 = − [1+(1− r)m(q+ p(1−q))]β I∗u −d +(1− p)(1− r)mqβ I∗u e−dτ

= −β I∗u
{

1+(1− r)m
[
q
(

1− e−dτ

)
+ p(1−q)+ pqe−dτ

]}
−d

= d (1−R0)−d

= −dR0,

J12 = − [1+(1− r)m(q+ p(1−q))]βS∗+(1− p)(1− r)mqβS∗e−dτ

= −βS∗
{

1+(1− r)m
[
q
(

1− e−dτ

)
+ p(1−q)+ pqe−dτ

]}
= −Λ(R0−1)

I∗uR0
,

J21 = [r+(1− r)m(1−q) p]β I∗u +(1− y) p(1− r)mqβ I∗u e−dτ

= β I∗u
{

r+(1− r)m
[
(1−q) p+(1− y) pqe−dτ

]}
= I∗u

d (d +θ)R0

Λ

and

J22 = [r+(1− r)m(1−q) p]βS∗+(1− y) p(1− r)mqβS∗e−dτ − (d +θ)

= βS∗
{

r+(1− r)m
[
(1−q) p+(1− y) pqe−dτ

]}
− (d +θ)

= S∗
d (d +θ)R0

Λ
− (d +θ)

= 0.

After from the simplification, the corresponding characteristic equation for J (ε∗) is found as

λ
2 +C1λ +C2 = 0, (3.6)

where

C1 = dR0

and

C2 = d (d +θ)(R0−1) .
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Then we can say

C1 = dR0 > 0, for R0 > 1

and

C2 = d (d +θ)(R0−1)> 0, for R0 > 1.

Therefore, we obtain tr (J (ε∗)) = −C1 < 0 and det(J (ε∗)) = C2 > 0. So, each of the eigenvalues of J (ε∗) (i.e. two roots
of the equation (3.6) have negative real parts. Consequently, if R0 > 1 then endemic equilibrium ε∗ = (S∗, I∗u ) is locally
asymptotically stable.

Theorem 3.4. The disease-free equilibrium ε0 of the system (2.3) is globally asymptotically stable in the positively invariant
region Γ for R0 < 1.

Proof. Let us define the following function as a candidate for Lyapunov function.

W (t) = Iu (t)+(1− y) p(1− r)mqe−dτ

t∫
t−τ

βS (x) Iu (x)dx.

Differentiating W (t) according to time t, we get
·

W (t)

= [r+(1− r)m(1−q) p]βS (t) Iu (t)+(1− y) p(1− r)mqβS (t− τ) Iu (t− τ)e−dτ − (d +θ) Iu (t)

+(1− y) p(1− r)mqe−dτ
βS (t) Iu (t)− (1− y) p(1− r)mqe−dτ

βS (t− τ) Iu (t− τ)

= Iu (t)
{
[r+(1− r)m(1−q) p]βS (t)+(1− y) p(1− r)mqe−dτ

βS (t)− (d +θ)
}

= Iu (t)
{

βS (t)
[
r+(1− r)m

(
(1−q) p+(1− y) pqe−dτ

)]
− (d +θ)

}
≤ Iu (t)

[
βΛ
{

r+(1− r)m
[
(1−q) p+(1− y) pqe−dτ

]}
d

− (d +θ)

]

= Iu (t)

[
(d +θ)

(
βΛ
{

r+(1− r)m
[
(1−q) p+(1− y) pqe−dτ

]}
d (d +θ)

−1

)]
= Iu (t)(d +θ)(R0−1) .

Hence, it can be concluded that W (t)> 0 and
·

W (t)< 0 when R0 < 1 and for all points which is different from equilibrium

points. So W is a Lyapunov function for the system (2.3) on the set Γ. Now, let us define the set Φ =

{
(S, I) :

·
W (t) = 0

}
and let φ be largest invariant subset of Φ. It can be easily seen that φ = {ε0} and φ is invariant. We say that ε0 is globally
asymptotically stable in Γ by aid of LaSalle’s Invariance Principle [37] well-known from global stability thecniques.

4. Conclusion

This study describes and analyses an SIuIaQR mathematical model that investigates the effect of quarantine on spreading of the
Covid-19. To avoid second major or interim sub-waves of Covid-19 pandemic, one of the most effective methods that will
minimize the harm and spread of the outbreak is to quarantine the exposed people and monitor the individuals they are in
contact with. With this study, which aims to evaluate the effect of quarantine on the transmission of the Covid-19, it is thought
that a different perspective and contribution will be provided to the literature.
Let us start to present the examples with the course of Q, Iu and Ia such that the estimated parameters are as follows

Parameters Value (Estimated)
Λ 4000 (per day)
β 1.1×10−9

r 0.5
m 5 (individual)
q 0.3
p 0.2
d 0.000015
y 0.7
µ 0.02
τ 12 (day)
θ 0.04
γ 0.2
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with the initial conditions S (0) = 7×107, Iu (0) = 5000, Ia (0) = 500, Q(0) = 0 and R(0) = 0.

According to the above parameters, the dynamical behaviours of the model has been described in Figure 4.1.

Figure 4.1: The dynamical behaviours of the compartments Iu, Ia and Q.

The other figures respectively reflect that the effect of filiation control rate q, of the rate of tests y for finding the infected
individuals, and of the average number contacted persons m with the new cases, to spread of Covid-19. The figures, prepared to
visualize the effect of these parameters in (2.3) has been generated using the Wolfram Mathematica 12.1 with NDSolve code.
The control of filiation is a method of tracking from whom the virus is transmitted to the positive case and who the case has
infected. In other words, in every positive case, it is the method of tracking the infection of the virus and determining the chain
of spread. In the monitoring method of chain of contamination, the followings of contacted cases are provided. The individuals
those who come in contact with positive cases are reached in a short time and asked to isolate themselves, and their evaluations
and tests are made by visiting their locations. So, it is provided to prevent their infection potentials.
With the help of filiation studies, the cases are detected early and the risk of transmitting the disease to others is minimized.
Again, the early detection of the patients by means of the filiation provides an early start of the treatment process and increases
the recovery rate, [38]. Therefore the case detection and control works, and filiation activities belong to these play a very
important role in struggle with Covid-19. Hence, all countries that are trying to control the disease should particular importance
to the filiation activities for the strict monitoring and isolation of people having contact with cases within the community in
addition to put communal limitations to keep the disease limited. With the filiation works, it is clear that great advances will be
recorded. In our model, q corresponds to filiation control rate and the reader can see the effect of q (in a short period) on the
spread of the Covid-19, in Figure 4.2.

Figure 4.2: The effect of filiation control rate q in a short period for y = 1 .
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It can be seen that the increasing tendency of the disease decreases as q increases. Also the following figure shows the course
of number of infectious (confirmed cases) according to q.

Figure 4.3: The effect of filiation control rate q in a long period.

Another big problem in the spread of disease is the number of contacts within the population. Unfortunately, no one can be
sure that the people with whom they are in contact are not positive. So it should be avoided from dispensable contact. The
following figure shows the result of this fact.

Figure 4.4: The effect of the average number of contacted individuals for m = 2,m = 3,m = 4,m = 6,m = 8,m = 10.

Let us come to the rate of test y. The rate of tests for determining the infected individuals is crucial in reducing the size of Iu.
Let us note immediately that, as known, the potential danger group here is the asymptomatic individuals in the circulation in
the community. Since it is assumed that the members of Ia will be isolated during the treatment in a hospital or home, they
don’t transmit the disease to susceptible. The rate of test at the end of the quarantine process and the rate of positive test within
total tests determine the percentage of individuals that moved to the classes Ia, Iu and S from Q. In this regard, the rate of tests
to be performed is reasonably significant. The following figure shows how the compartments can be influenced from evolution
in y, for q = 0.5 and different values of the parameter y.

Figure 4.5: The effect of test rates for y = 0.2,y = 0.4,y = 0.4,y = 0.6,y = 0.8,y = 0.9,y = 1.
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Finally we want to present, according to q, the bound of ratio of asymptomatic to confirmed cases.

Figure 4.6: Different scenario of maximum rate between Iu and Ia after one incubation period from the initial of the disease.
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