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ABSTRACT 
 

Considering the quantum memory channels, we study the dynamical evolutions of quantum coherence and quantum mutual 

information as measures of quantum correlations under the actions of different decoherence channels on some bipartite initial 

states. Under any quantum operation or process occurring in a noisy environment, quantum correlations exhibit behavior that 

does not increase due to the system interacting with its environment. We state that for such a case the decrement of quantum 

correlations can be improved by the suitable choice of the initial states and by adjusting the parameters. Thus quantum 

correlations can be partially preserved against the action of the environment. It can be shown that optimal conditions to prohibit 

the partial loss in quantum coherence and quantum mutual information for performing any quantum information task may be 

generated by the memory. 
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1. INTRODUCTION 
 

Quantum correlations are the important resources in accomplishing some significant quantum 

computation and information tasks such as quantum teleportation, entanglement swapping, key 

distribution, quantum cryptography, superdense coding that cannot be achieved classically [1]. In 

fulfilling such a mission, conservation and sustaining of these for a long time have vital importance [2]. 

However, quantum correlations generally show the decreasing behavior under any quantum information 

process like a quantum channel (QC) in a noisy environment [3].  

 

The loss or decrement of the correlation, called quantum decoherence, is the main obstacle in 

implementations of new quantum technologies based on quantum computation and information sciences 

[4, 5]. Therefore, it is of great importance to searching new ways to control or mitigate the decrease of 

correlations and make them available in information and computation technology [5, 6]. This work 

pursues such a purpose in the context of memory QCs [7] that are very crucial in studying noisy quantum 

information and computing processes. 

 

Quantum coherence is the illustrious measure of the quantum correlations that arise from the description 

of the wave function of quantum systems and thus classical physics laws cannot describe it [8, 9]. 

Therefore, there are quantum states that have no classical counterpart due to the existence of quantum 

coherence and these states can only be characterized by the laws of quantum mechanics [10, 11]. 

Besides, these play an essential role in achieving quantum supremacy that has dramatically improved in 

recent years [12]. Indeed, quantum coherence is taken into account a fundamental resource within the 

context of quantum information processing and computation, and thus it is vital to measure and 

manipulate the amount of coherence present in the quantum state [13-15]. Coherence is very fragile due 

to veridical systems interacting with their external environment and it inevitably prone to environmental 

effects as information from the system flows into the environment [16]. It can be clearly said that 

coherence is often very hard to create, maintain, and manipulate in quantum systems. Therefore, it is 
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very essential and striking to create, control, sustain and preserve the quantum coherence in quantum 

computation and information processing. 

 

In recent years, quantum coherence has widely been studied in many fields of quantum information and 

computing processes such as the extraction of work from quantum coherence in the field of quantum 

thermodynamics [17], quantum coherence of low-temperature thermodynamics [18, 19], quantum 

metrology [20, 21] and quantum algorithms [22, 23]. In addition, it attracts a great deal of interest in 

various fields such as energy transfer [24], quantum biology [25], photosynthesis in biological systems 

[26], the avian compass in migratory birds [27] and Yang-Baxter states [28]. 

 

Another quantum measure of the correlation is quantum mutual information (QMI) that characterizes 

the total correlations (classical and quantum) between subsystems of a bipartite system [29]. It is positive 

and vanishes if and only if the state of joint system is a product state. 

 

Any quantum information process or evolution such as time evolution and quantum measurement on a 

quantum system are demonstrated as a QC Λ. Considering a bipartite system AB whose Hilbert spaces 

respectively correspond to ℋ𝐴 and ℋ𝐵, a map Λ is called completely positive (CP) linear map on the set 

𝐵(ℋ𝐵) of operators living in ℋ𝐵. It maps the positive operators to positive ones and preserve the trace. 

Additionally, it maintains the positivity in all tensorial extensions [30, 31]. On the other hand, if the first 

system is affixed to second one then 𝑖𝑑𝐴 ⊗  Λ is still a QC on the expanded domain for all Hilbert space 

of system A. 𝑖𝑑𝐴 denotes the identity map of ℋ𝐴 that is the simplest QC. It is noted that traits and features 

of the QC do not change under the convex mixing, tensorial extensions and chains of QCs with 

appropriate definition domains [7].  

 

The well-known models for the action of a noisy environment on 𝑁-partite systems are the memoryless 

channels that can be defined as Λ𝑁 =  Λ⊗𝑁 = Λ ⊗ Λ ⊗ … ⊗ Λ. If the time between consecutive actions 

of the QC is greater than the relaxation time of the environmental affects, one can speak of these channels 

[4]. In such a case, the environment backaction can be negligible at each action of the channel and the 

same QC Λ acts on each part of the quantum system. However, if this is not the case, the outputs or 

correlations obtained by the successive use of the channel on the input state are strictly depend on the 

previous action and these may be transmitted by the environment. In cases where the decomposition 

Λ𝑁 =  Λ⊗𝑁 is not valid as a rule, one can speak of correlated QCs or quantum memory. Because of the 

continuing miniaturization of information processing devices and increasing communication rates, the 

attention of such quantum memory effects is inevitable [7]. 

 

QCs with memory were firstly investigated by a pioneering work to study the problem of classical 

capacity of them [32]. The authors studied the two consecutive actions of the depolarizing channel with 

correlated Markovian noise in which it can be described as a Pauli channel since it is constructed by the 

Pauli matrices. They showed that a higher quantity of classical information could be conveyed with 

maximally entangled states compared to separable ones beyond a specific threshold in the degree of 

quantum memory of the QC. Later, the extension of this work to the case of non-Pauli channels was 

investigated and similar behavior was found [33]. 

 

In this paper, we shall investigate the dynamical evolution of correlations under the two successive uses 

of different QCs using the quantum coherence and QMI as quantifiers of correlations of two 2-qubit 

systems initially prepared in a parameterized state differently from previous works. Then, we shall study 

the actions of two consecutive uses of different two-qubit channels called usually decoherence channels 

such as amplitude-damping (AD), bit-flip (BF), bit-phase-flip (BPF), phase-damping (PD) that also 

called phase-flip and depolarizing (DP) channels on this measure taking account of the quantum 

memory. Although quantum correlations decrease monotonically under the memoryless actions of these 

channels, by adjusting the quantum memory it can be said that the relative increments in the quantum 

coherence and QMI can be observed for the actions of all the channels. In the regions where correlations 
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can be improved, they can relatively be obtained at high values in order to be used as a resource in 

information and computation processes. 

 

This study is organized as follows. In Sec. 2, the main features of the coherence and QMI that will be 

used in this study and quantum channels are summed up briefly. Two consecutive uses of decoherence 

channels on the two different inputs are realized in Sec. 3, where quantum coherence and QMI of the 

outputs are introduced and the central outcomes of this work are highlighted in this section. We finalize 

with conclusion and some remarks. 

 

 

2. QUANTUM CHANNELS AND MEASURES OF QUANTUM CORRELATIONS 

 

In this section, we start brief information about quantum coherence and QCs. To begin with, we describe 

the QCs and quantum coherence (relative entropy of coherence and 𝑙1-norm of coherence) in two 

subsections. 

 

2.1. Quantum Channels 

 

The identical and independent noises act on each part for an 𝑁 −partite system of a time-ordered 

sequence of carries and in a memoryless case, 𝑁 copies Λ⊗𝑁 of Λ are acting. For any compound input 

𝜌, If 𝐾𝑖 's that satisfy the trace-preserving property ∑ 𝐾𝑖
†𝐾𝑖 = 𝕀𝑖  are the Kraus operators [31] of the QC 

Λ then  

                        Λ⊗𝑁(𝜌) = ∑ (𝐾𝑖1
⊗ ⋯ ⊗ 𝐾𝑖𝑁

)𝜌(𝐾𝑖1

† ⊗ ⋯ ⊗ 𝐾𝑖𝑁

† )

𝑖1…𝑖𝑁

,                                                       (1)  

where 𝕀 denotes the identity matrix. 

 

The memory effect can be described by the correlated multi-use Λ𝑁 of the QC Λ. In this situation, the 

Kraus operators of the QC are 𝐾𝑖1…𝑖𝑁
= √𝑝𝑖1…𝑖𝑁

𝐴𝑖1
⊗ ⋯ ⊗ 𝐴𝑖𝑁

 with ∑ 𝑝𝑖1…𝑖𝑁
= 1𝑖  where 𝑝𝑖1…𝑖𝑁

≥ 0 

are the probabilities of an arbitrary sequence of quantum operations carried out to information carriers 

when they transmit the QC. For the memoryless case, above quantum operations are independent of 

each other 𝑝𝑖1…𝑖𝑁
= 𝑝𝑖1

𝑝𝑖2
… 𝑝𝑖𝑁

 and 𝐾𝑖𝑗
= 𝑝𝑖𝑗

𝐴𝑖𝑗
. On the other hand, for a correlated QC containing 

the memory like forgetful channels, these operations are correlated via 𝑝𝑖1…𝑖𝑁
= 𝑝𝑖1

𝑝𝑖2|𝑖1
… 𝑝𝑖𝑁|𝑖𝑁−1

 and 

the result of each operation depends on the previous one where 𝑝𝑖𝑘|𝑖𝑘−1
is the conditional probability for 

the effect on the 𝑖𝑘th part of the compound quantum system. 

 

Kraus operators for two consecutive uses of a QC with memory that quantified by the memory parameter 

0 ≤ 𝜇 ≤ 1 are [32, 33] 𝐾𝑖𝑗 = √𝑝𝑖𝑗𝐴𝑖 ⊗ 𝐴𝑗 with 𝑝𝑖𝑗 = 𝑝𝑖[(1 − 𝜇)𝑝𝑖 + 𝜇𝛿𝑖𝑗] for bipartite systems. In 

this case, the output 𝜎 = Λ2(𝜌) can be written as a convex mixture of uncorrelated and correlated parts: 

                                      𝜎 = (1 − 𝜇) ∑ 𝐾𝑖𝑗
𝑢 𝜌 𝐾𝑖𝑗

𝑢†

𝑖,𝑗

+ 𝜇 ∑ 𝐾𝑘
𝑐  𝜌 𝐾𝑘

𝑐†

𝑘

.                                                           (2) 

Here, 𝐾𝑖𝑗
𝑢 = √𝑝𝑖𝑝𝑗  𝐴𝑖 ⊗ 𝐴𝑗  and 𝐾𝑘

𝑐 = √𝑝𝑘  𝐴𝑘 ⊗ 𝐴𝑘. From Equation (2) says that with probability 𝜇 

the QC acts on both information carriers with the same quantum operator 𝐴𝑘, whereas it independently 

acts on the carriers with probability 1 − 𝜇. Physically, 𝜇 is obtained by the relaxation or correlation time 

of the QC when one of the carrier traverses it [30]. 

 

2.2. Quantum Coherence 

 

Before moving on to the definition of coherence, we will give a few useful mathematical definitions for 

this topic. 
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Definition: Let ℋ be a 𝑑 −dimensional Hilbert space. Let us fix a basis {|𝑖⟩} 𝑖=1
𝑑  of vectors in ℋ. A 

quantum state 𝜋 is called incoherent if it can be represented as follows 

                                                                     𝜋 = ∑ 𝜋𝑖

𝑖

|𝑖⟩⟨𝑖|.                                                                                 (3) 

For a fixed basis {|𝑖⟩} 𝑖=1
𝑑 , the set of incoherent states is denoted as ℐ = {𝜋 = ∑ 𝑝𝑖𝑖 |𝑖⟩⟨𝑖|}. 

 

Recently, a recipe for the qualification of the coherence has been supplied by taking into consideration 

coherence as a quantum resource [8]. In this study, the following set of criteria (so-called Baumgratz et 

al. criteria) has been proposed that each potential coherence quantifier (C) should satisfy: 

 

(1) Coherence has the non-negativity behavior: 𝐶(𝜌) ≥ 0 and 𝜌 is an incoherent state if and 

only if the equality holds. 

(2a) Monotonicity: 𝐶 has the non-increasing behavior under the actions of CP and trace-

preserving (TP) incoherent operations, i.e., 𝐶(Φ(𝜌)) ≤ 𝐶(𝜌), where Φ is any CPTP incoherent 

operation. 

(2b) Strong monotonicity: ∑ 𝑞𝑖𝑖 𝐶(𝜌𝑖) ≤ 𝐶(𝜌), where 𝜌𝑖 = (𝐾𝑖𝜌𝐾𝑖
†)/𝑞𝑖 are post-measurement 

states. The probabilities are given by 𝑞𝑖 = 𝑇𝑟(𝐾𝑖𝜌𝐾𝑖
†), and 𝐾𝑖’s are incoherent Kraus operators. 

(3) Convexity: 𝐶 has the non-increasing behavior under any convex mixture, i.e.  

                                                            ∑ 𝑝𝑖

𝑖

𝐶(𝜌𝑖) ≤ 𝐶 (∑ 𝑝𝑖

𝑖

𝜌𝑖).                                                                  (4) 

Now, we can introduce the two types of quantum coherence, separately.  

 

As a measure of quantum correlations, we firstly give the relative entropy of coherence living in a 

quantum state symbolized by a bipartite matrix 𝜌𝐴𝐵 or shortly 𝜌. It is defined as [8] 

                                                         𝐶𝑟(𝜌) = 𝑆(𝜌𝑑𝑖𝑎𝑔) − 𝑆(𝜌),                                                                           (5) 

where 𝑆(𝜌) = −𝑇𝑟𝜌 log 𝜌 is the von Neumann entropy of 𝜌 and if 𝜆𝑖 are the eigenvalues of 𝜌 then it 

can be expressed as 𝑆(𝜌) = − ∑ 𝜆𝑖𝑖 log 𝜆𝑖. 𝜌𝑑𝑖𝑎𝑔 denotes the diagonalized form of 𝜌. It is noted that 𝐶𝑟 

is a basis-dependent quantity. 𝐶𝑟 has a physical importance because of its similarity to the relative 

entropy of entanglement in form. It physically states the best rate of the distilled maximally coherent 

states that may be made by incoherent operations within the asymptotic limit of the many copies of 𝜌 

[34]. The experimental measurement of 𝐶𝑟(𝜌) may interestingly be achieved without using full quantum 

state tomography [35]. 

 

Secondly, the 𝑙1-norm of coherence in which we focus on in this paper is given by [8] 

                                                                            𝐶𝑙1
(𝜌) = ∑|𝜌𝑖𝑗|

𝑖≠𝑗

,                                                                       (6) 

where 𝜌𝑖𝑗 denotes the matrix elements of 𝜌. 𝑙1-norm of coherence, which like 𝐶𝑟 is basis dependent, is 

currently not known to have any analog in the entanglement resource theory [13].  

 

Interestingly, for any 𝑑 −dimensional mixed state, it has been proved that 𝐶𝑙1
(𝜌) ≥ 𝐶𝑟(𝜌)/ log2 𝑑 and 

conjectured that 𝐶𝑙1
(𝜌) ≥ 𝐶𝑟(𝜌) for all states [14]. 

 

2.3. Quantum Mutual Information 

 

QMI as a measure of total correlations living in a bipartite quantum system that can be divided into parts 

A and B is defined as 

                                                      𝐼(𝜌𝐴𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) − 𝑆(𝜌𝐴𝐵),                                                            (7) 
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where 𝜌𝐴(𝐵) = Tr𝐵(𝐴)𝜌𝐴𝐵  is the reduced density matrix of the system AB and 𝑆(𝜌𝑖) = −𝑇𝑟𝜌𝑖 log2 𝜌𝑖 

is the von Neumann of the subsystem (𝑖 = 𝐴, 𝐵). The entropy of total system AB is also defined as 

𝑆(𝜌𝐴𝐵) = −𝑇𝑟𝜌𝐴𝐵 log2 𝜌𝐴𝐵. QMI has a non-increasing behavior under any quantum channel [1] and 

for two-qubits, we have 0 ≤ 𝐼(𝜌𝐴𝐵) ≤ 2. 

 

3. TWO-USE ACTIONS OF THE QUANTUM CHANNELS WITH MEMORY 

 

In this section, we investigate the successive action of AD, PD, BF, BPF and DP channels, denoted 

respectively by Λ𝐴𝐷 , Λ𝑃𝐷 , Λ𝐵𝐹 , Λ𝐵𝑃𝐹   and Λ𝐷𝑃 on two different 2-qubit input states and focus on 

calculations of quantum coherence and QMI of the corresponding outputs. 

 

The number of Kraus operators of the first four channels are two and each of them typically depends on 

a parameter represented by 0 ≤ 𝑝 ≤ 1 that represents the decoherence parameter of the channel. The 

last channel Λ𝐷𝑃 has the full rank where there are four Kraus operators. The Kraus operators of these 

channels are given in Table 1. We first fix two different input states and found their values for the initial 

states of quantum coherence and QMI. Then, we investigate the dynamics of them for the outputs 

obtained by help of the Equations (2), (6) and (7) taking account of the quantum memory.  

 

3.1. Initial Values of the Quantum Coherence and QMI 

 

Firstly, we fix the two-qubits isotropic state as an input  

                                                         𝜌𝐴𝐵
(1)

= (1 − 𝑥)
𝕀

4
+ 𝑥|Ψ+⟩⟨Ψ+|,                                                                 (8) 

where 𝑥 ∈ [0,1] is the mixing or state parameter and |Ψ+⟩ = (|00⟩ + |11⟩) √2⁄  is the Bell state in the 

computational basis {|00⟩, |01⟩, |10⟩, |11⟩} [1]. The states |0⟩ and |1⟩ correspond to respectively spin-

up and spin-down states and given by as follows in the matrix form 

                                                          |0⟩ = (
1
0

) , |1⟩ = (
0
1

).                                                                         (9) 

The initial value of the 𝑙1-norm of coherence, shortly coherence, for this state from Equation 6 is found 

to be 𝐶𝑙1
(𝜌𝐴𝐵

(1)
) = 𝑥.  

On the other hand, the spectra of the reduced density matrices 𝜌𝐴 and 𝜌𝐵 are the same and given by 

{1/2, 1/2}. It is noted that the first three eigenvalues of the isotropic state 𝜌𝐴𝐵
(1)

 for two-qubits are the 

same and equal to (1 − 𝑥)/4 and the last eigenvalue is (1 + 3𝑥)/4. In this situation, from Equation (7) 

QMI for this initial state is obtained as follows 

                              𝐼 (𝜌𝐴𝐵
(1)

) = 2 + 3 (
1 − 𝑥

4
) log (

1 − 𝑥

4
) + (

1 + 3𝑥

4
) log (

1 + 3𝑥

4
).                             (10) 

The initial values of the coherence and QMI are depicted in Figure 1 versus the parameter 𝑥. Evidently, 

the coherence linearly depends on the mixing parameter and it naturally attains its maximum value for 

the maximum value of the 𝑥 = 1 in which the initial state reduces to a maximally entangled pure state, 

namely a Bell state |Ψ+⟩. Similarly, QMI increases with the increasing values of the parameter 𝑥 and 

takes place its maximum value for 𝑥 = 1 as expected. 
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Figure 1. Plots of the coherence and QMI for the input state given by Equation 8. 

 

Secondly, we consider the input state  

                                           𝜌𝐴𝐵
(2)

= 𝑥|Φ−⟩⟨Φ−| +
1 − 𝑥

2
(|Φ+⟩⟨Φ+| + |Ψ+⟩⟨Ψ+|),                                    (11) 

where |Φ±⟩ = (|01⟩ ± |10⟩) √2⁄  denotes the Bell states [1]. For this input state, the coherence and QMI 

are obtained from Equations (6) and (7) as follows   

                                                          𝐶𝑙1
(𝜌𝐴𝐵

(2)
) =

1

2
(|1 − 3𝑥| + |1 − 𝑥|),                                                   (12𝑎) 

                                                                  𝐼 (𝜌𝐴𝐵
(2)

) = 1 + 𝑥 − ℎ(𝑥),                                                               (12𝑏) 

respectively. Here, ℎ(𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥) denotes the binary entropy. 
 

 
Figure 2. Plots of the coherence and QMI for the second input state given by Equation 11. 

 

Figure 2 shows the behaviors of the coherence and QMI versus the parameter 𝑥 for the second initial 

state 𝜌𝐴𝐵
(2)

. For the range of 𝑥 ≤ 1/3, coherence linearly decreases and takes its minimum value for the 

𝑥 = 1/3 whereas the other ranges of the parameter it linearly increases with the parameter 𝑥 and attains 

its maximum for 𝑥 = 1 similar to the previous case. It can be seen that the coherence takes place its 

maximum values for the smallest and the largest values of 𝑥 as expected in which the input state reduced 

to the Bell state and a mixture of the two Bell states with equal probability, respectively. It can obviously 

be concluded that for different input states, coherence shows different behavior depending on the mixing 
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parameter 𝑥. Differently from previous one, QMI is equal to 1 for the value of  𝑥 = 0 while it attains its 

maximum values for 𝑥 = 1. 

 

3.2. Actions of the Decoherence Channels with Memory for the Input State 𝜌𝐴𝐵
(1)

 

Henceforward, under the actions of decoherence channels with memory on the inputs 𝜌𝐴𝐵
(𝑖)

 (𝑖 = 1,2), for 

outputs 𝜎𝐴𝐵
(𝑖)

, 𝑙1-norm of coherence and QMI will be denoted by 𝐶𝑋 (𝜎𝐴𝐵
(𝑖)

) and 𝐼𝑋(𝜎𝐴𝐵
(𝑖)

) with 𝑋 =

𝐴𝐷, 𝑃𝐷, 𝐵𝐹, 𝐵𝑃𝐹, 𝐷𝑃 respectively. Now, we consider the actions of decoherence channels with memory 

on two input states, separately. 

 
Table 1. Kraus operators of the decoherence channels with memory where p represents the decoherence parameter 

 

Channels 
Kraus Operators 

Uncorrelated Correlated 

AD 

𝐾𝑖𝑗
𝑢 = 𝐴𝑖 ⊗ 𝐴𝑗  ;      𝑖, 𝑗 = 0,1 

𝐴0 = (√1 − 𝑝 0

0 1
) , 𝐴1 = (

0 0

√𝑝 0
) 

𝑝 = 1 − exp (−𝛾𝑡) 

𝐾0
𝑐 = 𝑑𝑖𝑎𝑔(√1 − 𝑝, 1,1,1) 

𝐾1
𝑐 = (

0 0 0 0
0 0 0 0
0

√𝑝
0
0

0 0
0 0

) 

BF 

𝐾𝑖𝑗
𝑢 = √𝑃𝑖𝑃𝑗𝜎𝑖 ⊗ 𝜎𝑗 ;    𝑖, 𝑗 = 0,1 

𝑃0 = 1 − 𝑝, 𝑃1 = 𝑝 

𝐾𝑘
𝑐 = √𝑃𝑘𝜎𝑘 ⊗ 𝜎𝑘 ;  𝑘 =  0, 1 

𝜎0 = (
1 0
0 1

) , 𝜎1 = (
0 1
1 0

) 

BPF 

𝐾𝑖𝑗
𝑢 = √𝑃𝑖𝑃𝑗𝜎𝑖 ⊗ 𝜎𝑗 ;    𝑖, 𝑗 = 0,2 

𝑃0 = 1 − 𝑝, 𝑃2 = 𝑝  

𝐾𝑘
𝑐 = √𝑃𝑘𝜎𝑘 ⊗ 𝜎𝑘 ;  𝑘 =  0, 2 

𝜎0 = (
1 0
0 1

) , 𝜎2 = (
0 −𝑖
𝑖 0

) 

PD 

𝐾𝑖𝑗
𝑢 = √𝑃𝑖𝑃𝑗𝜎𝑖 ⊗ 𝜎𝑗 ;    𝑖, 𝑗 = 0,3 

𝑃0 = 1 − 𝑝, 𝑃3 = 𝑝  

𝐾𝑘
𝑐 = √𝑃𝑘𝜎𝑘 ⊗ 𝜎𝑘 ;  𝑘 =  0, 3 

𝜎0 = (
1 0
0 1

) , 𝜎3 = (
1 0
0 −1

)  

DP 

𝐾𝑖𝑗
𝑢 = √𝑃𝑖𝑃𝑗𝜎𝑖 ⊗ 𝜎𝑗 ;    𝑖, 𝑗 = 0,1,2,3 

𝑃0 = 1 − 𝑝, 𝑃1 = 𝑃2 = 𝑃3 = 𝑝/3 

𝐾𝑘
𝑐 = √𝑃𝑘𝜎𝑘 ⊗ 𝜎𝑘  ;  𝑘 =  0,1,2, 3 

 

Case 1: Amplitude-damping channel with memory 

 

Amplitude-damping channel characterizes the spontaneous emission and represents the dissipative 

interaction between system and the environment. Note that the parameter 𝑝 = 1 − exp(−𝛾𝑡) where 𝛾 

represents the decay rate. From Equation 2 and Table 1, under the consecutive uses of this channel, the 

matrix elements of the output 𝜎𝐴𝐵
(1)

 corresponding to input state 𝜌𝐴𝐵
(1)

 given by Equation 7 are calculated 

in two-qubit computational basis {1 = |00⟩, 2 = |01⟩, 3 = |10⟩, 4 = |11⟩} as follows 

                                               𝜎11
(1)

= 1 − 𝜎22
(1)

− 𝜎33
(1)

− 𝜎44
(1)

,                                                                                    

                                               𝜎22
(1)

= 𝜎33
(1)

=
1

4
{1 − 𝑥 − 𝑝(1 − 𝜇)[𝑝 − (2 − 𝑝)𝑥]},                                             
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                                               𝜎44
(1)

=
1

4
{(1 + 𝑥)[(1 − 𝑝)2 + (3 − 𝑝)𝑝𝜇]},                                                             

                                               𝜎14
(1)

= 𝜎41
(1)

=
1

4
{2𝑥[𝛼 − 𝜇(1 − √1 − 𝑝)]},                                                             

where 𝛼 = 1 − 𝑝(1 − 𝜇). The other elements of the output 𝜎𝐴𝐵
(1)

 are zero. Thus, the coherence can be 

written from Equation 6 as 

                                                  𝐶𝐴𝐷 (𝜎𝐴𝐵
(1)

) = |𝑥[𝛼 − 𝜇(1 − √1 − 𝑝)]|.                                                        (13) 

The explicit form of QMI for this output is more complicated and not reported here but the behavior of 

it is plotted in Figure 4. 

Case 2: Phase-damping channel with memory 

The phase-damping channel that is a unital channel Λ𝑃𝐷(𝕀ℋ𝐴
) = 𝕀ℋ𝐵

 describes a quantum noise with 

loss of quantum phase information but not loss of energy. Again, from Equation 2 and Table 1 the output 

state can be calculated under the two consecutive uses of this channel and is not reported here for the 

fluency of the article. In this situation, the coherence and QMI are found to be 

                                                                              𝐶𝑃𝐷 (𝜎𝐴𝐵
(1)

) = |𝑥𝛼|,                                                              (14𝑎) 

        𝐼𝑃𝐷 (𝜎𝐴𝐵
(1)

) = 2 + 
1

4
{(1 + 𝑥) log[(1 + 𝑥)2 − 4𝛼2𝑥2] − 2𝛼𝑥 log

1 + 𝑥 − 2𝛼𝑥

1 + 𝑥 + 2𝛼𝑥
}

+  
1 − 𝑥

2
log

1 − 𝑥

2
,                                                                                                              (14𝑏) 

respectively. 

Case 3: Bit-flip channel with memory 

Bit-flip channel that is important in the quantum error correction flips the state of a qubit from |0⟩ to |1⟩ 
(and vice versa) with probability 1– 𝑝. The coherence and QMI can again be calculated as  

                                                       𝐶𝐵𝐹 (𝜎𝐴𝐵
(1)

) = |𝑥(1 − 𝛽)| +
1

4
|𝑥𝛽|,                                                         (15𝑎) 

𝐼𝐵𝐹 (𝜎𝐴𝐵
(1)

) = 2 +  
1 − 𝑥

2
log

1 − 𝑥

2
+

1

4
[1 + 𝑥(3 + 4𝛽)] log

1

4
[1 + 𝑥(3 + 4𝛽)]

+
1

4
[1 − 𝑥 (1 −

3𝛽

2
)] log

1

4
[1 − 𝑥 (1 −

3𝛽

2
)]

+
1

4
[1 − 𝑥 (1 −

5𝛽

2
)] log

1

4
[1 − 𝑥 (1 −

5𝛽

2
)],                                                             (15𝑏) 

where 𝛽 = 2𝑝(1 − 𝑝)(1 − 𝜇). 

Case 4: Bit-phase-flip channel with memory 

As the name indicates, the bit-phase-flip channel is a combination of a phase-flip and a bit-flip, since 

𝜎2 =  𝑖𝜎1𝜎3 where 𝜎𝑖’s are the Pauli matrices. Similar to the previous cases the outputs can be calculated 

under the two consecutive uses of this channel from Table 1 and Equation 2. Thus, the coherence and 

QMI for this output can respectively be written as follows 

                                                        𝐶𝐵𝑃𝐹 (𝜎𝐴𝐵
(1)

) = |𝑥(1 − 𝛽)| +
1

4
|𝑥𝜇𝛽|,                                                   (16𝑎) 
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𝐼𝐵𝑃𝐹 (𝜎𝐴𝐵
(1)

) = 2 +  
1 − 𝑥

2
log

1 − 𝑥

2
+

1

4
[1 + 𝑥(3 + 4𝛽)] log

1

4
[1 + 𝑥(3 + 4𝛽)]

+
1

4
{1 − 𝑥 [1 −

𝛽(4 − 𝜇)

2
]} log

1

4
{1 − 𝑥 [1 −

𝛽(4 − 𝜇)

2
]}

+
1

4
{1 − 𝑥 [1 −

𝛽(4 + 𝜇)

2
]} log

1

4
{1 − 𝑥 [1 −

𝛽(4 + 𝜇)

2
]}.                                       (16𝑏) 

It is noted that Equations 16 are similar to the previous one. The second term in RHS of Equation (16a) 

contains a memory factor 𝜇 differently from the second term in RHS of Equation (15a). Similar 

observations can also be made for Equations (15b) and (16b). 

 

Case 5: Depolarizing channel with memory 

 

The depolarizing channel is an important type of quantum noise. Imagine we take a single qubit, and 

with probability 𝑝 that qubit is depolarized. That is, it is replaced by the completely mixed state 𝕀/2. 

With probability 1 − 𝑝 the qubit is left unchanged. For the action of this channel with the abbreviation 

𝛾 = 9 − 8𝑝(3 − 2𝑝)(1 − 𝜇), the coherence and QMI are obtained as 

                                                                     𝐶𝐷𝑃 (𝜎𝐴𝐵
(1)

) =
1

9
|𝑥𝛾|,                                                                    (17𝑎) 

                  𝐼𝐷𝑃 (𝜎𝐴𝐵
(1)

) = 2 +
1

12
 (3 + 𝑥𝛾) log

1

12
 (3 + 𝑥𝛾) +

1

12
(9 − 𝑥𝛾) log

1

36
(9 − 𝑥𝛾).          (17𝑏) 

 

For all the actions of the decoherence channels with memory, the behaviors of the coherence are depicted 

in Figure 3 concerning the decoherence parameter 𝑝 and the state parameter 𝑥 for some fixed values of 

𝜇. In Figures 3(a), (b) and (c), the coherence increases with the increasing value of the memory 

parameter 𝜇. For the smallest values of 𝑥 and the largest value of 𝑝, it attains its minimum value in 

Figure 3(a) whereas as 𝑥 increases in which the initial state is reduced to a Bell state for 𝑥 = 1, so does 

it for the small value of 𝑝. In Figure 3(b) that corresponds to the action of the PD channel, the coherence 

increases with the increasing values of 𝑥. Additionally, although the information in the system partially 

decreases under any quantum operation such as QC, as the memory parameter changes from the 

memoryless case 𝜇 = 0 to the long-term memory 𝜇 = 1 the coherence shows an increasing behavior. 

For the action of the BF channel, it has an interesting behavior that demonstrates that at the largest and 

smallest values of 𝑝 the coherence reaches its maximum value for 𝜇 = 1. It can be shown that when 

𝜇 = 1 the value of coherence coincides with the initial value of it for all plots except the action of the 

AD channel. Another interesting result is that in Figure 3(d) and (e), coherence partially increases with 

the memory parameter 𝜇. For some small values of 𝑝, approximately 𝑝 ≤ 1/3, as memory increases, 

the coherence also increases. However, it also attains its maximum value at 𝜇 = 0 and 𝜇 = 1/2 for both 

the largest and smallest values of 𝑝 in Figure 3(d). In Figure 3(e), differently from (d) the coherence 

takes its minimum value for 𝜇 = 0 and again when 𝜇 = 1, it is the maximum for some values of 𝑝 ≤
3/4. On the other hand, in the cases of 𝑝 > 3/4 it reaches the maximum at 𝜇 = 1/2. 
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Figure 3. Plots of the coherence versus parameters p and x for outputs corresponding to the input ρAB

(1)
. For all 

plots, the quantum memory is relatively enhanced the loss of quantum correlations. In (d) and (e), the 

coherence increases with the large values of the parameter p. For long-term memory μ = 1, the 

coherence is maximum for the large values of x irrespective of p in (b) and (c). On the other hand, it 

monotonically  decreases with the decreasing values of p in (a). 

 

Under the actions of all decoherence channels on the first input state, the behaviors of QMIs for the 

corresponding outputs are plotted in Figure 4 with respect to parameters 𝑥 and 𝑝 for some fixed 𝜇. In 

Figure 4(a), QMI naturally takes its maximum value for the largest value of  𝑥 and the smallest value of 

𝑝. For the increasing values of 𝑥 and the intermediate values of 𝑝, it can be relatively enhanced when 

the channel changes from the memoryless case 𝜇 = 0 to long-term memory 𝜇 = 1. This result applies 

to other figures as well. In Figure 4(b), (c) and (e), QMI attains the maximum values for the long-term 

memory. On the other hand, for the memoryless case 𝜇 = 0 and long-term memory 𝜇 = 1, the values 

of QMI of the output under the actions of the BPF channel on the input coincide in Figure 4(d). It is 

concluded that for action of this channel, the quantum memory does not influence the behavior of the 

QMI.  
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Figure 4. Plots of QMI versus parameters p and x for outputs under the decoherence channels on input state ρAB

(1)
. 

In (b), (c), (d) and (e), the QMI increases with the increasing values of the parameter x for all values of 

p in the case of the long-term memory μ = 1, and attains its maximum values for x = 1. In (a), it is the 

maximum for the largest value of x and the smallest value of p. 

 

For the memoryless actions of the channels that are not reported here, the coherence has a decreasing 

behavior as expected. On the other hand, for 𝜇 = 0, the observation coincides the memoryless case. It 

is well known that quantum correlations decrease under any quantum operation. However, it can be 

observed that this loss of correlations can generally be mitigated via quantum memory channels as used 

here. 
 

3.3. Actions of the Decoherence Channels with Memory for the Input State 𝜌𝐴𝐵
(2)

  

 

In this section, we give only the coherence measure for the outputs under the actions of decoherence 

channels with memory on the input state 𝜌𝐴𝐵
(2)

 given by Equation 11. Parallel to the previous section, the 

coherence can be calculated from Equation 6 for actions of all decoherence channels as follows 

                               𝐶𝐴𝐷 (𝜎𝐴𝐵
(2)

) =
1

2
{|(1 − 𝑥)[𝛼 − (1 − √1 − 𝑝)𝜇]| + |(1 − 3𝑥)𝛼|},                          (18𝑎) 
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                               𝐶𝑃𝐷 (𝜎𝐴𝐵
(2)

) =
1

2
[|(1 − 𝑥)𝛼| + |(1 − 3𝑥)𝛼|],                                                               (18𝑏) 

                               𝐶𝐵𝐹 (𝜎𝐴𝐵
(2)

) =
1

2
[|1 − 𝑥(1 + 2𝛽)| + |1 − 𝑥(1 + 2𝛽)|],                                             (18𝑐) 

                             𝐶𝐵𝑃𝐹 (𝜎𝐴𝐵
(2)

) =
1

2
[|1 − 𝑥 − 𝛼(1 − 2𝑥)| + |1 − 3𝑥 − 𝛼(1 − 2𝑥)|],                          (18𝑑) 

                               𝐶𝐷𝑃 (𝜎𝐴𝐵
(2)

) =
1

18
[|(1 − 𝑥)𝛾| + |(1 − 3𝑥)𝛾|].                                                             (18𝑒) 

 

Similarly, QMIs for all outputs can be calculated from Equation 7 as 

𝐼𝑃𝐷 (𝜎𝐴𝐵
(2)

) = 2 +
1

4
{
𝛽

2
log

𝛽

8
+ (1 − 𝑥)(1 + 𝛼) log

1

4
(1 − 𝑥)(1 + 𝛼)

+ [2(1 − 𝑥) − 𝛿] log
1

4
[2(1 − 𝑥) − 𝛿] + (4𝑥 + 𝛿) log

1

4
(4𝑥 + 𝛿)},                     (19𝑎) 

𝐼𝐵𝐹 (𝜎𝐴𝐵
(2)

) = 2 + (1 − 𝑥)log
1 − 𝑥

2
+ 𝛽𝑥 log 𝛽𝑥 + 𝑥(1 − 𝛽) log 𝑥(1 − 𝛽),                                       (19𝑏) 

𝐼𝐵𝑃𝐹 (𝜎𝐴𝐵
(2)

) = 2 + [𝑥 + 𝛽(1 − 3𝑥)] log[𝑥 + 𝛽(1 − 3𝑥)]

+
1

2
{(1 − 𝑥)(1 − 𝛽) log

1

2
(1 − 𝑥)(1 − 𝛽) + 𝛽(1 − 𝑥) log

𝛽(1 − 𝑥)

2

+ [(1 − 𝑥) − 𝛽(1 − 3𝑥)] log
1

2
[(1 − 𝑥) − 𝛽(1 − 3𝑥)]},                                          (19𝑐) 

𝐼𝐷𝑃 (𝜎𝐴𝐵
(2)

) = 2 +
1

36
{(9 − 𝛾) log

(9 − 𝛾)

36
+ 2[(9 + 𝛾)(1 − 2𝑥)] log

1

36
[(9 + 𝛾)(1 − 2𝑥)]

+ [36𝑥 + (9 − 𝛾)(1 − 4𝑥)] log
1

36
[36𝑥 + (9 − 𝛾)(1 − 4𝑥)]},                              (19𝑑) 

where 𝛿 = 𝑝(1 − 3𝑥)(1 − 𝜇). Since 𝐼𝐴𝐷 (𝜎𝐴𝐵
(2)

) is more complicated it is not again reported here.  

Figure 5 displays the behavior of the coherence of the outputs 𝜎𝐴𝐵
(2)

 under the action of decoherence 

channels with memory on the input 𝜌𝐴𝐵
(2)

. In Figure 5(a), (b) and (e), the coherence takes its maximum 

value for the long-term memory 𝜇 = 1. Interestingly, while the coherence coincides for all values of the 

memory parameter 𝜇 at 𝑥 ≤ 1/3 in Figure 5(c) and attains its maximum irrespective of 𝑝, it happens for 

𝑥 > 1/3 in Figure 5(d). On the other hand, for 𝑥 > 1/3 the coherence increases with the increasing 

values of 𝜇 in Figure 5(c) whereas it manifests itself for the values of 𝑥 ≤ 1/3 in Figure 5(d). For all 

the plots, the value of the coherence is reduced to that of the initial state given by 𝐶𝑙1
(𝜌𝐴𝐵

(2)
) =

(|1 − 3𝑥| + |1 − 𝑥|)/2 for the long-term memory 𝜇 = 1. Although the quantum correlations generally 

decrease by the actions of any QC, the partial loss, preservation and maintaining of correlations for a 

long duration can be controlled via quantum memory for all the plots in the study of any quantum 

information processes. 
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Figure 5. Plots of the l1-norm of coherence versus parameters p and x for outputs corresponding to the input ρAB

(2)
 

for some fixed μ. In the case of the long-term memory μ = 1, the coherence has its maximum value for 

all plots. The memory is obviously improved the quantum correlations. In (c), whereas the coherence 

monotonically decreases for the range of 0 < x < 1/3, it increases for x > 1/3. The opposite behavior 

is observed in (d). 

 

The behaviors of QMIs for the second output state under the actions of decoherence channels are 

depicted in Figure 6 for some values of the memory parameter 𝜇. Differently from previous one, under 

the action of AD channel, QMI attains its maximum values for long-term memory 𝜇 = 1 independently 

of the other parameters 𝑥 and 𝑝 in Figure 6(a). Additionally, QMI is the maximum for the all plots when 

the memory is maximum. In Figure 6 (d), the values of it coincide for the values of 𝜇 = 0 and 𝜇 = 1. 

On the other hand, QMI increases for the long-term memory 𝜇 = 1 with increasing values of 𝑝, although 

the decoherence parameter 𝑝 is expected to lead to a decrease in quantum correlations in all plots. 

Evidently, the memory and the selection of different initial states, provides relative improvements in 

quantum correlations. In view of above observation, this implies that the decrements of the quantum 

correlations can be relatively enhanced by the quantum memory channels and by choosing optimal input 

states.  
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Figure 6. Plots of QMI versus parameters 𝑝 and 𝑥 for outputs corresponding to the input 𝜌𝐴𝐵

(2)
 for some fixed 𝜇. 

When the channel changes from the memoryless case 𝜇 = 0 to long-term memory 𝜇 = 1, QMI is 

enhanced and depending on the some certain values of the parameters, it is maximized for all plots. 

 

4. CONCLUSION 

 

In this present study, we have investigated the dynamical trait of quantum correlations under the two 

uses of the two-qubit channels with memory constructed by Pauli matrices such as AD, PD, BF, BPF 

and DP using quantum coherence and QMI as measures of quantum correlations of two 2-qubit systems 

initially constructed in a quantum state that parameterized. All the observations mention that since the 

information flows out the system, there is an undeniable decrement of correlations. However, we have 

observed that for some ranges of the parameter 𝑝 characterizing the QCs themselves the quantum 

coherence increases with increasing values of the memory parameter 𝜇 especially long-term memory 

𝜇 = 1. The other significant conclusion is that the coherence and QFI show different behavior for the 

different input states. On the other hand, since the entanglement is a pivotal resource in the applications 

of the quantum information and communication processes, by adjusting the parameters and using the 

different initial states it can relatively be stored to high values as desired in realizing these applications. 

It would be attractive and meaningful to investigate if the improvement in overall and characteristic 

behaviors of other correlation measures not considered here could be possible for the considered QCs. 
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