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Abstract 
 
Point cloud filtering is an important step in Digital Terrain Model (DTM) production. 
Despite the fact that a great body of research has been conducted in this area so far, there 
are still some problems that have not yet been solved, especially in complex terrains. The 
fact that the use of user-defined parameters within the presented point cloud filtering 
methods, and the difficulty of parameter estimation in parallel to the increase in the 
topography slope and above-ground object diversity, decreases the filtering success. 
Another problem is the proper specification of the point cloud density to be studied. Point 
cloud density, which is generally specified considering the ground sampling distance of the 
DTM, influences the success of the point cloud filtering process, therefore, the accuracy of 
the DTM produced. In this study, five Unmanned Aerial System (UAS)-based point clouds 
of different densities were filtered using two different point cloud filtering algorithms Cloth 
Simulation Filtering (CSF) and gLiDAR to examine the impacts of the point cloud density on 
filtering success. It was found that the point cloud filtering performance decreased as the 
point density increased.  
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Özet 
 
Nokta bulutu filtreleme sayısal arazi modeli üretiminde çok önemli bir aşamadır. Şimdiye 
kadar bu alanda pek çok çalışma yapılmıştır ancak, özellikle kompleks zeminlerde hala 
aşılamayan bazı sorunlar vardır. Sunulan yöntemlerde çoğunlukla kullanıcı girişli 
parametreler kullanılması ve parametre kestiriminin, topografya eğimi ve zemin üstü obje 
çeşitliliği arttıkça zorlaşması filtreleme başarısını düşürmektedir. Bir diğer sorun ise 
çalışılacak nokta bulutu yoğunluğunun uygun şekilde belirlenmesidir. Üretilecek sayısal 
arazi modelinin yer örnekleme aralığına göre belirlenen yoğunluk aynı zamanda nokta 
bulutunun filtreleme başarısını ve dolayısıyla elde edilecek sayısal arazi modelinin 
hassasiyetini de etkilemektedir. Bu çalışmada, 5 farklı yoğunlukta üretilen insansız hava 
aracı tabanlı nokta bulutları, nokta bulutu yoğunluğunun filtreleme başarısına etkilerini 
incelemek için Cloth Simulation Filtering (CSF) ve gLiDAR filtreleme algoritmaları 
kullanılarak filtrelenmiştir. Elde edilen sonuçlara göre nokta bulutu yoğunluğu arttıkça 
filtreleme başarısının düştüğü görülmüştür. 
 
Anahtar kelimeler: Nokta bulutu filtreleme, Sayısal Arazi Modeli, CSF, gLiDAR

1. Introduction 
 
The advent of sophisticated Unmanned Aerial Systems (UASs) in the last years has opened an era of monitoring the 
surface of the Earth. The camera systems mounted on the UASs are used not only for surveillance purposes, but also 
for extracting meaningful information from the features on the ground. In recent years, 3D modelling of the surface of 
the Earth has been one of the most common uses of data obtained from such camera systems. The UAS data provide 
comprehensive and accurate information for land cover features. As a matter of fact, the accuracy of the data obtained 
from UASs has increased so much that it has become competitive with the accuracy obtained from terrestrial 
measurements.  
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3D reconstruction of the land objects relies on aerial photogrammetry, whose primary objective is to produce point 
clouds of the land objects through the use of aerial photos acquired from the cameras mounted on the UASs. The 
produced point clouds are used to derive further products, including Digital Surface Models (DSMs), Digital Terrain 
Models (DTMs) and orthophotos. A DTM, which models the elevation information of the bare Earth surface, is an 
important source of data in many remote sensing applications. In recent years, DTMs have been used for various 
purposes, including change detection (Ali-sisto and Packalen, 2017), tree detection (Demir, 2018), flood damage 
assessment (Arrighi and Campo, 2019), estimating forest stand parameters (Yilmaz and Güngör, 2019), determination 
of waterlogged soil areas (Boiarskii et al. 2019), landslide susceptibility mapping (Karakas et al. 2020), detection of flood 
zones (Douass and Ait Kbir, 2020) etc.  

To produce a DTM, point clouds are first filtered to extract the topography of the bare Earth surface. Point cloud 
filtering is the removal of the points of the above-ground features such as trees, buildings, bridges etc. In general, point 
cloud filtering is a challenging process and its success is dependent on many factors including; 

 The topography of the application area (Serifoglu Yilmaz et al. 2018). Point cloud filtering is a lot easier on 
topographies with slight slopes. On the other hand, point cloud filtering performance is expected to decrease on 
complex topographies.  

 The mathematical background of the point cloud filtering method used. The literature has reported a large number 
of point cloud filtering methods so far and each one of them performs with a different mathematical approach. 

 The size and shape of the above-ground features (Serifoglu Yilmaz et al. 2018). The point cloud filtering process 
becomes more challenging on topographies with varying-sized and -shaped above-ground features. 

 The proximity of the above-ground objects. If the application area contains many above-ground features that are 
very close to or interlocking with each other, point cloud filtering performance is expected to decrease.  

 The experience of the analyst. An experienced analyst is aware of which point cloud filtering method may be more 
successful, considering the topography of the application area. On the other hand, inexperienced analysts tend to 
choose inefficient filtering algorithms and filtering parameters, committing greater filtering errors.  

Another important factor affecting the performance of the point cloud filtering process is the density of the point 
cloud to be filtered. This factor plays a vital role in point cloud filtering performance, impacting the accuracy of the 
produced DTM. Hence, this study aims to examine the impacts of the point cloud density on point cloud filtering success. 
To do so, five UAS photogrammetry-based point clouds with different densities were filtered with two commonly-used 
point cloud filtering methods Cloth Simulation Filtering (CSF) (Zhang et al. 2016) and gLiDAR (Mongus and Žalik, 2012) 
and the filtering results were evaluated in this manner. 

The reminder of the paper is as follows: Section 2 will provide information for the point cloud generation process 
and point cloud filtering methods used. Section 2 will also give information on the metrics used to evaluate the point 
cloud filtering results. Section 3 will evaluate the point cloud filtering results using the quality metrics. Finally, Section 4 
will present the concluding remarks. 
 

2. Application 
 

2.1 Point Cloud Generation 
 
This study was conducted in the Karadeniz Technical University campus in Trabzon, Turkey. The study area includes 
different-sized buildings and trees. The study area is shown in Figure 1.  
 

  
 

Figure 1. Study area 
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The point clouds used in this study were produced with 256 aerial photos acquired from an altitude of 185 m. The aerial 
photos were taken by a RICOH GR DIGITAL IV camera, which is mounted on a Gatewing X100 UAS. The aerial photos 
were processed in the Agisoft Photoscan Professional (APP) software to generate the initial point cloud having a point 
density of 0.5 point/m2. Then, denser point clouds were produced in the APP software. The software uses the depth 
information for each image capture point to densify the point clouds (Agisoft Photoscan Professional software user 
manual, 2016). Point densification process resulted in point clouds with densities of 1.6 point/m2, 5.4 point/m2, 19.6 
point/m2, 74.5 point/m2 and 272.2 point/m2, which will herein be referred as D1, D2, D3, D4 and D5, respectively.  
 

2.2 Point Cloud Filtering 
 
This study used the CSF and gLiDAR algorithms to filter the produced point clouds. This sub-section will provide details 
on how these algorithms were performed. 
 
2.2.1 CSF 
 
The CSF method is based on the principle of dropping a piece of cloth onto an inverted land surface (Zhang et al. 2016). 
In such a case, the shape of the cloth forms the DTM of the application area. The very first step of the CSF method is to 
invert the point cloud. Then, a user-defined grid resolution parameter comes into play to define the number of cloth 
particles to be dropped. The points and particles are transformed into a horizontal plane and a corresponding point is 
specified for all cloth particles. The terrain point that intersects with the cloth particle is found and its height is specified 
as the ‘intersection height value’. If the intersection height value is greater than the current height value, then the 
particle is moved back to the position of the intersection height value and labelled as unmovable (Zhang et al. 2016). In 
each iteration, the distances between the point cloud and particles are determined. Each point whose distance to the 
particles is greater than a user-defined threshold (i.e. class threshold parameter) is labelled as a non-ground point 
(Zhang et al. 2016; Serifoglu Yilmaz et al. 2018). The cloth particles move down and up due to the internal and external 
(i.e. gravity) forces until the desired height variation or a maximum iteration number is achieved (Zhang et al. 2016). 
Apart from the aforementioned parameters, the CSF method employs two more parameters, the time step and 
rigidness. The former is responsible for controlling the movements of the particles, whereas the latter is used to define 
the terrain type (Zhang et al. 2016; Serifoglu Yilmaz et al. 2018. The optimum values of the parameters used within the 
CSF algorithm were found by trial-and-error. The parameter values used for the CSF algorithm are shown in Table 1. 

 
Table 1. Parameter values used for the CSF algorithm 

 

Parameter 
Point cloud 

D1 D2 D3 D4 D5 

Rigidness 1 1 2 2 2 

Grid resolution 2 2 1 1 2 

Class threshold 1 1 1 1 1 

Time step 1 1 0.6 0.6 1 

Maximum iteration number 500 500 500 500 500 

 
2.2.2 gLiDAR 
 
The gLiDAR technique removes the non-ground points considering the height differences between the above-ground 
objects and their surroundings (Mongus and Žalik, 2012). This technique generates a surface towards the ground using 
the thin plate spline interpolation whilst filtering off the points belong to the above-ground objects by employing a 
window whose size decreases gradually. The height differences between the points and interpolated surface are used 
to filter off the non-ground points. A top-hat transformation is employed to compare the height differences between 
data points. The obtained non-ground points are substituted by the interpolated points to be used in the next iteration, 
where a smaller-sized window is used for filtering. The gLiDAR algorithm iterates until the required DTM resolution is 
achieved (Mongus and Žalik, 2012; Serifoglu Yilmaz et al. 2018). The gLiDAR technique uses a maximum size parameter 
value to filter off the largest object in the application area. Apart from this, the parameters n and b are employed to 
decide whether or not a candidate point is considered a non-ground point, and to specify the ratio between the sizes of 
the land objects and their responses in the top-hat space, respectively (Korzeniowska et al. 2014; Serifoglu Yilmaz et al. 
2018). The optimum values of the parameters used within the gLiDAR algorithm were found by trial-and-error. Table 2 
presents the parameter values used for the CSF algorithm. 
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Table 2. Parameter values used for the gLiDAR algorithm 
 

Parameter 
Point cloud 

D1 D2 D3 D4 D5 

n 0 0 0 0.01 0 

b 0.4 0.8 0.5 0.02 0.5 

Maximum size 50 50 55 45 50 

 

2.3 Evaluation of the Point Cloud Filtering Results 
 
In the literature, point cloud filtering results are generally evaluated with three quality metrics as Type I Error (TIE), Type 
II Error (TIIE) and Total Error (TE) (Sithole and Vosselman, 2004; Montealegre et al. 2015; Serifoglu Yilmaz and Gungor, 
2018). These errors are computed through omission and commission errors. The omission error is defined by the 
number of ground points classified as non-ground, whereas the commission error is defined by the number of non-
ground points classified as ground. The TIE, TIIE and TE are computed as (Sithole and Vosselman, 2004; Serifoglu et al. 
2016); 
 

𝑇𝐼𝐸 =
𝑂𝐸

𝐺𝑃
 (1) 

 

𝑇𝐼𝐼𝐸 =
𝐶𝐸

𝑁𝐺𝑃
 (2) 

 

𝑇𝐸 =
𝑂𝐸 + 𝐶𝐸

𝐺𝑃 + 𝑁𝐺𝑃
 (3) 

 
where, 𝐶𝐸, 𝑂𝐸, 𝐺𝑃 and 𝑁𝐺𝑃 stand for the commission error, omission error, number of reference ground points 

and number of reference non-ground points, correspondingly. Since it is not practical to examine the performance of 
the filtering result using all points of the study area, the method suggested by Zhang et al. (2003) and Zhang and 
Whitman (2005) was used for accuracy assessment. This method suggests to use randomly selected points for accuracy 
assessment. At this point, the question as to how many reference points should be used arises. The minimum number 

of required random points (𝑛𝑚𝑖𝑛) was obtained with the Multinominal Approach suggested by Congalton and Green 
(1999). The mathematical definition of this approach is given as; 
 

𝑛𝑚𝑖𝑛 =
𝑏

4𝑎𝑑
2  (4) 

 
where, 𝑏 = 𝑐𝑖 𝑛𝑐⁄ . 𝑛𝑐, 𝑐𝑖, and 𝑎𝑑 define the number of classes, confidence interval and desired accuracy, 

respectively. This study considered a 𝑐𝑖 of 95%, which led to an 𝑎𝑑 of 0.05. The study area can be categorized into two 
classes as ground and non-ground, which resulted in a 𝑏 of 0.025. According to the χ2 distribution table, 0.025 
corresponds to 5.02 in one degree of freedom. Finally 𝑛𝑚𝑖𝑛 was computed as 502. In light of this, accuracy assessment 
was done with 8000 reference points (4000 points for each class), which were randomly selected from the D1 point 
cloud. The same reference points were also used for the other point clouds for comparison. 
 

3. Results and Discussion 
 
Table 3 presents the quality metric values determined from the filtered point clouds. The best metric values are shown 
bold in the table. As seen in the table, both the CSF and gLiDAR methods were found to misclassify the ground points 
as the point density increased. The TIEs computed from the CSF and gLiDAR results range between 10.65% - 35.53% and 
6.05% - 75.78%, respectively. On the other hand, both filtering methods were found to be more successful in removing 
the non-ground points as the point density increased. Table 3 also shows that the TIIEs obtained from the CSF and 
gLiDAR results vary between 3.20% - 17.10% and 3.15% - 19.73% correspondingly. It can also be seen in Table 3 that the 
performance of both filtering methods decreased as the point density increased. The TEs calculated from the CSF and 
gLiDAR results range between 13.88% - 19.74% and 10.98% - 39.46%, respectively.  
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Table 3. Quality metric values computed from the filtered point clouds 
 

Point cloud 
CSF gLiDAR 

TIE TIIE TE TIE TIIE TE 

D1 10.65% 17.10% 13.88% 6.05% 15.90% 10.98% 

D2 26.15% 7.80% 16.98% 26.20% 19.73% 22.96% 

D3 32.80% 3.73% 18.26% 52.80% 4.20% 28.50% 

D4 34.65% 3.20% 18.93% 71.00% 3.25% 37.13% 

D5 35.53% 3.95% 19.74% 75.78% 3.15% 39.46% 

 
As depicted in Table 3, the best TIEs of 10.65% and 6.05% were achieved from the CSF and gLiDAR results of the D1 
point cloud, respectively. On the other hand, the optimum TIIEs of 3.20% and 3.15% were obtained by the point clouds 
produced through the filtering of the D3 and D4 point clouds using the CSF and gLiDAR algorithms, correspondingly. As 
seen in the table, the CSF and gLiDAR results of the D1 point cloud led to the optimum TEs of 13.88% and 10.98%, 
respectively.  

The most important factor in point cloud filtering is to achieve the best balance between TIE and TIIE. This may not 
always be possible on complex terrains. The fact that the performances of the employed filtering algorithms are pretty 
much dependent on user-defined parameters increases filtering errors. Because users usually focus much on removing 
non-ground points especially on complex terrains. However, in such terrains, proper removal of non-ground points is 
likely to remove a certain amount of ground points either. This becomes more evident as the point density increases. 
As seen in Table 3, the TIEs dramatically increased as the point density increased. On the other hand, interpolating new 
points to densify the D1 point cloud produced too many points near the above-ground objects, which made it very 
challenging to specify the best parameter values to filter off the non-ground points, leading to the removal of points 
more than necessary.    

Filtering a point cloud with a relatively lower point density enables the filtering result to be examined more 
successfully and easily. The misclassification errors on ground points can be easily noticed. This is, of course, not so easy 
in cases where point clouds of higher densities are used. On the other hand, working with lower-density point clouds is 
time-efficient and requires less system sources. However, point density is very important for the DTM to be generating. 
Producing a high spatial resolution DTM from a lower-density point cloud is likely to lead to greater interpolation errors 
on the third dimension.  
 

4. Conclusion 
 
This study investigates the impacts of the point density on point cloud filtering performance. To do so, five UAS-based 
point clouds of different densities were filtered with two state-of-the-art filtering algorithms CSF and gLiDAR. The 
experiments revealed that the optimum filtering performance was achieved with lower-density point clouds and the 
filtering success decreased as the point density increased. The filtering performances of the used algorithms were also 
found to be highly dependent on the parameter values defined by the user. Both filtering algorithms failed to find a 
good balance between the omission and commission errors committed, which was mainly due to the fact that the study 
area included many large and complex-shaped above ground features, making the filtering more challenging.  

The point density, filtering performance, interpolation technique used and desired spatial resolution are the most 
important factors that affect the quality of the DTM produced. Further studies will focus on the investigation of the 
effects of point density on the elevation accuracy of the DTM to be produced. 
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