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Highlights 

• An efficient hybrid algorithm is proposed for parameter estimation in nonlinear regression models. 

• The initial values problem for the parameters in the NM algorithm is solved through PSO.  

• The exploitation capability of the PSO is improved thanks to rapid convergence feature of NM. 

• More accurate estimates are obtained via the proposed hybrid algorithm. 
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Abstract 

Nonlinear regression analysis is an important statistical method widely used in many fields of 

science to model the complex relationships between variables. Therefore, many studies have been 

conducted to estimate the parameters of nonlinear regression models using various iterative 

techniques. In this study, an efficient hybrid algorithm, namely PSONM, by combining the 

exploration capability of Particle Swarm Optimization (PSO) and the exploitation capability of 

the Nelder-Mead (NM) algorithm is proposed to obtain parameter estimates of nonlinear 

regression models. To show the performance of the proposed hybrid algorithm, 20 nonlinear 

regression tasks with various levels of difficulty, and real data sets in the agriculture field have 

been tested. The experimental results indicated that the suggested hybrid algorithm provides 

accurate estimates, and its performance is much superior to those of NM and PSO algorithms. 
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1. INTRODUCTION 

 

Estimation of parameters in nonlinear regression has an important place in terms of statistical inferences. 

However, estimating the parameters for nonlinear regression models is very difficult because of the 

complexity of them and this significantly limits their application and development. Model parameters of 

nonlinear regression models are nonlinear and they cannot be estimated by the ordinary optimization 

techniques used in parameter estimation linear regression models. Therefore, various numerical algorithms 

such as the Levenberg-Marquardt, Newton-Raphson, Quasi-Newton, Gauss-Newton, Steepest Descent, 

Nelder-Mead methods [1], etc. have been developed for estimating the parameters of nonlinear regression 

modeling. These methods are only effective for some special cases and have several constraints such as 

derivability, being unimodal, continuity. Moreover, one of the most important problems encountered in 

these methods is the specification of the initial values for the parameters [2,3]. If a reasonable initial point 

of parameters is not assigned for these algorithms, especially the NM method, they can easily fall into local 

optimums or no convergence at all. In order to overcome these problems, metaheuristic methods are applied 

to examine points in different areas of a search space, thus avoiding local optimum and rapidly converging 

to the global optimal solution. 

 

There are several studies about the estimation of parameters in nonlinear regression models via different 

metaheuristic methods such as Artificial Bee Colony (ABC) [4], Differential Evolution (DE) [5], Genetic 

Algorithm (GA) [6-9], Particle Swarm Optimization (PSO) [10-13], etc. in the literature. These methods 

have the advantage of being able to escape easily from local optimal to find better solutions but they may 
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not be able to search well in the local search. In other words, the exploration (finding the promising 

solutions in the all-region) performances of these methods are quite good, but their exploitation (finding 

the enhanced solutions in sub-regions) performances are not very well. However, exploration and 

exploitation are two important opposite criteria that must be well balanced in a metaheuristic method to 

avoid premature convergence and achieve better performance [14]. Hybridization may be thought of as a 

tool for generating an effective and efficient searching procedure to deal with the deficiencies of a pure 

single algorithm [15,16]. Furthermore, NM iterative method can offer robust exploitation capabilities. 

Therefore, we proposed an algorithm named PSONM by combining the global search/ exploration 

capability of PSO and the local search/ exploitation capability of the NM algorithm to improve the 

efficiencies of these algorithms in the estimation of the parameters of nonlinear regression models.  

 

In this study, the PSO method, which is a well-known metaheuristic technique inspired by the foraging 

behaviour of birds and fishes, is considered since it allows for improved parameter estimation performance 

with less computational efforts when compared to other metaheuristic methods.  

 

The originality of our study comes from the fact that we use parameter estimation values obtained with the 

PSO algorithm to define the reasonable initial values for the parameters in the NM algorithm. By combining 

the advantages of these two methods, we obtained a more efficient algorithm that can both avoid premature 

convergences and give a good performance to reach the global best solution.  To show the performance of 

the proposed hybrid algorithm, the algorithm is tested on the well-known 20 databases with various levels 

of difficulty from The National Institute for Standard and Technology (NIST) [17] and real data sets in the 

agriculture field. In addition, the results of the proposed hybrid algorithm are compared to the results of 

PSO and NM algorithms. 

 

The rest of the paper is designed as follows. In Section 2, nonlinear regression modeling and least square 

estimation are presented. In section 3, Nelder -Mead, PSO, and the proposed hybrid methods are introduced. 

In section 4, comparative results of the experimentation of three algorithms for various nonlinear regression 

models are given and three different real data sets in the agriculture field are tested. Finally, conclusions 

are presented in section 5. 

 

2. NONLINEAR REGRESSION MODELING AND LEAST SQUARE ESTIMATION 

 

Nonlinear regression analysis is a method that enables to explain the relationship between a set of variables 

by constructing a reasonable model containing nonlinear parameters.  The general form of nonlinear 

regression models is given by 

 

( ; ) , 1,2,...,i i iY f i n= + =X                                                                                                                           (1) 

 

where iY  is a response or dependent variable, ( ; )if X   is a nonlinear model function according to at least 

one of the components of the parameter estimation vector; 1 2( , ,... )i i i ikX X X=X  is a vector of independent 

variables; 
'

1 2, ,..., )p   = ( , p   is an unknown parameter vector; i   is a random error term 

that has similar assumptions in the linear models [18]. 

 

The Least Square (LS) method is widely used to estimate the unknown parameter   of nonlinear regression 

and approximate a model fit. The main idea behind of LS method is to minimize the sum of squared errors  

[19]. Thus, it involves an optimization problem given as follows: 

 
ˆ argmin ( )S



 =   .                                                                                                                                                  (2) 

 

Here,  ̂   is LS parameters estimates and ( )S    is the LS function defined as follows: 
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2 2

1 1

( ) ( ( , ))
n n

i i i

i i

S e y f x
= =

= = −   .                                                                                                                 (3) 

 

Since ( )S   is a nonlinear function, the solution of Equation (2) cannot be made analytically [20,21]. 

Therefore, iterative methods such as Levenberg-Marquardt, Newton-Raphson, Quasi-Newton, Gauss-

Newton, Steepest Descent, Nelder Mead, etc.  and/or heuristic algorithms such as GA, PSO, DE, ABC, etc. 

can be used to obtain parameter estimations to obtain exact parameter values. In this study, we resort to the 

NM and PSO methods.  

 

3. PARAMETER ESTIMATION ALGORITHMS FOR NONLINEAR REGRESSION 

MODELING 

 

This section describes the Nelder-Mead, Particle Swarm Optimization, and proposed hybrid PSONM 

method, briefly. 

 

3.1. Nelder-Mead Algorithm 

 

The Nelder-Mead method introduced by Nelder, Mead [22] is one of the most successful direct search 

techniques for finding the minimum of a function in multidimensional, unconstrainted space. Unlike 

classical gradient methods, it is derivative-free. 

 

Since NMs working principle is based on simplex, it is also known as the simplex search algorithm. A 

simplex is determined as a set of   points defined as vertices in n dimension. The principle of the algorithm 

depends on the comparison of the function values by moving the simplex until a minimum is found. The 

function values at each vertex are evaluated iteratively and the vertex with the highest function value is 

displaced by another vertex following a new simplex. By the reflection, expansion, contraction, and shrink 

operators, the current simplex is updated [23]. 

 

The algorithm for the NM method can be summarized as following and more details can be obtained in the 

original paper [22]. 

 

i. Determine the NM coefficients such as reflection coefficient, expansion coefficient, contraction 

coefficient, and shrink coefficient.  

ii. Randomly construct an initial n-simplex with n+1 vertices around the pre-defined starting value 

and determine their function values at the vertices. 

iii. Until the convergence criterion is satisfied, update the current simplex by using the suitable one of 

reflection, expansion, contraction, or reduction operators. When the convergence is achieved, the 

point having the lowest value is an optimal minimum. 

 

3.2. Particle Swarm Optimization 

 

Particle Swarm Optimization (PSO) developed by Eberhart, Kennedy [24] is based on swarm behaviour, 

such as bird flocking and fish schooling to find a place with enough food in nature. PSO has been 

extensively thought in various applied studies due to its easy implementation, high exactness, and fast 

convergence [25,26]. 

 

PSO is a population-based metaheuristic algorithm that has a self-controlling mechanism. The population 

is formed a set of candidate solutions called particles. It randomly generates a population and assigns a 

random velocity to them. Each of the particles memorizes its own best position (pbest) and the best position 

(gbest) recorded by particles in the population so far. Until a global optimal position is obtained, all particles 

update their velocity ( i
v ) and position ( i

x ) at each iteration given as: 

 

( ) ( )1

1 1 2 2

t t t t t t

i i i i i
v wv c r pbest x c r gbest x+ = + − + −                                                                                           (4) 
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and 

 
1 1t t t

i i i
x x v+ += +  ,                                                                                                                                                 (5) 

 

respectively. Here, t

i
v  is the velocity of individual i at iteration t , w  is the inertia weight, 1

c  and 2
c  are 

two constant, called learning parameters or acceleration coefficient, 1
r  and 2

r  are the uniformly distributed 

random numbers with range  [0,1], t

i
x  is the position of particle i at iteration t , t

i
pbest  is the best position 

of individual i until iteration t , 
tgbest  is the best position of the population until iteration t  [23,27]. 

 

There are three parts for updating the velocity in Equation (4). The first part 
t

i
wv  models the tendency of a 

particle to stay in the same direction and is referred to as "inertia", "habit" or "momentum". The second 

part ( )1 1

t t

i i
c r pbest x−  is the linear tendency of the particle towards its own best position (pbest) with an 

arbitrary weight ( 1 1
c r ). This part is called "memory", "nostalgia" or "self-knowledge". The third part 

( )2 2

t t

i
c r gbest x−  is a measure of the linear tendency of the particle towards to the best position of all 

particles (gbest) with an arbitrary weight ( 2 2
c r ). This term is called "collaboration", "shared knowledge" or 

"social knowledge" [28,29]. 

 

3.3. Proposed Hybrid Method 

 

Considering the fact that the NM algorithm is for local optimization, it works best when the initial values 

that are pretty close to the global optimum in the search space are chosen. Hence, its performance in 

reaching the global solution depends heavily on the initial values, but there is a gap in the literature 

regarding how the best way to choose or determine the initial values. PSO algorithm can be used to 

determine the staring values of NM. PSO method resists easily trapped in the local best solution thanks to 

a good exploration ability of it, but its exploitation to search for improved solutions in local areas is low. 

To eliminate these drawbacks of the two algorithms, we proposed a new hybrid algorithm named PSONM 

integrating the two algorithms. The flowchart of the PSONM algorithm is given in Figure 1. 

 

The advantages of using the proposed PSONM is that (i) the initial values of the parameters in NM are 

accurately determined via PSO so that the algorithm does not fall into local optimum and (ii) the 

exploitation capability of the PSO algorithm is improved thanks to the potential for rapid convergence of 

NM. As a result, it is possible to obtain an efficient algorithm that can both avoid premature convergences 

and give a good performance by integrating the advantages of the two algorithms. 
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Figure 1. Flowchart of the proposed PSONM 

 

4. EXPERIMENTAL RESULTS 

 

This section consists of two parts. In the first part, the nonlinear regression tasks taken from NIST are used. 

In the second part, real data in the agriculture field is analyzed. 

 

4.1. Results for NIST Nonlinear Regression Tasks  

 

In this part, we have considered well-known 20 nonlinear regression tasks taken from NIST whose list is 

given in Table 1 to demonstrate the performance of the proposed PSONM algorithm for the nonlinear 

regression parameter estimation. These nonlinear regression tasks are categorized according to their level 

of difficulty in three levels: lower (task 1–7), average (task 8–12), and higher (task 13–20). Furthermore, 

each task has different characteristics in terms of its model structure or its data set. In this study, exponential 

or rational types of nonlinear regression models are considered. The number of their parameters varies 

between 2 and 9, and the number of observations ranges from 6 to 250.  

 

Table 1. List of the Nonlinear Regression Models  

Dataset 

name 

Difficulty 

Levels 
Model Form 

Numb. 

of 

Param. 

Numb.  

of  

Obs. 

Misra1a Lower ( )0 11 exp = − − +  y x   2 14 

Chwirut2 Lower 
( )0

1 2

exp 

 

−
= +

+

x
y

x
  3 54 

Define the PSO and NM parameters 

Generate initial  population

Determine position and velocity vectors

Evaluate the pbest ve gbest according to 

S(β )

Update the velocity and position for new 

population

Is maximum number of 

iteration reached?

Use best solution in the last iteration as 

the initial parameter points of NM  and 

implement  the NM process

Yes

No

The values of the optimal minimum via 
NM are the estimates of the parameters

Start

Stop
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Chwirut1 Lower 
( )0

1 2

exp 

 

−
= +

+

x
y

x
  3 214 

Gauss1 Lower ( )
( ) ( )

2 2

3 6

0 1 2 52 2

4 7

exp exp exp
 

   
 

   − −
= − + − + − +   

      

x x
y x   8 250 

Gauss2 Lower ( )
( ) ( )

2 2

3 6

0 1 2 52 2

4 7

exp exp exp
 

   
 

   − −
= − + − + − +   

      

x x
y x   8 250 

DanWood Lower 1

0

= +y x   2 6 

Misra1b Lower 

( )
0 2

1

1
1

1 / 2




 
= − + 

+  

y
x

  2 14 

Kirby2 Average 

2

0 1 2

2

3 41

  

 

+ +
= +

+ +

x x
y

x x
  5 151 

Gauss3 Average ( )
( ) ( )

2 2

3 6

0 1 2 52 2

4 7

exp exp exp
 

   
 

   − −
= − + − + − +   

      

x x
y x   8 250 

Misra1c Average 

( )
0 1/2

1

1
1

1 2




 
= − + 

+  

y
x

  2 14 

Misra1d Average 
0 1

11

 


= +

+

x
y

x
  2 14 

Roszman1 Average 

2

3

0 1

arctan



 



 
 
 

= − − +
x -

y x   
4 25 

ENSO Average 
( ) ( ) ( )

( ) ( ) ( )

0 1 2 4 3

5 3 7 6 8 6

cos 2 /12 sin 2 /12 cos 2 /

sin 2 / cos 2 / sin 2 /

       

        

= + + +

+ + + +

y x x x

x x x 
 9 168 

MGH09 Higher 
( )2

0 1

2

2 3

 

 

+
= +

+ +

x x
y

x x
  4 11 

Thurber Higher 

2 3

0 1 2 3

2 3

4 5 61

   

  

+ + +
= +

+ + +

x x x
y

x x x
  7 37 

BoxBOD Higher ( )0 11 exp = − − +  y x   2 6 

Rat42 Higher 
( )

0

1 21 exp



 
= +

+ −
y

x
  3 9 

Eckerle4 Higher 
( )

2

20

2

1 1

exp
2



 

 − −
= + 

  

x
y   3 35 

Rat43 Higher 
( )

3

0

1/

1 21 exp




 
= +

+ −  

y
x

  4 15 

Bennett5 Higher 
( ) 2

0

1/

1






= +y

x +
  3 154 

 

We proposed the PSONM algorithm for estimating the parameters of the nonlinear regression models given 

in Table 1 in this study. The PSO algorithm parameters: inertia weight w , acceleration coefficients 1c  and 

2c  are selected as 0.7, 2 and 2, respectively, which are the most frequently used values in the literature. The 

number of particles is considered to be 20 or 50 according to the structure of the nonlinear models and the 

maximum iteration number is taken to be 1000. Each experiment is replicated 100 times for examining the 

robustness of the estimation strategy. All computations in this section are conducted in R 4.0.3. 
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The parameter estimation values ̂  and the estimated sum of squared error function values ˆ( )s   of the 

NM, PSO, and HPSONM algorithms for nonlinear regression models are reported in Table 2. Parameter 

searching spaces used in PSO ve PSONM algorithms are also given in this table. It should be stated that we 

used randomly generated numbers in these search spaces for the parameter initial values of the NM 

algorithm in this study. Moreover, Table 2 includes certified parameter values   and the sum of square 

error function values ( )s  , taken from NIST [17]. 

 

The closeness of the estimated parameter value to the certified parameter value and the estimated sum of 

the squared error function values to their certified value are utilized to compare the algorithms in this study. 

In Table 2, the best results are highlighted in bold. 

 

Table 2. The parameter estimation results of the NM, PSO, and PSONM algorithms for nonlinear 

regression models 

Dataset 

name 

Searching 

Space 

(min-max) 

Certified 

Parameter 

Values  

(  ) and ( )s   

Estimated 

parameter values 

with NM 

 ( ̂ ) and ˆ( )s   

Estimated 

parameter 

values with 

PSO ( ̂ ) 

and ˆ( )s   

Estimated 

parameter 

values with 

PSONM  

( ̂ ) and

ˆ( )s   

Misra1a 0-1000 

0-100 

238.9421 

0.000550 

 

0.124551 

43.34071 

30.07031 

 

6761.788 

238.9437 

0.000550 

 

0.124551 

238.9421 

0.000550 

 

0.124551 

Chwirut2 0-100 

0-100 

0-100 

0.166576 

0.005165 

0.012150 

 

513.0480 

-1.271261 

-18.80249 

37.65084 

 

48806.76 

0.166574 

0.005165 

0.012150 

 

513.0480 

0.166574 

0.005165 

0.012150 

 

513.0480 

Chwirut1 0-100 

0-100 

0-100 

0.190278 

0.006131 

0.010531 

 

2384.477 

-1.26187 

-13.59133 

27.23047 

 

199287.2 

0.190273 

0.006131 

0.010531 

 

2384.477 

0.190273 

0.006131 

0.010531 

 

2384.477 

Gauss1 0-1000 

0-100 

0-1000 

0-100 

0-100 

0-100 

0-1000 

0-100 

98.77821 

0.010497 

100.4899 

67.48111 

23.12977 

71.99450 

178.9980 

18.38938 

 

1315.822 

1323.906 

3.211287 

126.1809 

55.36681 

55.47560 

81.89323 

178.5690 

23.54913 

 

50406 

98.31270 

0.010567 

101.9202 

67.42496 

23.12597 

69.64661 

178.6588 

19.10766 

 

1495.354 

98.77818 

0.010497 

100.4899 

67.48112 

23.12978 

71.99449 

178.9980 

18.38940 

 

1315.822 

Gauss2 0-1000 

0-100 

0-1000 

0-100 

0-100 

0-100 

0-1000 

0-100 

99.01832 

0.109949 

101.8802 

107.0309 

23.57858 

72.04558 

153.2701 

19.52597 

 

100.3850 

0.004298 

815.5498 

1275.298 

191.1002 

13.07832 

252.7907 

0.527467 

 

107.1247 

0.017145 

53.30277 

103.1903 

14.27156 

79.94281 

128.4810 

54.89770 

 

99.01831 

0.010994 

101.8802 

107.0310 

23.57860 

72.04555 

153.2701 

19.52598 
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1247.528 239946 13842.35 1247.528 

DanWood 0-100 

0-100 

0.768862 

3.860405 

 

0.004317 

0.7688598 

3.860419 

 

0.004317 

0.7688623 

3.8604060 

 

0.004317 

0.768862 

3.860406 

 

0.004317 

Misra1b 0-1000 

0-100 

337.9974 

0.000390 

 

0.075464 

48.95245 

-0.05206262 

 

4465.895 

337.9979 

0.000390 

 

0.075464 

337.9975 

0.000390 

 

0.075464 

Kirby2 0-100 

-100-100 

0-100 

-100-100 

0-1 

1.674506 

-0.139273 

0.00259611 

-0.00174181 

2.1664E-05 

 

3.9050739 

18.46072 

-1.260945 

0.016312 

0.0218917 

7.212E-05 

 

354.2576 

10.22254 

-0.718547 

 0.0092982 

0.009081 

4.755E-05 

 

198.3985 

1.674519 

-0.139274 

0.0025961 

-0.001724 

2.1664E-05 

 

3.905074 

Gauss3 0-1000 

0-100 

0-1000 

0-100 

0-100 

0-100 

0-1000 

0-100 

98.94036 

0.010945 

100.6955 

111.6361 

23.30050 

73.70503 

147.7616 

19.66822 

 

1244.485 

-1427.00 

36.42277 

-2.58859 

687.1507 

25.99509 

99.16669 

95.58334 

95.74653 

 

165720 

101.9710 

0.012410 

35.36661 

103.8336 

13.71012 

100.0000 

129.5960 

36.56456 

 

4893.655 

98.94038 

0.010945 

100.6956 

111.6362 

23.30052 

73.70504 

147.7617 

19.66820 

 

1244.485 

Misra1c 0-1000 

0-100 

636.4272 

0.000208 

 

0.040966 

636.4273 

0.000208 

 

0.040966 

636.4274 

0.000208 

 

0.040966 

636.4273 

0.000208 

 

0.040966 

Misra1d 0-1000 

0-100 

437.3697 

0.000302 

 

0.056419 

437.3697 

0.000302 

 

0.056419 

437.3706 

0.000302 

 

0.056419 

437.3697 

0.000302 

 

0.056419 

Roszman1 0-100 

-100-100 

0-104 

-1000-1000 

0.201968 

-6.19E-06 

1204.455 

-181.342 

 

0.000494 

0.312769 

-3.34E-05 

1364.074 

614.7845 

 

0.009866 

0.2015996 

-6.14E-06 

1206.0310 

-182.1643 

 

0.000494 

0.2019687 

-6.19E-06 

1204.4560 

-181.3427 

 

0.000494 

ENSO 0-100 

0-100 

0-100 

0-100 

-100-100 

0-100 

0-100 

0-100 

0-100 

10.51074 

3.076212 

0.532801 

44.31108 

-1.62314 

0.525544 

26.88761 

0.212322 

1.496687 

 

788.5398 

11.19584 

3.044512 

0.477053 

269.0700 

-118.287 

-6.62352 

269.9465 

118.4061 

4.886753 

 

1126.59 

10.51343 

3.089324 

0.542223 

44.41431 

-1.61903 

0.577107 

26.90461 

0.233057 

1.482518 

 

788.645 

10.51075 

3.076205 

0.532815 

44.31119 

-1.62313 

0.525580 

26.88762 

0.212324 

1.496692 

 

788.5398 

MGH09 0-10 

0-10 

0-10 

0.192806 

0.191282 

0.123056 

0.037518 

51.15052 

5.819366 

0.1867338 

 0.3975372 

 0.1943043  

0.193040 

0.193964 

0.123532 
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0-10 0.136062 

 

0.000300 

4.000618 

 

0.000916 

0.2221072  

 

0.0003388 

0.137675 

 

0.000300 

Thurber 0-10000 

0-10000 

0-1000 

0-100 

0-100 

0-100 

0-100 

1288.139 

1491.079 

583.2383 

75.41664 

0.966295 

0.397972 

0.049727 

 

5642.708 

1285.10 

19371.34 

13055.86 

2385.759 

14.75594 

6.740311 

2.467610 

 

22287.44 

1321.34 

1275.078 

565.4782 

90.28131 

0.830795 

0.502413 

0.000000 

 

41986.13 

1288.140 

1491.079 

583.2385 

75.41667 

0.966295 

0.397972 

0.049727 

 

5642.708 

BoxBOD 0-1000 

0-100 

213.8094 

0.547237 

 

1168.008 

213.8094 

0.547237 

 

1168.009 

213.8094 

0.547237 

 

1168.009 

213.8094 

0.547237 

 

1168.009 

Rat42 0-100 

0-100 

0-100 

72.46223 

2.618076 

0.067359 

 

8.056522 

38.83778 

-13775.1 

13092.13 

 

4648.063 

72.46224 

2.618077 

0.067359 

 

8.056523 

72.46224 

2.618077 

0.067359 

 

8.056523 

Eckerle4 0-100 

0-100 

0-1000 

1.554382 

4.088832 

451.5412 

 

0.001463 

1.554383 

4.088832 

451.5412 

 

0.001463 

1.554383 

4.088832 

451.5412 

 

0.001463 

1.554383 

4.088832 

451.5412 

 

0.001463 

Rat43 0-1000 

0-100 

0-100 

0-100 

699.6415 

5.277125 

0.759629 

1.279248 

 

8786.404 

423.2954 

25.21918 

89.6269 

57.84976 

 

1076462 

716.3472 

12.71113 

1.439589 

4.098929 

 

17865.44 

699.6415 

5.277124 

0.759629 

1.279249 

 

8786.405 

Bennett5 -104-104 

0-100 

0-100 

-2523.505 

46.73656 

0.932184 

 

0.000524 

-36.1220 

101.4423 

43.03051 

 

48.26545 

-2841.876 

47.95140 

0.912065 

 

0.0005614 

-2790.995 

47.79961 

0.915187 

 

0.000526 

 

It is obvious from Table 2 that PSO and PSONM outperform NM for almost all cases. This is because NM 

is an algorithm with an initial value problem for the parameters, and the random generation of parameter 

initial values of the NM in a wide search space has caused this algorithm to give unreliable results. Although 

PSO and PSONM generally give similar results, it is observed that PSONM also gives much better results 

than PSO in cases where the number of unknown parameters is high, such as Gauss2, Kirby2, Gauss 3, 

Thurber, and Rat43 data sets. This shows that PSO alone is not sufficient, especially for situations with a 

large number of unknown parameters. It is also clear that PSONM gives the closest results to certified 

parameter values for most cases. This result shows that PSONM is considerably superior to both NM and 

PSO. Therefore, we can strongly advise using the proposed PSONM algorithm to estimate the parameters 

of non-linear regression models. 
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4.2.  Results for Real Data Sets 

 

The meanings of the parameters in the model are generally mixed, but in some models, they may be quite 

clear. Therefore, a person can define the starting values of the parameters based on their knowledge of the 

subject. Desta et al. [30] used various nonlinear regression models such as Monomolecular, Mitcherlich, 

Gompertz, Logistic, Chapman-Richards, Richard’s, and Weibull model to model the relationship between 

top height and age with the top height growth (THG) data, collected by the Bowmont Norway Spruce 

Thinning Experiment (1930–1974) from sample plot 3661. Mahanta and Borah [31] discussed nonlinear 

Weibull Growth models for mean diameter at breast height (MDBH) data and average height growth (AHG) 

data. Using the meanings of the parameters in these models, they determined the initial values for the 

parameters to be used in the iterative method and thus were able to obtain parameter estimates for the 

nonlinear regression models they deal with.  
 

In this part, we utilized the data sets of the THG, MDBH and AHG given in Tables 3-5 respectively to show 

the performance of the proposed PSONM model to estimate the parameters of the nonlinear regression 

model. Estimated parameter values ̂   and estimated the sum of square error function values ˆ( )s   by 

Desta et al. [30] or Mahanta and Borah [31] , and proposed PSONM algorithm are given in Table 6. 

  

Table 3. Top height growth (THG) data 

Age (years) 20 25 30 35 40 45 50 55 60 64 

Top Height (m) 7.3 9.0 10.9 12.6 13.9 15.4 16.9 18.2 19.0 20.0 

 

Table 4. Mean diameter at breast height (MDBH) data 

Age (years) 20 25 30 35 40 45 50 55 60 65 

MDBH 8.40 10.40 12.35 14.74 17.13 19.50 21.49 23.82 25.55 26.50 

 

Table 5. Average height growth (AHG) data 

Age (years) 1 2 3 4 5 6 7 8 9 10 11 

Height (feet) 6.0 9.5 13.0 15.0 16.5 17.5 18.5 19 19.5 19.7 19.8 

 

Table 6. The parameter estimation results for the data 

Data set name Model name Model form 

Estimated 

parameter 

values by 

Desta et al. 

[30] or 

Mahanta 

and Borah 

[31] 

( ̂ ) and

ˆ( )s   

Estimated 

parameter 

values with 

PSONM 

( ̂ ) and

ˆ( )s   

THG Monomolecular ( )0 1 21 exp  = − − +  y x 
 

34.48863 

1.05406148 

0.01438658 

 

0.1244276 

34.48862 

1.054062 

0.0143866 

 

0.1244276 

THG Mitcherlich 0 1 2   = − + 
x

y 
 

34.48863073 

36.35313733 

0.98571641 

 

0.1244276 

34.48861 

36.35312 

0.9857164 

 

0.1244276 

THG Gompertz ( )( )0 1 2exp exp  = − − +y x 
 

25.67476848 25.48479 



726  Aynur YONAR, Harun YONAR/ GUJ Sci, 35(2): 716-729 (2022) 

 
 

2.57813001 

0.03626337 

 

0.1256867 

2.595143 

0.03677709 

 

0.1243063 

THG Logistic ( )( )0 1 2/ 1 exp  = + − +y x 
 

22.86432616 

6.70940179 

0.05909335 

 

0.2258898 

22.8643 

6.709408 

0.05909346 

 

0.2258898 

THG 
Chapman-

Richards 
( )( ) 31/(1 )

0 1 21 exp


  
−

= − − +y x 
 

28.347774 

0.8301844 

0.0253696 

0.4902212 

 

0.1094374 

28.34827 

0.8302366 

0.02536821 

0.4901615 

 

0.1094374 

THG Richard’s ( )( ) 3(1 )

0 1 2/ 1 exp


  
−

= + − +y x 
 

25.484602 

0.00008673 

0.0367779 

0.00003342 

 

0.1243086 

25.43437 

-0.009899356 

0.03686847 

-0.003819886 

 

0.1242559 

THG Weibull-4 ( )3

0 1 2exp
  = − − +y x 

 

27.222914 

26.243522 

0.0051663 

1.3263582 

 

0.1091083 

27.22347 

26.24435 

0.005166966 

1.326318 

 

0.1091083 

MDBH Weibull-4 ( )3

0 1 2exp
  = − − +y x 

 

33.15763 

25.74324 

0.03980 

1.54465 

 

2646 

30.00625 

24.46392 

0.0001177419 

2.332611 

 

0.1756608 

MDBH Weibull-3 ( )( )2

0 11 exp
 = − − +y x   

49.02721 

0.14311 

0.72304 

 

5985.282 

45.60556 

0.003888341 

1.302892 

 

0.8914256 

AHG Weibull-4 ( )3

0 1 2exp
  = − − +y x 

 

20.16013 

18.37222 

0.25638 

1.14778 

 

0.1935725 

20.18334 

18.49618 

0.2608946 

1.136521 

 

0.1931085 

AHG Weibull-3 ( )( )2

0 11 exp
 = − − +y x   

20.17351 

0.32001 

1.05056 

 

0.407894 

20.497 

0.3306091 

0.9927403 

 

0.2717477 

 

It is clear from Table 6 that the two methods have same ̂  and ˆ( )s   values for THG data set except for 

Gompertz and Richard’s models. PSONM provides better estimates with lower ˆ( )s   values for these 

models. Furthermore, PSONM gives much better parameter estimates with lower ˆ( )s   values for MDBH 
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and AHG data sets. Consequently, since it is not always possible to know the meanings of the parameters 

in the model, initial values may not be determined in this way used by Desta et al. [30] or  Mahanta and 

Borah [31] for most problems. Thus, it can be said that the proposed PSONM is more useful than the 

methods of Desta et al. [30] or Mahanta and Borah [31] because PSONM can be used in all situation. 

 

5. CONCLUSION 

 

In this study, the problem of estimating the parameters of nonlinear regression models is examined. The 

ordinary least squares method is the most popular method used to estimate the unknown parameters of the 

nonlinear regression function. This method is based on minimizing the sum of squares of error terms and 

hence involves an optimization problem. However, this problem cannot be solved by classical methods 

since the objective function is nonlinear, and therefore different iterative and/or metaheuristic algorithms 

have been used. In this study, we proposed a hybrid PSONM algorithm using PSO, which is a well-known 

metaheuristic technique, and NM iterative algorithms to estimate the parameters of the nonlinear regression 

model. An efficient algorithm is procured as expected by combining the exploration capability of Particle 

Swarm Optimization (PSO) and the exploitation capability of the Nelder-Mead (NM) algorithm. At the 

same time, the parameter initial value problem of the NM algorithm is solved.  In order to demonstrate the 

performance of the proposed hybrid algorithm, 20 nonlinear regression tasks with various levels of 

difficulty and various real data in the agriculture field have been analyzed. The experimental results showed 

that the proposed hybrid PSONM algorithm provides accurate estimates and its performance is higher than 

those of NM and PSO algorithms. 
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