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Abstract

In this paper, we consider a fractional thermostat model involving Caputo fractional derivatives. Based on recent fixed point theorems of sum
operators on cones, we give the existence and uniqueness of positive solutions for the model and we can construct an iterative scheme to
approximate the unique solution. In the last section, we list two concrete examples to illustrate our main results.
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1. Introduction

It is well-known that fractional differential equations arise in many fields, such as economics, mechanics, physics and biological sciences, etc;
for more details we refer the reader to [2, 3, 5, 8, 10, 11, 12, 13, 14, 15] and the references therein. Many authors have investigated the existence
of positive solutions for fractional differential equation boundary value problems, see [4, 5, 12, 14, 15, 16, 17, 21, 22, 24] and the references
therein. Besides, the uniqueness of positive solutions for fractional problems has been studied widely, see [14, 15, 19, 20, 21, 22, 24] for
instance.
In [9], the authors studied the following fractional boundary value problem:{

−cDα
a u(t) = f (t,u(t)), 0 < t < 1,

u
′
(0) = 0, β cDα−1

1 u(1)+u(η) = 0,

where 1 < α ≤ 2, cDα
a denotes the Caputo fractional derivative of order α, β > 0, 0≤ η ≤ 1 and f : [0,1]× [0,∞)→ [0,∞) is a continuous

function. Some existence results were established by using Guo-Krasnoselskii fixed point theorem. But the uniqueness of solutions was not
studied in [9]. For other related results to the problem, see [2, 3, 8, 10] for example.
In [2], the authors studied the following fractional thermostat model:{

−cDα
a u(t) = y(t), a < t < b,

u
′
(a) = 0, β cDα−1

a u(b)+u(η) = 0,

where 1 < α ≤ 2, β > 0, a≤ η ≤ b. The authors present some Lyapunov-type inequalities for a nonlinear fractional heat equation with
nonlocal boundary conditions depending on a positive parameter. As an application, a lower bound for the eigenvalues of corresponding
equations was obtained. However, the authors do not provide the existence of the solution in this article.
Inspired by the above works, we mainly consider the existence and uniqueness of positive solutions for the following fractional thermostat
model: {

−cDα
a u(t) = g(t,u(t))+ f (t,u(t)), a < t < b,

u
′
(a) = 0, β cDα−1

a u(b)+u(η) = 0,
(1.1)

where cDα
a denotes the Caputo fractional derivative of order α, 1 < α ≤ 2, β > 0 and a≤ η ≤ b. f ,g : [a,b]× [0,∞)→ [0,∞) are continuous

functions. In this paper, we mainly prove the existence and uniqueness of positive solutions for the corresponding model. Our methods are
two fixed point theorems of sum operators on cones. Moreover, we can construct an iterative scheme to approximate the unique positive
solution.
The rest of the paper is organized as follows. In Sect.2, some preliminaries on fractional calculus and fixed point theory are presented. Next,
we state and prove our main results in Sect.3 and two examples are provided.
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2. Preliminaries and previous results

In this section, we present the basic results about fractional calculus theory which will be used later. We refer the reader to [1,2,3] and the
references therein.
We denote by N the set of positive natural numbers, that is: N = {1,2,3, · · ·}.

Definition 2.1. [1] Let f : [a,b]→ R be a given function. For α > 0, the Riemann-Liouville fractional integral of order α of f is defined by

(Iα
a f )(t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds,

where Γ(α) denotes the classical gamma function.

Definition 2.2. [1] Let f : [a,b]→ R be a given function. For α > 0, the Caputo derivative of fractional order α of f is given by

cDα
a f (t) =

1
Γ(n−α)

∫ t

a
(t− s)n−α−1 f n(s)ds,

where n = [α]+1 and [α] denotes integer part of α .

Consider the fractional boundary value problem:{
−cDα

a u(t) = y(t), a < t < b,
u
′
(a) = 0, β cDα−1

a u(b)+u(η) = 0,
(2.1)

where 1 < α < 2, β > 0, a≤ η ≤ b, (a,b) ∈ R2, and y ∈C[a,b].

Lemma 2.3. [2] Suppose that u ∈C2[a,b] is a solution to (2.1) if and only if

u ∈C[a,b], u(x) =
∫ b

a
G(t,s)y(s)ds, a < t < b,

where G is the Green’s function given by:
G(t,s) = β +Hη (s)−Ht(s) (2.2)

and for r ∈ [a,b], Hr : [a,b]→ R is the function defined as

Hr(s) =

{
(r−s)α−1

Γ(α)
,a≤ s≤ r ≤ b,

0, a≤ r ≤ s≤ b.

Lemma 2.4. [2] The Green’s function given by (2.2) satisfies the following properties:
(i) G is continuous in [a,b]× [a,b];
(ii) We have:

max{G(t,s) : a≤ t,s≤ b}= β +
(η−a)α−1

Γ(α)
(2.3)

and

min{G(t,s) : a≤ t,s≤ b}= β − (b−η)α−1

Γ(α)
. (2.4)

Suppose that E is a real Banach space which is partially ordered by a cone P⊂ E. We say that x≤ y if and only if y− x ∈ P.
◦
P denotes the

interior of P. An operator A : P→ P is increasing if x≤ y implies Ax≤ Ay for x,y ∈ P.For x,y ∈ E, the notation x∼ y means that there exist
λ > 0 and µ > 0 such that λx≤ y≤ µx. Clearly, ∼ is an equivalence relation. Given h > θ(i.e.,h≥ θ and h 6= θ), we denote by Ph the set
Ph = {x ∈ E|x∼ h} . It is easy to see that Ph ⊂ P.

Definition 2.5. [15] An operator A : E→ E is said to be homogeneous if it satisfies

A(λx) = λAx, ∀λ > 0,x ∈ E.

An operator A : P→ P is said to be sub-homogeneous if it satisfies A(tx)≥ tAx for all t > 0, x ∈ P.

Our main tools are the following lemmas.

Lemma 2.6. [4] Let M be nonempty closed convex subset of
◦
P, A :

◦
P→

◦
P and B : M→

◦
P, such that

(i) A is increasing, and there exists α ∈ (0,1) such that A(tx)≥ tα A(x) for any x ∈
◦
P, t ∈ (0,1);

(ii) B is continuous, and B(M) resides in a compact subset of
◦
P;

(iii) x = Ax+By and y ∈M implies x ∈M.
Then there exists x∗ ∈M such that (A+B)x∗ = x∗.

Lemma 2.7. [15] Let P be a normal cone, A : P→P be an increasing β−concave operator and B : P→P be an increasing sub-homogeneous
operator. Assume that
(i) there is h > θ such that Ah ∈ Ph and Bh ∈ Ph ;
(ii) there exists a constant δ0 > 0 such that Ax≥ δ0Bx for x ∈ P.
Then the operator equation Ax+Bx = x has a unique solution x∗ in Ph. Moreover, constructing the sequence yn = Ayn−1+Byn−1,n = 1,2, · · ·
for any initial value y0 ∈ Ph, we have yn→ x∗ as n→ ∞.
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3. Main results

In this paper, we work in Banach space E =C[a,b], equipped with the norm:

‖u‖= max{|u(t)| : t ∈ [a,b]} .

Let P be the cone in E given by:
P = {u ∈C[a,b] | u(t)≥ 0, t ∈ [a,b]} .

◦
P denotes the interior of P, then

◦
P = {u ∈C[a,b] | u(t)> 0, t ∈ [a,b]} .

Take R > 0, C2 = β − (b−η)α−1

Γ(α)
, d = max

a≤t≤b
0≤u≤∞

|g(t,u)|,e = max
a≤t≤b
0≤u≤R

| f (t,u)|.

Define

M =

{
u ∈

◦
P | ‖u‖ ≤ R

}
,

where R satisfies C2(b−a)(d− e)≤ R, then M is closed and convex in
◦
P .

From Lemma 2.6, we know that the solution of the problem (1.1) can be expressed as

u(t) =
∫ b

a
G(t,s)[g(s,u(s))+ f (s,u(s))]ds. (3.1)

For the convenience, we define two operators:

Au(t) =
∫ b

a
G(t,s)g(s,u(s))ds,

Bu(t) =
∫ b

a
G(t,s) f (s,u(s))ds.

Theorem 3.1. Suppose that βΓ(α)> (b−η)α−1 and f ,g : [a,b]× [0,∞)→ [0,∞) are continuous. In addition,
(H1) g(t,u) : [a,b]× [0,∞)→ [0,∞) is increasing in u with g(t,0) 6≡ 0, sup{g(t,u) : t ∈ [a,b],u ∈ [0,∞)}<+∞, and there exists a γ ∈ (0,1),
such that g(t,λu)≥ λ γ g(t,u) for all λ ∈ (0,1), u≥ 0;
(H2) when u > 0, f (t,u) 6≡ 0 for all t ∈ [a,b].
Then the problem (1.1) has a positive solution u ∈M .

Proof. We apply Lemma 2.3 to discuss that the problem (1.1) has a positive solution in C[a,b].

First, we will show that A :
◦
P→

◦
P, B : M→

◦
P. In fact, for u ∈

◦
P, then u(t)> 0, t ∈ [a,b] and by (H1) and Lemma 2.4,

Au(t) =
∫ b

a
G(t,s)g(s,u(s))ds

≥
∫ b

a
(β − (b−η)α−1

Γ(α)
)g(s,0)ds

= (β − (b−η)α−1

Γ(α)
)
∫ b

a
g(s,0)ds.

Since g(t,0) 6≡ 0 for t ∈ [a,b] and g(t,0) is continuous, we obtain
∫ b

a g(s,0)ds > 0. Hence, Au ∈
◦
P, that is, A :

◦
P→

◦
P.

For u ∈M, then u(t)> 0 for t ∈ [a,b], then by (H2) and Lemma 2.4,

Bu(t) =
∫ b

a
G(t,s) f (s,u(s))ds

≥
∫ b

a
(β − (b−η)α−1

Γ(α)
) f (s,u(s))ds > 0.

Hence, B : M→
◦
P.

It is clear to show that A is increasing. In fact, from Lemma 2.4 and (H1),

Au1(t) =
∫ b

a
G(t,s)g(s,u1(s))ds≤

∫ b

a
G(t,s)g(s,u2(s))ds = Au2(t)

for u1,u2 ∈
◦
P with u1 ≤ u2. Also from (H1),

A(λu)(t) =
∫ b

a
G(t,s)g(s,λu(s))ds

≥
∫ b

a
G(t,s)λ γ g(s,u(s))ds

= λ
γ (Au)(t).
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We know A(λu)≥ λ γ Au for λ ∈ (0,1).
For the second step, we will prove that B is a completely continuous operator in M. From the continuity and nonnegativity of G(t,s) and
f (t,u), B : P→ P is continuous.
Let Ω⊂ P be bounded, there is a constant C1 > 0 such that ‖u‖ ≤C1 for all u ∈Ω. Set L1 = max

a≤t≤b
u∈Ω

f (t,u)+1, then use Lemma 2.4, for u ∈Ω,

(Bu)(t) =
∫ b

a
G(t,s) f (s,u(s))ds≤ L1

∫ b

a
G(t,s)ds≤ N,

where N = L1(β +
(η−a)α−1

Γ(α)
)(b−a). Therefore, B is uniformly bounded.

Next, for u ∈M and t1, t2 ∈ [a,b], let L2 = max
a≤t≤b
u∈M

f (t,u),

|(Bu)(t2)− (Bu)(t1)|=
∣∣∣∣∫ b

a
G(t2,s) f (s,u(s))ds−

∫ b

a
G(t1,s) f (s,u(s))ds

∣∣∣∣
=

∣∣∣∣∫ b

a
[G(t2,s)−G(t1,s)] f (s,u(s))ds

∣∣∣∣
≤ L2

∫ b

a
|G(t2,s)−G(t1,s)|ds

≤ L2

[∫ t1

a

(t1− s)α−1

Γ(α)
ds−

∫ t2

a

(t2− s)α−1

Γ(α)
ds
]

=
L2

Γ(α +1)
[(t1−a)α − (t2−a)α ] ,

then (Bu)(t1)→ (Bu)(t2) as t1→ t2. So we claim that B is equi-continuous. Hence, B(M) is precompact by Ascoli-Arzelà theorem. Since

(Bu)(t)> 0, B(M) resides in a compact subset of
◦
P.

For all v ∈M, let u = Au+Bv, by Lemma 2.6, we need to prove u ∈M. Indeed,

u(t) =
∫ b

a
G(t,s)g(s,u(s))ds+

∫ b

a
G(t,s) f (s,v(s))ds

≤
∫ b

a
(β +

(η−a)α−1

Γ(α)
)|g(s,u(s))+ f (s,v(s))|ds

≤C2(d + e)(b−a) = R,

and thus ‖ u ‖≤ R, which shows u ∈M.

So, assumption (iii) of Lemma 2.6 is satisfied, hence the problem (1.1) has a solution u ∈M by using Lemma 2.6. �

Let h(t) =
∫ b

a G(t,s)ds, then

h(t) =
∫ b

a
(β +Hη (s)−Ht(s))ds

=
∫ b

a
βds+

∫ b

a
Hη (s)ds−

∫ b

a
Ht(s))ds

= β (b−a)+
∫

η

a

(η− s)α−1

Γ(α)
ds−

∫ t

a

(t− s)α−1

Γ(α)
ds

= β (b−a)+
(η−a)α − (t−a)α

Γ(α +1)
.

Theorem 3.2. Suppose that βΓ(α)> (b−η)α−1 and f ,g : [a,b]× [0,+∞)→ [0,+∞) are continuous. In addition,
(H3) f ,g : [a,b]× [0,+∞)→ [0,+∞) are increasing in u, min

a≤t≤b
f (t,β (b−a)+ (η−a)α−(b−a)α

Γ(α+1) )> 0;

(H4) f (t,λu) ≥ λ f (t,u) for λ ∈ (0,1), t ∈ [a,b],u ∈ [0,+∞), and there exists a constant γ ∈ (0,1) such that g(t,λu) ≥ λ γ g(t,u) for all
t ∈ [a,b], λ ∈ (0,1), u ∈ [0,∞);
(H5) there exists a constant δ0 > 0 such that g(t,u)≥ δ0 f (t,u), t ∈ [a,b], u≥ 0.
Then the problem (1.1) has a unique positive solution u∗ in Ph, where

h(t) = β (b−a)+
(η−a)α − (t−a)α

Γ(α +1)
, t ∈ [a,b].

Moreover, for any initial value u0 ∈ Ph, the sequence

un+1(t) =
∫ b

a
G(t,s)g(s,un(s))ds+

∫ b

a
G(t,s) f (s,un(s))ds,n = 0,1,2, · · ·

satisfies un(t)→ u∗(t) as n→ ∞.
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Proof. From Theorem 3.1, we easily prove that A : P→ P and B : P→ P. Next we verify that operators A and B satisfy assumptions of
Lemma 2.7.
Obviously, A is an increasing operator. Let u1(t)≤ u2(t), t ∈ [a,b], by (H3) and Lemma 2.4,

Bu1(t) =
∫ b

a
G(t,s) f (s,u1(s))ds≤

∫ b

a
G(t,s) f (s,u2(s))ds = Bu2(t),

so we know that B is increasing.
It has been proved that the operator A is a γ-concave operator in Theorem 3.1. For any λ ∈ (0,1) and u ∈ P, from (H4),

B(λu)(t) =
∫ b

a
G(t,s) f (s,λu(s))ds≥ λ

∫ b

a
G(t,s) f (s,u(s))ds = λB(u)(t),

this is, B(λu)≥ λBu for λ ∈ (0,1), u ∈ P. So the operator B is sub-homogeneous.
Now we show that Ah ∈ Ph and Bh ∈ Ph. Set

hmax = max{h(t) : t ∈ [a,b]}= β (b−a)+
(η−a)α

Γ(α +1)
,

hmin = min{h(t) : t ∈ [a,b]}= β (b−a)+
(η−a)α − (b−a)α

Γ(α +1)
,

then hmax ≥ hmin > 0. Denote d1 = max
a≤t≤b

g(t,hmax), d2 = min
a≤t≤b

g(t,hmin), e1 = max
a≤t≤b

f (t,hmax), e2 = min
a≤t≤b

f (t,hmin).

From (H3) and Lemma 2.4,

Ah(t) =
∫ b

a
G(t,s)g(s,h(s))ds≤ max

a≤s≤b
|g(s,hmax)|

∫ b

a
G(t,s)ds = d1h(t),

Ah(t) =
∫ b

a
G(t,s)g(s,h(s))ds≥ min

a≤s≤b
|g(s,hmin)|

∫ b

a
G(t,s)ds = d2h(t).

From (H3) and (H5), we can obtain
d1 ≥ d2 ≥ δ0e2 > 0,

d2h(t)≤ Ah(t)≤ d1h(t), t ∈ [a,b],

so Ah ∈ Ph. Similarly,
e2h(t)≤ Bh(t)≤ e1h(t),

from (H3) we easily prove Bh ∈ Ph. Hence the condition (i) of Lemma 2.7 is satisfied. In the following we show that the condition (ii) of
Lemma 2.7 is satisfied. For u ∈ P, from (H5),

Au(t) =
∫ b

a
G(t,s)g(s,u(s))ds≥ δ0

∫ b

a
G(t,s) f (s,u(s))ds = δ0Bu(t).

Then we get Au≥ δ0Bu, u ∈ P. Finally, an application of Lemma 2.7 implies: the operator equation Au+Bu = u has a unique solution u∗ in
Ph. That is, the problem (1.1) has a unique positive solution u∗ in Ph. Moreover, for any initial value u0 ∈ Ph, we construct a sequence

un+1(t) =
∫ b

a
G(t,s)g(s,un(s))ds+

∫ b

a
G(t,s) f (s,un(s))ds,n = 0,1,2, · · · ,

then un(t)→ u∗(t) as n→ ∞. �

Example 3.3. Consider the fractional boundary value problem:
−cD

3
2
1
3
u(t) = g(t,u(t))+ f (t,u(t)), 1

3 < t < 1,

u
′
( 1

3 ) = 0, 4
5

c
D

1
2
1
3
u(1)+u( 2

3 ) = 0,
(3.2)

where a = 1
3 , b = 1, α = 3

2 , β = 4
5 , η = 2

3 , f (t,u) = 1
2 t2 sinu+ 3

4 ,

g(t,u) =

{√
u+ t2, 0≤ u≤ 1,

1+ t3, u > 1,

and g(t,u)≥ 0 is increasing in u with g(t,0) = t2 6≡ 0, where (t,u)∈ [ 1
3 ,1]× [0,∞), and there exist γ = 1

2 , such that g(t,(λu)) =
√

λu+ t2 ≥
λ

1
2 (
√

u+ t2) = λ
1
2 g(t,u), when 0 ≤ u ≤ 1; g(t,λu) = 1+ t3 ≥ λ

1
2 g(t,u), when u > 1 for all λ ∈ (0,1). It is obvious that f (t,u) =

1
2 t2 sinu+ 3

4 is continuous on [ 1
3 ,1]× [0,∞), when u > 0, f (t,u) 6≡ 0 for all t ∈ [ 1

3 ,1]. And C2 = 0.1316, b−a = 2
3 , d = 2, e = 1

2 sin1+ 3
4

and R = C2 · (d + e)(b− a) = 0.1316× [2+( 1
2 sin1+ 3

4 )]×
2
3 = 0.2782 is bounded. So all the hypotheses of Theorem 3.1 are fulfilled.

Therefore, it follows from Theorem 3.1 that the boundary value problem (3.2) has a positive solution.
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Example 3.4. Consider the fractional boundary value problem:
−cD

3
2
1
3
u(t) = u

1
2 (t)+ u(t)

1+u(t)q(t)+ t3 +n, 1
3 < t < 2

3 ,

u
′
( 1

3 ) = 0, 2cD
1
2
1
3
u( 2

3 )+u( 2
3 ) = 0,

(3.3)

where a = 1
3 , b = 2

3 , α = 3
2 , β = 2, η = 2

3 , where n > 0 is a constant, q : [0,1]→ [0,+∞) is continuous with q 6≡ 0.
In this example, take 0 < m < n and let

g(t,u) = u
1
2 + t3 +m, f (t,u) =

u
1+u

q(t)+n−m.

γ =
1
2
, qmax = max{q(t) : t ∈ [a,b]} .

Obviously, qmax > 0, f ,g : [a,b]× [0,∞)→ [0,∞) are continuous and increasing in u. f (t, 2
3 +

4
√

π[( 1
27 )

1
2 −( 1

3 )
1
2 ]

3π
)≥ n−m > 0. Besides, for

λ ∈ (0,1), t ∈ [a,b], u ∈ [0,+∞), we have

g(t,λu) = (λu)
1
2 + t3 +m≥ λ

1
2 (u

1
2 + t3 +m) = λ

1
2 g(t,u),

f (t,λu) =
λu

1+λu
q(t)+n−m≥ λu

1+u
q(t)+λ (n−m) = λ f (t,u).

In addition, if we take δ0 ∈ (0, m
qmax+n−m ], then we have

g(t,u) = u
1
2 + t3 +m≥ m =

m
qmax +n−m

(qmax +n−m)≥ δ0[
u

1+u
q(t)+n−m] = δ0 f (t,u).

Therefore, all the conditions of Theorem 3.2 are satisfied. This implies that (3.3) has a unique positive solution in Ph, where

h(t) =
2
3
+

4
√

π[( 1
27 )

1
2 − (t− 1

3 )
1
2 ]

3π
.

4. Conclusion

In this paper, we proved the existence and the uniqueness of solution for the fractional thermostat model involving Caputo fractional
derivatives (1.1) under different conditions. Our methods are two recent fixed point theorems of sum operators. Moreover, we can give a
sequence to approximate the unique solution. As applications, we list two concrete examples to illustrate our main results.
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A. Vol:113, (2019), 2449-2460.
[8] C. Shen and H. Zhou and L. Yang, Existence and nonexistence of positive solutions of a fractional thermostat model with a parameter, Math. Methods

Appl. Sci. Vol:39, No.15 (2016), 4504-4511.
[9] M. Jleli and B. Samet, Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions, Math. Inequal. Appl. Vol:18,

No.2 (2015), 443-451.
[10] D. O’Regan and B. Samet, Lyapunov-type inequalities for a class of fractional differential equations, J. Inequal. Appl. Vol:2015, No.1 (2015), 1-10.
[11] A.C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Am. Math.Soc. Vol:14, No.3 (1963), 438-443.
[12] Y. He, Existence and multiplicity of positive solutions for singular fractional differential equations with integral boundary value conditions, Adv. Differ.

Equ. Vol:2016, No.1 (2016), 1-14.
[13] M. Jiang and S. Zhong, Successively iterative method for fractional differential equations with integral boundary conditions, Appl. Math. Lett. Vol:38,

(2014), 94-99.
[14] C.M. Su and J.P. Sun and Y.H. Zhao, Existence and uniqueness of solutions for BVP of nonlinear fractional differential equation, Int. J. Differ. Eq.

Vol:2017, (2017), 1-7.
[15] C. Yang and C.B. Zhai, Uniqueness of positive solutions for a fractional differential equation via a fixed point theorem of a sum operator, Electron. J.

Differ. Eq. Vol:2012, No.70 (2012), 808-826.
[16] J.R. Yue and J.P. Sun and S. Zhang, Existence of positive solution for BVP of nonlinear fractional differential equation, Discrete Dyn. Nat. Soc.

Vol:2015, (2015), 1731-1747.
[17] X. L. Zhang and L. Wang and Q. Sun, Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary

conditions and a parameter, Appl. Math. Comput. Vol:226, No.1-2 (2014), 708-718.
[18] Y. Sun and M. Zhao, Positive solutions for a class of fractional differential equations with integral boundary conditions, Appl. Math. Lett. Vol:34, No.1

(2014), 17-21.



182 Konuralp Journal of Mathematics

[19] A. Ardjouni, A. Djoudi.: Existence and uniqueness of positive solutions for first-order nonlinear Liouville Caputo fractional differential equations, São
Paulo J. Math. Sci. Vol:14, No.3 (2020), 381-390.

[20] C.B. Zhai and R.T. Jiang, Unique solutions for a new coupled system of fractional differential equations, Adv. Differ. Equ. Vol:2018, No.1 (2018), 1-12.
[21] Y.Q. Wang and Y.H. Wu, Existence of uniqueness and nonexistence results of positive solution for fractional differential equations integral boundary

value problems, J. Funct. Space. Vol:2018, (2018), 1-7.
[22] H. Baghani and J. Alzabut and J. Farokhi-Ostad, et al, Existence and uniqueness of solutions for a coupled system of sequential fractional differential

equations with initial conditions, J. Pseudo-Differ. Oper. Vol:11, (2020), 1-11.
[23] C.B. Zhai and X.L. Zhu, Unique solution for a new system of fractional differential equations. Adv. Differ. Equ. Vol:2019, No.1 (2019), 1-19.
[24] T. Zhu, Existence and uniqueness of positive solutions for fractional differential equations, Bound. Value. Probl. Vol:2019, No.1 (2019), 1-11.


	Introduction
	Preliminaries and previous results
	Main results
	Conclusion

