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Abstract 

In this study the elastic buckling behavior of beams with rectangular cross section is studied analytically. It is 
assumed that both the top and bottom surfaces of the beam are ceramic coated. The aluminum (Al) is chosen as a 
core material while the aluminum-oxide (Al2O3) is preferred as a liner (face) material. The transfer matrix method 
based on the Euler-Bernoulli beam theory is employed in the analysis. The exact transfer matrix in terms of 
equivalent bending stiffness is presented together with the exact buckling equations for hinged-hinged, clamped-
hinged, clamped-free, and finally clamped-clamped boundary conditions. After verifying the results for beams 
without liners, dimensionless buckling loads of the beam with ceramic liners are numerically computed for each 
boundary condition. The effect of the thickness of the ceramic liner on the buckling loads is also investigated. It is 
found that a ceramic liner enhances noticeably the buckling loads. As an additional study those effects are also 
examined for the ratios of elasticity modulus of face material to core material in a wide range. 

Keywords: Exact buckling, Euler-Bernoulli, transfer matrix, stability, sandwich beam, critical buckling loads 

1. Introduction 

Buckling of columns being a physical phenomenon is a matter of significance in the design of 
structural elements. Underestimation of this phenomenon may lead to disastrous results. 

Buckling occurs in beams subjected to compressive loads. The longer and more slender the 
column is, the lower the safe compressive stress that it can stand. The maximum load at which 
the column tends to have lateral displacement or tends to buckle is known as critical buckling 
or crippling load. Therefore in the design of columns, determination of the critical buckling 
loads becomes an inevitable stage. 

Research into buckling of columns dates back to late 1700s with Euler’s study [1].  Greenhill’s 
[2], Dinnik’s [3], and Timoshenko and Gere’s [4] studies are some subsequent fundamental 
works to Euler’s [1] study in the related realm. Numerous analytical and numerical works on 
the stability of columns were conducted after those pioneers [5-42]. From those methods which 
can be used to determine the elastic critical buckling load may be summarized as the differential 
equation solution method [1-11], energy methods [12-16], the finite element method [17-22], 
the finite difference method [23], the modified slope deflection method [24], the effective-
thickness concept [25], the multi-segment integration technique [23], the variational iteration 
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method [26-28], the homotopy perturbation method [28-33], Adomian decomposition method 
[28, 34], the transfer matrix method [35-39], the stiffness matrix method [39], the fictitious load 
method [40], the modified vibration modes [41] and much more [42-46]. In the solution of more 
complex problems, some of the solution methods mentioned above may also be used in a 
combined manner. 

The governing buckling differential equation may be obtained based on the either beam or 
elasticity [9-11] theories. The beam theories allow to solve much more complex problems for 
a beam or a system of beams. The governing equation in differential form may then be solved 
by using exact or approximate solution techniques. As may be guessed it is possible to obtain 
exact solutions for relatively simple problems.  

As is known, the gain of strain energy in the elements is less than the potential energy of the 
loads which are lower than the elastic critical load. If the change of these two energies is zero 
then the structure will not resist any disturbance. This stage at which the stiffness of the structure 
is zero is defined as a critical instability condition in the energy methods.  

In the finite element method, in which the structure is subdivided into a series of fairly short 
elements, buckling is considered by adding a geometrical stiffness matrix to the element 
equations. The resulting eigenvalue problem is then solved by applying several techniques such 
as vector iteration methods (inverse iteration, forward iteration, and Rayleigh quotient 
iteration), transformation methods (Jacobi method, the subspace iteration method).  

The transfer matrix method is one of the methods to the solution of initial value problem (IVP). 
Many problems from the simplest one to the complex ones may be solved with the help of this 
technique. The governing equations in canonical form, which is a relationship between the 
section quantities and their first derivatives, may be obtained from the either beam or elasticity 
theories. In the method, determination of the elements of the transfer matrix is crucial. The 
overall transfer matrix, which is obtained from the solution of a set of differential equation 
having either constant or variable coefficients, relates the section quantities at the initial point 
and at any point on the beam axis. The accuracy of the solution directly depends on the accuracy 
of the overall transfer matrix to be derived. It is possible to obtain some closed form solutions 
for the governing equation with constant coefficients. Otherwise, in case of existence of 
variable coefficients, the transfer matrix should be determined numerically. Contrary to the 
finite elements method, orders of the resulting matrices are independent from the number of 
elements to be considered. Therefore it is possible to construct easy-to-use algorithms with the 
transfer matrix method which are highly accurate and computationally efficient. 

A sandwich structure usually consists of two relatively thin, stiff and strong faces separated by 
a relatively thick lightweight core. The main purpose of a sandwich structure is to achieve a 
stiff and simultaneously light component. That is higher stiffness and strength can be achieved 
by sandwich structures without increasing the weight dramatically. Sandwich constructions are 
also used for the aim of thermal insulation, corrosion insulation, vibration/noise damping, and 
water ingress prevention. Buckling phenomenon is a crucial task to be considered in the analysis 
of such structures [47-53].  This may be conducted by using any of the methods mentioned 
above. Recently, Sayyad and Ghugal [54] reviewed bending buckling, and free vibration of 
laminated composite and sandwich beams up to 2017s.  

As is well known, Euler-Bernoulli theory is a simple beam theory by which one may get exact 
results which are reasonable for long and slender structural members. The theory offers 
overestimate buckling loads for relatively short columns. In other words, Euler buckling loads 
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are independent from the ratio of the total length of the beam to the width of the section. In the 
present study, the effect of the existence of the liners on the buckling loads of a rectangular 
beam is intended for an examination with the help of the transfer matrix method. As a basic 
work, Euler-Bernoulli beam theory is employed to achieve fast and reasonable buckling loads.    

2. Theory 

Consider a beam subjected to an axial compressive load 𝑁 whose critical value called the 
critical buckling load satisfies the following fourth order Euler-Bernoulli differential equation 
in terms of transverse displacement, 𝑤 [1-8]. 

𝑑$𝑤
𝑑𝑥$

+
𝑁
𝐸𝐼
𝑑)𝑤
𝑑𝑥)

= 0 
(1) 

Where, 𝑥 is the coordinate along the beam axis, 𝐸 is Young’s modulus and 𝐼 is the area moment 
of inertia about 𝑦 axis (Fig. 1). Derivation of Eq. (1) may be found in References [1-8]. The 
general solution of the foregoing well-known ODE is  

𝑤 𝑥 = 𝐴𝑐𝑜𝑠𝛼𝑥 + 𝐵𝑠𝑖𝑛𝛼𝑥 + 𝐶𝑥 + 𝐷 (2) 

where 

𝛼 =
𝑁
𝐸𝐼

 
(3) 

Solution to Eq. (2) is used with the following classical boundary conditions to determine the 
critical buckling loads of the beam. The boundary conditions for hinged ends are,  

𝑤 = 0,			𝑤′′ = 0 (4) 

for clamped ends are, 

𝑤 = 0,   	𝑤′ = 0 (5) 

and for free ends are 

𝑤′′′ = 0,										𝑤:; = 0 (6) 

The number of the problems to be directly solved by Eq. (1) is limited. To consider a wider 
range applications of beams with initial axial force, the transfer matrix method is preferred in 
the present study. As stated in the introduction, one need to put the single fourth order 
differential equation given in Eq. (1) into a set of four differential equations of first order to be 
able to apply the transfer matrix method . The equations governing the elastic buckling behavior 
of an Euler-Bernoulli beam is given in canonical form as follows [5] 
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Fig. 1. The beam geometry and the coordinates 

 

𝑑𝑤
𝑑𝑥

= 𝜃 
(7a) 

𝑑𝜃
𝑑𝑥

= −
𝑀
𝐸𝐼

 
(7b) 

𝑑𝑀
𝑑𝑥

= 𝑇 + 𝑁𝜃 
(7c) 

𝑑𝑇
𝑑𝑥

= 0 
(7d) 

where, 𝑤 is still the transverse displacement, 𝜃 is the rotation, 𝑀 is the bending moment, 𝑇 is 
the shear force, 𝑁 is the axial compressive constant initial force. Equation (7), which is 
identically equal to Eq. (1), may be written in a compact form as 

𝑺A 𝑥 = 𝑫	𝑺(𝑥) (8) 

where the state vector which comprises the section quantities is defined by 

𝑺 𝑥 =

𝑤 𝑥
𝜃 𝑥
𝑀 𝑥
𝑇 𝑥

 

(9) 

and the differential transfer matrix is 
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𝑫 =
0 1
0 0

0 0
−1
𝐸𝐼

0
0 𝑁
0 0

0 1
0 0

 

 

(10) 

There are a few ways for the determination of the elements of the transfer matrix, F [5]. If the 
elements of the differential transfer matrix are constants as in beams having unchanged section 
and material properties along the beam axis, it is possible to get an exact solution for the element 
transfer matrix as in the present study. 

Recalling that the element transfer matrix satisfy the similar differential equation for the state 
vector as in Eq. (8) the following may be written [5] 

𝑭A 𝑥 = 𝑫	𝑭(𝑥) (11) 

Solution of Eq. (11) with the initial conditions 

𝑭 𝑥 = 0 = 𝑰 (12) 

gives us the exact element transfer matrix in the form of a matrix exponential. 

𝑭 𝑥 = 𝑒I𝑫 = 1 + 𝑥𝑫 +
𝑥)

2!
𝑫) +

𝑥L

3!
𝑫L +

𝑥$

4!
𝑫$ +

𝑥O

5!
𝑫O +

𝑥Q

6!
𝑫Q + ⋯ 

(13) 

In the above, 𝑰 refers the unit matrix. In Eq. (13) the higher powers of the differential matrix 
which are equal or greater than four may be written in terms of the differential transfer matrices 
having smaller powers of up to three. To this end one may resort to Cayley-Hamilton theorem 
which states that every square matrix satisfies its own characteristic equation, |D-𝜇I|= 0. Using 
Eq. (13) together with Cayley Hamilton theorem, Eq. (13) takes the following form in terms of 
up to the third powers of the differential transfer matrix [5]. 

			𝑭 𝑥 = 1 + 𝑥𝑫 +
𝑥)

2!
−
𝑥$

4!
𝛼) +

𝑥Q

6!
𝛼$ −

𝑥U

8!
𝛼Q +

𝑥WX

10!
𝛼U − ⋯ 𝑫)

+
𝑥L

3!
−
𝑥O

5!
𝛼) +

𝑥Y

7!
𝛼$ −

𝑥[

9!
𝛼Q + ⋯ 𝑫L 

(14) 

The coefficients of the differential transfer matrix, which are in series form, correspond 
explicitly to the following functions 

𝑭 𝑥 = 1 + 𝑥𝑫 +
1 − cos 𝛼𝑥

𝛼)
𝑫) +

𝛼𝑥 − sin	(𝛼𝑥)
𝛼L

𝑫L 
(15) 

The explicit forms of the elements of the exact element transfer matrix in Eq. (15) are given 
below in terms of the equivalent bending stiffness. 
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𝐹W,W = 𝐹$,$ = 1	

𝐹),W = 𝐹L,W = 𝐹$,W = 𝐹$,) = 𝐹$,L = 0	

𝐹W,) = 𝐹L,$ =

𝑠𝑖𝑛 𝑥	 𝑁
𝐸cd𝐼

𝑁
𝐸cd𝐼

	

𝐹W,L = 𝐹),$ =

𝑐𝑜𝑠 𝑥	 𝑁
𝐸cd𝐼

− 1

𝑁
	

𝐹W,$ =

𝐸cd𝐼 𝑠𝑖𝑛 𝑥	 𝑁
𝐸cd𝐼

𝑁
L
)

−
𝑥	
𝑁
	

𝐹),) = 𝐹L,L = 𝑐𝑜𝑠 𝑥	
𝑁
𝐸cd𝐼

	

𝐹),L = −

𝑠𝑖𝑛 𝑥	 𝑁
𝐸cd𝐼

𝑁	𝐸cd𝐼
	

𝐹L,) = 𝑁	𝐸cd𝐼 𝑠𝑖𝑛 𝑥	
𝑁
𝐸cd𝐼

 

 

 

 

 

 

 

 

 

 

 

(16) 

The overall transfer matrix relates the state vectors at both ends of the beam as follows 

𝑺 𝐿 = 𝑭(𝑳)	𝑺(0) (17) 

This equation may be expanded as 

𝑤
𝜃
𝑀
𝑇 Igh

=

𝐹W,W 𝐹W,)
𝐹),W 𝐹),)

𝐹W,L 𝐹W,$
𝐹),L 𝐹),$

𝐹L,W 𝐹L,)
𝐹$,W 𝐹$,)

𝐹L,L 𝐹L,$
𝐹$,L 𝐹$,$ Igh

	
𝑤
𝜃
𝑀
𝑇 IgX

 

 

(18) 

In the present study the following boundary conditions are implemented (Fig. 2) for hinged 
(pinned) ends as 
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𝑤 = 0,   	𝑀 = 0 (19) 

for clamped ends as 

𝑤 = 0,				𝜃 = 0 (20) 

and for free ends as 

𝑇 = 0,				𝑀 = 0 (21) 

After implementing those boundary conditions in Eq. (13), the buckling equations are obtained 
as follows 

 
                                          P-P            C-P                  C-C               C-F 
 

Fig. 2. Classical boundary conditions. 

 

𝐴 ijklcmnijklcm =
𝐹(𝐿)W,) 𝐹(𝐿)W,$
𝐹(𝐿)L,) 𝐹(𝐿)L,$

=	0	

					 𝐴 opqrscmntucc =
𝐹(𝐿)L,L 𝐹(𝐿)L,$
𝐹(𝐿)$,L 𝐹(𝐿)$,$

= 0	

					 𝐴 opqrscmnijklcm =
𝐹(𝐿)W,L 𝐹(𝐿)W,$
𝐹(𝐿)L,L 𝐹(𝐿)L,$

= 0	

					 𝐴 opqrscmnopqrscm =
𝐹 𝐿 W,L 𝐹 𝐿 W,$
𝐹 𝐿 ),L 𝐹 𝐿 ),$

= 0 

 

 

 

(22) 

In the above the axial force making the corresponding determinants equal to zero is referred to 
as the critical buckling load, 𝑁ou. These loads may be found by using the searching determinant 
method together with the bi-sectioned method, or other solution techniques. 

The more compact forms of the determinants are given in Appendix. 
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3. Verifications of the results 

For the sake of simplicity, the application of this method may be shown on the simple model of 
a column with uniform cross-section that is subjected to the axial compressive force N. The 
column is assumed to be made of a single isotropic and homogeneous material. The following 
dimensionless buckling load is defined to verify the results with the open literature 

𝛽 =
𝐿)

𝐸𝐼 𝑁 
(23) 

 
 

 
 

Fig. 3. Determinant-dimensionless frequency curves under classical boundary conditions. 

Dimensionless buckling loads are listed in Table 1 in a comparative manner with the literature. 
A perfect harmony is observed among the results. The corresponding determinant curves are 
illustrated in Fig. 3. Further analytical verifications are given in Appendix A. 

 
Table 1. Comparison of dimensionless critical Euler buckling loads of uniform columns without liners 
 C–F P–P C–P C–C 
Present (Transfer matrix method) 2.4674 9.8696 20.1907 39.4784 
Wang et al. [6] (Exact) 2.4674 9.8696 20.1907 39.4784 
Saha and Banu [23] (Finite difference method) -- 9.8892 20.2044 39.786 
Saha and Banu [23] (Multi-segment integration)  -- 9.8728 20.1876 39.6408 
Coşkun and Atay [27] (Variational iteration) 2.4674 9.8696 20.1908 39.4916 
Eryılmaz et al. [33] (Homotopy analysis) 2.4674 9.8696 20.1907 39.4784 

4. Effect of the liner thickness on the buckling loads  

As stated before without increasing the weight dramatically, higher stiffness and strength can 
be achieved by sandwich structures with soft cores. Chakrabartia et al. [48] verified this for the 
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buckling of laminated sandwich beams with soft cores. Although the proposed method may be 
applied to the laminated structures having anisotropic characteristics after a certain effort, both 
the face and core material are assumed to be isotropic and homogeneous in the present study 
for simplicity.  

To study the effect of the total thickness of the bottom and top liners on the buckling loads, the 
following dimensionless quantity is defined.  

𝜆 =
2𝑡
ℎ

 (24) 

where 𝑡 is the thickness of a layer, ℎ is the width of the rectangular section having length 𝑏 
(Fig. 1). The equivalent bending stiffness of the uniform section is derived as 

				𝐸cd𝐼 = 3𝜆) − 𝜆L − 3𝜆 + 1 𝐸W + −3𝜆) + 𝜆L + 3𝜆 𝐸) 	
𝑏ℎL

12
 

(25) 

In the above 𝐸W	is Young’s modulus of the core material while 𝐸) stands for the elasticity 
modulus of the liner material (face material). The dimensionless buckling load may now be 
defined in terms of Young’s modulus of the core material. 

𝛽 =
𝐿)

𝐸W𝐼
𝑁 

(26) 

The material and geometrical properties used in the parametric study are: 	𝐸W = 𝐸o{uc =
70.0	10[	𝐺𝑃𝑎	 𝐴𝑙 , 		𝐸) = 𝐸pjkcu = 393.0	10[	𝐺𝑃𝑎	(𝐴𝑙)𝑂L), 		𝑏 = 2ℎ;  𝐿 = 1.0	𝑚;  𝐿/ℎ =
10. Effect of the total thickness of the liners with respect to the height of the section is seen in 
Table 2 and Fig. 4 under all classical boundary conditions.  

 
Table 2. Dimensionless critical buckling loads of uniform columns with liners 

𝝀 C-F P-P C-P C-C 
0.0 2.4674 9.8696 20.1907 39.4784 
0.01    2.80556 11.2222 22.9578 44.8889 
0.02    3.13695 12.5478 25.6696 50.1912 
0.05   4.09123 16.3649 33.4785 65.4597 
0.1     5.55282 22.2113 45.4387 88.8451 
0.2     8.02342 32.0937 65.6556 128.375 
0.3 9.94754 39.7902 81.4007 159.161 
0.4 11.3935 45.5739 93.2327 182.296 
0.5 12.4295 49.7181 101.711 198.873 
0.6 13.124 52.4961 107.394 209.985 
0.7 13.5453 54.1812 110.841 216.725 
0.8 13.7616 55.0464 112.611 220.186 
0.9 13.8413 55.3652 113.263 221.461 
1.0 13.8527 55.4108 113.357 221.643 
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Fig.  4. Variation of the buckling loads with the total thickness of the liners 

 

 

Fig.  5. Variation of the buckling loads with E2/E1 ratios and boundary conditions under all 
boundary conditions for 𝜆 = 0.01 
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From Table 2, it is revealed that for even very thin liners, 𝜆 = 0.01, the buckling load increases 
rapidly by over 10%. For 𝜆 = 0.1, the beam can withstand greater forces of around 22% more 
than the beam without liners. From Fig. 4, it may be concluded that the total thickness of the 
liners more than 50% is not feasible to enhance the buckling loads for the example considered.  

To more generalize the problem for practical applications, let’s consider a sandwich beam 
having a soft core and investigate the variation of the dimensionless buckling loads with E2/E1 
ratios, liner thickness and boundary conditions (𝑏 = 2ℎ;  𝐿 = 1.0	𝑚;  𝐿/ℎ = 10).  The results 
are presented in Fig. 5, and Table 3.  

 
ratios under all  1/E2ETable 3. Variation of the buckling loads with the total thickness of the liners and 

boundary conditions 
 

𝝀	
E2	/	E1	

2	 3	 5	 8	 10	 2	 3	 5	 8	 10	

 Clamped-Free	 Clamped-Clamped	

0.0 2.4674 2.4674 2.4674 2.4674 2.4674 39.4784 39.4784 39.4784 39.4784 39.4784 
0.01    2.54069 2.61397 2.76054 2.98039 3.12696 40.651 41.8235 44.1686 47.6863 50.0314 
0.02    2.6125 2.75761 3.04781 3.48312 3.77333 41.8001 44.1217 48.765 55.7299 60.3732 
0.05   2.81931 3.17123 3.87505 4.93079 5.63462 45.109 50.7396 62.0009 78.8927 90.1539 
0.1     3.13607 3.80473 5.14206 7.14806 8.48539 50.1771 60.8757 82.273 114.369 135.766 
0.2     3.67149 4.87558 7.28377 10.896 13.3042 58.7439 78.0094 116.54 174.337 212.868 
0.3 4.08848 5.70957 8.95173 13.815 17.0571 65.4157 91.3531 143.228 221.04 272.914 
0.4 4.40184 6.33629 10.2052 16.0085 19.8774 70.4295 101.381 163.283 256.136 318.038 
0.5 4.62638 6.78535 11.1033 17.5802 21.8982 74.022 108.566 177.653 281.284 350.371 
0.6 4.77689 7.08638 11.7054 18.6338 23.2528 76.4302 113.382 187.286 298.141 372.045 
0.7 4.86818 7.26896 12.0705 19.2729 24.0744 77.8909 116.303 193.128 308.366 385.191 
0.8 4.91506 7.36272 12.258 19.601 24.4964 78.641 117.804 196.129 313.617 391.942 
0.9 4.93233 7.39727 12.3271 19.7219 24.6518 78.9174 118.356 197.234 315.551 394.429 
1.0 4.9348 7.4022 12.337 19.7392 24.674 78.9568 118.435 197.392 315.827 394.784 

	 Clamped-Hinged	 Hinged-Hinged	

0.0 20.1907 20.1907 20.1907 20.1907 20.1907 9.8696 9.8696 9.8696 9.8696 9.8696 
0.01    20.7904 21.3901 22.5895 24.3885 25.5879 10.1627 10.4559 11.0422 11.9216 12.5078 
0.02    21.3781 22.5655 24.9402 28.5024 30.8771 10.45 11.0304 12.1913 13.9325 15.0933 
0.05   23.0704 25.9501 31.7095 40.3486 46.1081 11.2773 12.6849 15.5002 19.7232 22.5385 
0.1     25.6624 31.1341 42.0775 58.4925 69.4359 12.5443 15.2189 20.5683 28.5922 33.9416 
0.2     30.0438 39.8969 59.603 89.1623 108.868 14.686 19.5023 29.1351 43.5842 53.2169 
0.3 33.456 46.7213 73.252 113.048 139.579 16.3539 22.8383 35.8069 55.2599 68.2286 
0.4 36.0203 51.8498 83.5089 130.997 162.657 17.6074 25.3451 40.8207 64.034 79.5095 
0.5 37.8576 55.5245 90.8583 143.859 179.193 18.5055 27.1414 44.4132 70.3209 87.5927 
0.6 39.0893 57.9878 95.7848 152.48 190.277 19.1076 28.3455 46.8214 74.5353 93.0112 
0.7 39.8363 59.4819 98.773 157.71 197.001 19.4727 29.0759 48.2821 77.0915 96.2977 
0.8 40.2199 60.2491 100.308 160.395 200.454 19.6603 29.4509 49.0322 78.4041 97.9854 
0.9 40.3613 60.5318 100.873 161.384 201.726 19.7293 29.5891 49.3085 78.8877 98.6072 
1.0 40.3815 60.5722 100.954 161.526 201.907 19.7392 29.6088 49.348 78.9568 98.696 
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As stated above, if the aluminum is a core material and the aluminum-oxide is a face material, 
the buckling load increases rapidly over 10% for 𝜆 = 0.01. This contribution is linearly 
changed with the E2/E1 ratios for the same ratio of 𝜆 (Fig. 5). For instance, under all boundary 
conditions and for λ=0.01, the buckling loads increase by 3% if E2/E1 =2, by 12% if E2/E1 =5, 
and by 27% if E2/E1 =10. 

For λ=0.1, the improved buckling load reaches about 1.3 times the buckling load of the beam 
made from only the core material if E2/E1 =2. It is around 2 times of the buckling load without 
liners if E2/E1 =5, and is approximately 3.5 times that load if E2/E1 =10. 

7. Conclusions 

In the present study the effect of the thickness of liners on the critical buckling loads of a beam 
having uniform rectangular cross-section is investigated based on the Euler-Bernoulli beam 
theory under several boundary conditions. Real-life materials together with hypothetical ones 
are used in the examples. 

The transfer matrix method is chosen for the solution procedure due to its effective, economical, 
and accurate results together with its wider applications in the engineering realm. The element 
transfer matrix is obtained analytically by solving a set of four differential equations of first 
order.  The effective bending rigidity is used in the determination of the elements of the exact 
element transfer matrix. This approach is reasonably suitable for especially industrial 
applications 

As a first stage of the present work, the critical buckling loads are obtained for a uniform beam 
without liners and compared with the literature. Perfect agreement is observed among the 
buckling loads. 

In the next stage, a rectangular sectioned beam is handled to observe the variation of the effect 
of the liner thickness on the buckling loads. The aluminum (Al) is used for a core material and 
the aluminum-oxide (Al2O3) for a liner (face) material. It is discovered that for even very thin 
liners, 𝜆 = 0.01, the buckling load increases rapidly by over 10%. For 𝜆 = 0.1, the beam can 
tolerate greater buckling loads of around 22% more than the buckling loads of the beam without 
liners.  

In the last stage, a generalized parametric study is conducted for various ratios of Young’s 
modulus of the core material to the face material from 2 to 10. It is observed that under all 
boundary conditions and for λ=0.01, the buckling loads increase by 3% if E2/E1 =2, by 27% if 
E2/E1 =10.  For λ=0.1, the improved buckling load reaches about 1.3 times the buckling load of 
the beam made from only the core material if E2/E1 2, and is around 3.5 times that load if E2/E1 
=10. 

It is chiefly concluded that the thickness of the liner strongly affects the buckling loads. 
However the ratio of the total thickness of the liners to the total width of the section is not 
feasible if it reaches over 50%.  

It is also revealed that the transfer matrix method leading to exact solutions may be used 
effectively in the analysis of elastic stability problems of such structures. The method offered 
here may also be applied to the multi-spanned beams, beam systems having different bending 
rigidities under classical/non-classical boundary conditions.  
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Notations 

α         Dimensionless buckling parameter 
β         Dimensionless buckling load 
θ         Rotation about y-axis 
A        Characteristic buckling coefficient matrix 
b          Base length of rectangular cross section of the beam       
D         Differential transfer matrix 
E          Elasticity modulus of the beam material 
IEeq    Equivalent bending stiffness      

F         Transfer matrix     
h          Width of rectangular section 
I           Area moment of inertia about 𝑦-axis 
I           Unit matrix 
L          Length of the beam 
M         Bending moment about y-axis 
N         Axial compressive load 

crN      Critical buckling load 
S          State vector 
t           Thickness of one of liners 
T          Shearing force 
w          Transverse displacement along z-axis 
x           Position coordinate along the beam axis 

 

References 

[1] Euler, L., Die altitudine colomnarum sub proprio pondere corruentium, Acta Acad 
Petropol, 1778.  

[2] Greenhill, A.G., Determination of the greatest height consistent with stability that a vertical 
pole on mast can be made and of the greatest height to which a tree of given proportions 
can grow in, Proceedings of the Cambridge Philosophical Society, IV, 1883.  

[3] Dinnik, A.N., Design of columns of varying cross-section, Transactions of the ASME, 51, 
1929.  

[4] Timoshenko S.P., Gere J.M., Theory of Elastic Stability, McGraw-Hill Companies, 2nd 
edition, New York; 1961.  

[5] İnan, M., The Method of Initial Values and the Carry-Over Matrix in Elastomechanics, 
ODTÜ Publication, No: 20; 1968. 

[6] Chen W.F., Lui E.M., Structural Stability, Theory and Implementation, Elsevier, New 
York; 1987. 

[7] Wang C.M., Wang C.Y., Reddy J.N., Exact Solutions for Buckling of Structural Members, 
CRC Press, Boca Raton, Fla, USA; 2005. 

[8] Yoo C.H., Lee S.C., Stability of Structures - Principles and Applications, Butterworth 
Heinemann, New York; 2011.  

[9] Smith, C.S., Application of folded plate analysis to bending, buckling and vibration of 
multilayer orthotropic sandwich beams and panels, Comput Struct, 22(3), 491–497, 1986. 

[10] Kardomateas, G.A., Three dimensional elasticity solution for the buckling of transversely 
isotropic rods: the Euler load revisited, ASME J Appl Mech, 62, 346–55, 1995. 



V. Yıldırım 

30 
 

[11] D’Ottavio, M., Polit, O., Ji, W., Waas, A.M., Benchmark solutions and assessment of 
variable kinematics models for global and local buckling of sandwich struts, Compos 
Struct, 156, 125–134,2016. 

[12] Pi, Y.L., Trahair, N.S., Rajasekaran, S., Energy equation for beam lateral buckling, Journal 
of Structural Engineering, ASCE, 118(6), 1462-1479, 1992. 

[13] Wang, C.M., Wang, L., Ang, K.K., Beam-buckling analysis via automated Rayleigh-Ritz 
method, Journal of Structural Engineering, ASCE, 120(1), 200-211, 1994. 

[14] Tong, G., Zhang, L.,  A general theory for the flexural-torsional buckling of thin-walled 
members I: Energy method, Advances in Structural Engineering, 6(4), 293-298, 2003. 

[15] Zdravković, N., Gašić, K.M., Savković, K.M., Energy method in efficient estimation of 
elastic buckling critical load of axially loaded three-segment stepped column, FME 
Transactions, 41(3), 222-229, 2013. 

[16] Kundu, B., Ganguli, R., Analysis of weak solution of Euler–Bernoulli beam with axial 
force, Applied Mathematics and Computation, 298, 247-260, 2017. 

[17] Barsoum, R.S., Gallagher, R.H., Finite element analysis of torsional and torsional-flexural 
stability problems, Int J Num Meth Engng, 2, 335-352, 1970. 

[18] Kabaila, A.P., Fraeijs de Veubeke, B., Stability analysis by finite elements, Air Force 
Flight Dynamics Laboratory, Tech. Report AFFDL-TR-70-35, 1970.  

[19] Thomas, J.M., A finite element approach to the structural instability of beam columns, 
frames and arches, NASA TN D-5782, 1970. 

[20] He, B., Zhang, H., Stability analysis of slope based on finite element method, I J 
Engineering and Manufacturing, MECS, 3, 70-74, 2012. 

[21] Li, J.J., Li, G.Q., Buckling analysis of tapered lattice columns using a generalized finite 
element, Commun Numer Meth Engng, 20(6), 479–488, 2004. 

[22] Trahair, N.S.,  Rasmussen, K.J.R., Finite-element analysis of the flexural buckling of 
columns with oblique restraints, J Struct Eng, 131(3), 481-487, 2005. 

[23] Saha, G., Banu, S., Buckling load of a beam-column for different end conditions using 
multi-segment integration technique, ARPN Journal of Engineering and Applied Sciences, 
2(1), 27-32, 2007. 

[24] Galambos, T.V., Structural Members and Frames. Prentice-Hall International Inc,, New 
York, N.Y., 1968. 

[25] López-Aenlle, M., Pelayo, F., Ismael, G., García Prieto, M.A.,  Fernández-Canteli, A., 
Buckling of laminated-glass beams using the effective-thickness concept, Composite 
Structures, 137, 44-55, 2016. 

[26] He, J.H., Variational iteration method: a kind of nonlinear analytical technique, Int J Nonlin 
Mech, 34, 699-708, 1999. 

[27] Coşkun, S.B., Atay, M.T., Determination of critical buckling load for elastic columns of 
constant and variable cross-sections using variational iteration method, Computers and 
Mathematics with Applications,  58, 2260–2266, 2009. 

[28] Coşkun, S.B., Öztürk, B., Advances in Computational Stability Analysis:  (Chapter 6) 
Elastic stability analysis of Euler columns using analytical approximate techniques, 115-
132. Edited by Safa Bozkurt Coşkun, InTech ISBN No: 978-953-51-0673-9. DOI: 
10.5772/45940, 2012. 

[29] He, J.H., The homotopy perturbation method for solving boundary problems, Phys Lett A,  
350, 87-88, 2006. 

[30] He, J.H., An elementary introduction to the homotopy perturbation method, Computers 
and Mathematics with Applications, 57, 410-412, 2009. 

[31] Coşkun, S.B., Determination of critical buckling load for Euler columns of variable flexural 
stiffness with a continuous elastic restraint using homotopy perturbation method, 
International Journal of Nonlinear Sciences and Numerical Simulation, 10, 187-193, 2009. 



V. Yıldırım 

31 
 

[32] Coşkun, S.B., Analysis of tilt-buckling of Euler columns with varying flexural stiffness 
using homotopy perturbation method, Mathematical Modelling and Analysis, 15(3), 275-
286, 2010. 

[33] Eryılmaz, A., Atay, M.T., Coşkun, S.B., Başbük, M., Buckling of Euler columns with a 
continuous elastic restraint via homotopy analysis method, Journal of Applied 
Mathematics,  Article ID 341063 (8 pages), 2013. 

[34] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, 
Boston, MA, 1994.  

[35] Yildirim, V., Numerical buckling analysis of cylindrical helical coil springs in a dynamic 
manner, International Journal of Engineering & Applied Sciences, 1, 20-32, 2009. 

[36] Yildirim, V., On the linearized disturbance dynamic equations for buckling and free 
vibration of cylindrical helical coil springs under combined compression and torsion, 
Meccanica,  47, 1015-1033, 2012. 

[37] Yildirim, V., Axial static load dependence free vibration analysis of helical springs based 
on the theory of spatially curved bars, Latin American Journal of Solids and Structures, 
13, 2552-2575, 2016. 

[38] Banerjee, J.R., Exact Bernoulli–Euler static stiffness matrix for a range of tapered beam-
columns, International Journal for Numerical Methods in Engineering, 23(9), 1615–1628, 
1986. 

[39] Kacar, İ., Yildirim, V., Free vibration/buckling analyses of noncylindrical initially 
compressed helical composite springs, Mechanics Based Design of Structures and 
Machines, 44, 340-353, 2016. 

[40] Tong, G., Zhang, L., A general theory for the flexural-torsional buckling of thin-walled 
members II: Fictitious load method, Advances in Structural Engineering, 6(4), 299-308, 
2003. 

[41] Rahai, A.R., Kazemi, S., Buckling analysis of non-prismatic columns based on modified 
vibration modes, Communications in Nonlinear Science and Numerical Simulation, 13(8), 
1721-1735, 2008. 

[42] Demir, C., Civalek, O., On the analysis of microbeams, International Journal of 
Engineering Science, 121, 14-33, 2017.  

[43] Jalaei, M., Civalek, O., On dynamic instability of magnetically embedded viscoelastic 
porous FG nanobeam. International Journal of Engineering Science, 143, 14-32, 2019.  

[44] Civalek, O., Dastjerdi, S., Akbaş, S.D., Akgöz, B., Vibration analysis of carbon nanotube-
reinforced composite microbeams, Mathematical Methods in the Applied Sciences, 
https://doi.org/10.1002/mma.7069, 2020.  

[45] Civalek, Ö., Avcar, M., Free vibration and buckling analyses of CNT reinforced laminated 
non-rectangular plates by discrete singular convolution method, Engineering with 
Computers, https://doi.org/10.1007/s00366-020-01168-8, 2020.  

[46] Zhang, J., Ullah, S., Gao, Y., Avcar, M., Civalek, O., Analysis of orthotropic plates by the 
two-dimensional generalized FIT method, Computers and Concrete, 26(5), 421-427, 2020. 

[47] Ding, Y., Hou, J., General buckling analysis of sandwich constructions, Comput 
Struct, 55(3), 485-493, 1995. 

[48] Chakrabartia, A., Chalaka, H.D., Iqbala, M.A., Sheikhb, A.H., Buckling analysis of 
laminated sandwich beam with soft core, Latin American Journal of Solids and Structures,   
9, 367–381, 2012. 

[49] Magnucka-Blandzi, E., Magnucki, K., Effective design of sandwich beam with a metal 
foam core, Thin-Walled Struct, 45, 432-438, 2007. 

[50] Jasion, P., Magnucki, K., Global buckling of sandwich column with metal foam core, J 
Sandw Struct Mater, 15(6), 718-732, 2013. 



V. Yıldırım 

32 
 

[51] Douville, M.A., Grognec, P.L., Exact analysis solutions for the local and global buckling 
of sandwich beam-columns under various loadings, Int J Solids Struct, 50, 2597-2609, 
2013. 

[52] Galuppi, L.G., Carfagni, R., Buckling of three-layered composite beams with viscoelastic 
interaction, Composite Structures, 107, 512-521, 2014. 

[53] Grygorowicz, M., Magnucki, K., Malinowski, M., Elastic buckling of a sandwich beam 
with variable mechanical properties of the core, Thin-Walled Structures, 87, 127-132. 
2015. 

[54] Sayyad, A.S., Ghugal, Y.M., Bending, buckling and free vibration of laminated composite 
and sandwich beams, A critical review of literature, Composite Structures, 171, 486-504, 
2017. 

 

Appendix: Analytical Verification of the Results 

Consider Eq. (16) at section  𝑥 = 𝐿 for a beam without liners.  

						𝑭 𝐿 =

1
𝑠𝑖𝑛 𝛼𝐿

𝛼
0 𝑐𝑜𝑠 𝛼𝐿

𝑐𝑜𝑠 𝛼𝐿 − 1
𝐸𝐼𝛼)

𝑠𝑖𝑛 𝛼𝐿 − 𝛼𝐿
𝐸𝐼𝛼L

−
𝑠𝑖𝑛 𝛼𝐿
𝐸𝐼𝛼

𝑐𝑜𝑠 𝛼𝐿 − 1
𝐸𝐼𝛼)

0 𝐸𝐼𝛼 𝑠𝑖𝑛 𝛼𝐿
0 0

𝑐𝑜𝑠 𝛼𝐿
𝑠𝑖𝑛 𝛼𝐿

𝛼
0 1

 

 

(A.1) 

The elements of the transfer matrix given above is used for the expansion of the determinants 
given by Eq. (22) as follows 

Beam with hinged ends 

The expansion of the determinant leads to 

𝐴 �n� =
𝑠𝑖𝑛) 𝛼𝐿

𝛼)
−
𝑠𝑖𝑛) 𝛼𝐿

𝛼)
+
sin 𝛼𝐿 𝐿

𝛼
 

(A.2) 

After simplification we are left with 

𝐴 ijklcmnijklcm = sin 𝛼𝐿 = 0	 (A.3) 

For 𝐿 ≠ 0 and 𝑛 = 0,1,2,3… solution is found as 

𝛼 =
𝑁
𝐸𝐼
	 =

𝜋𝑛
𝐿
	

(A.4) 

This gives 
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𝑁 =
𝜋)𝐸𝐼
𝐿)

	𝑛) 
(A.5) 

Where 𝑛 = 0 corresponds to the trivial solution. So, for a nontrivial solution, 𝑛 = 1 should be 
taken to determine the critical buckling load of the beam with hinged ends. 

𝑁ou ijklcmnijklcm =
𝜋)𝐸𝐼
𝐿)  

(A.6) 

Beam with clamped-free ends 

The following is used for the characteristic equation of the beam. 

𝐴 opqrscmntucc =
𝑐𝑜𝑠	(𝛼𝐿) �jk	(�h)

�
0 1

=𝑐𝑜𝑠	(𝛼𝐿) = 0 
(A.7) 

For 𝐿 ≠ 0 and 𝑛 = 0,1,2,3… solution is 

𝛼 =
𝑁
𝐸𝐼
= (2𝑛 + 1)

𝜋
2𝐿
			(𝑛 = 0,1,2, … ) 

(A.8) 

From this we get 

𝑁 =
𝜋)𝐸𝐼
4𝐿) 	(2𝑛 + 1)

) 
(A.9) 

The critical buckling load occurs when 𝑛 = 0.	 

𝑁ou opqrscmntucc =
𝜋)𝐸𝐼
4𝐿)  

(A.10) 

Beam with clamped-hinged ends 

The expansion of the characteristic determinant gives 

𝐴 opqrscmnijklcm = −
𝑠𝑖𝑛 𝛼𝐿 − 𝛼𝐿𝑐𝑜𝑠 𝛼𝐿

𝐸𝐼𝛼L
= 0 

(A.11) 

Simplification leads to 

𝑡𝑎𝑛 𝛼𝐿 = 𝛼𝐿 (A.12) 

There is no symbolic solution to this trascendental equation. It is satisfied to the four digits after 
period if the smallest root is taken as  𝛼𝐿 ≅ 4.4934. 

𝑡𝑎𝑛 4.49341001 = 4.4934211571 (A.13) 

Therefore 
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𝛼𝐿 =
𝑁
𝐸𝐼
𝐿 ≅ 4.4934 

(A.14) 

or 

𝑁ou opqrscmnijklcm =
20.19064356	𝐸𝐼

𝐿)
= 2.046	

𝜋)𝐸𝐼
𝐿)

	 
(A.15) 

is obtained. 

Beam with clamped ends 

For C-C ends we have 

𝐴 �n� = 2 − 𝐿𝑠𝑖𝑛 𝐿𝛼 − 2𝑐𝑜𝑠	(𝐿𝛼) = 0 (A.16) 

or 

𝐴 �n� = 4𝑠𝑖𝑛)
𝐿𝛼
2

− 𝛼𝐿 𝑠𝑖𝑛 𝐿𝛼 = 0 (A.17) 

By using the following trigonometric identity 

𝑠𝑖𝑛 𝐿𝛼 = 2	𝑠𝑖𝑛
𝐿𝛼
2

𝑐𝑜𝑠
𝐿𝛼
2

 (A.18) 

The expansion of the determinant reduces to 

𝐴 �n� = 𝑠𝑖𝑛
𝐿𝛼
2

4𝑠𝑖𝑛
𝐿𝛼
2

− 2𝛼𝐿𝑐𝑜𝑠
𝐿𝛼
2

= 0 (A.19) 

From this we get the solution as follows 

𝑠𝑖𝑛
𝐿𝛼
2

= 0 (A.20) 

or  

𝐿𝛼
2
=
𝐿
2

	
𝑁
𝐸𝐼
= 𝑛𝜋					 𝑛 = 1,2, … 			 

(A.21) 

If the axial load is isolated from the above   

𝑁 =
4𝜋)𝐸𝐼
𝐿) 	𝑛)							 𝑛 = 1,2, …  

(A.22) 

The corresponding critical load is obtained for  𝑛 = 1 as in the following.  
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𝑁ou �n� =
4𝜋)𝐸𝐼
𝐿)

	 
(A.23) 

It is revealed that this critical load is exactly quadruple of the pinned-pinned Euler column. 
Thus fixing two ends has increased the critical load to a large extent. 


