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Abstract

If there exists a quaternionic Bertrand curve in E4, then its torsion or bitorsion vanishes. So we can say that there is no quaternionic Bertrand
curves whose torsion and bitorsion are non-zero. Hence by using the method which is given by Matsuda and Yorozu [13], we give the
definition of quaternionic (1,3)−Bertrand curve according to Type 2-Quaternionic Frame and obtain some results about these curves.
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1. Introduction

Bertrand curve was introduced by Bertrand in 1850 (see [1]). When a curve is given, if there exists a second curve whose the principal
normal is the principal normal of that curve, then the first curve is called Bertrand curve and the second curve is called the Bertrand mate of
the first curve. The most important properties of Bertrand curves in Euclidean 3-space are that the distance between corresponding points
is constant and there is a linear relation between the curvature functions of the first curve, that is, for λ ,µ ∈ R, λκ +µτ = 1, where κ is
curvature and τ is the torsion of the first curve. Also the absolute value of the real number λ in this linear relation is equal to the distance
between corresponding points of Bertrand curves. The Bertrand curves in Euclidean 3-space was extended by L. R. Pears to Riemannian
n−space and gave general results for Bertrand curves [16]. If these general results were applied to Euclidean n−space, then either torsion
or bitorsion of the curve vanishes. Otherwise, for n≥ 4, then no special Frenet curve in En is a Bertrand curve [13]. Hence, Matsuda and
Yorozu gave a new definition of Bertrand curve which is called (1,3)−Bertrand curve and obtain a characterization of (1,3)−Bertrand curve.
[13]. After then many researchers have made a lot of papers about (1,3)−Bertrand curves [4], [6], [9], [18], [19], [20].
In 1987, Bharathi and Nagaraj introduced the Serret-Frenet formulas for spatial quaternionic curves in R3 and quaternionic curves in R4 [2].
Since the quaternionic multiplication of two orthogonal vectors in R3 becomes vector product of these vectors, they reconsider the Serret-
Frenet formulae of any curve in R3 which is well known in differential geometry by using the quaternionic multiplication and then they
compose the Serret- Frenet formulae of quaternionic curves in R4 by means of the the Serret-Frenet formulas of spatial quaternionic curves
in R3 [2]. After then various studies have been carried out on the adaptation of some special curves to quaternionic curves [3], [5], [7], [8],
[11], [14], [15], [17], [21], [22], [23]. Keçilioğlu and İlarslan defined (1,3)−Bertrand curves for quaternionic curves in Euclidean 4-space
and obtained a characterization for such curves [12].
Also, Kahraman Aksoyak defined a new type of quaternionic frame for quaternionic curves in Euclidean 4- space which is called Type
2-Quaternionic Frame [10].
In this paper, by using the method which is given by Matsuda and Yorozu [13], we give the definition of quaternionic (1,3)−Bertrand curve
according to Type 2-Quaternionic Frame and obtain some results about these curves.

2. Preliminaries

A real quaternion is defined as:

q = q0 +q1e1 +q2e2 +q3e3

where qt ∈ R for 0≤ t ≤ 3 and e1, e2, e3 are unit vectors in usual three dimensional real vector space. Any quaternion q can be divided into
two parts such that the scalar part denoted by Sq and the vectorial part denoted by Vq, where Sq = q0 and Vq = q1e1 +q2e2 +q3e3. So, we
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can rewrite any real quaternion as q = Sq +Vq. If q = Sq +Vq and q′ = Sq′ +Vq′ are any two quaternions, addition, the multiplication by a
real scalar c and the conjugate of q denoted by γq are defined as, respectively:

q+q′ =
(
Sq +Sq′

)
+
(
Vq +Vq′

)
cq = cSq + cVq

γq = Sq−Vq

Let denote the set of quaternions by Q. Q is a real vector space according to this addition and scalar multiplication. A basis of this vector
space is {1, e1, e2, e3} and it is a four dimensional vector space. Hence we can think of any quaternion q as an element (q0,q1,q2,q3) of
R4. Even a quaternion whose the scalar part is zero (it is called spatial quaternion) can be considered as a ordered triple (q1,q2,q3) of R3.
The product of two quaternions is defined by means of the multiplication rule between the units e1, e2, e3 are given by:

e2
1 = e2

2 = e2
3 = e1e2e3 =−1 (2.1)

So, by using (2.1), quaternionic multiplication is obtained as:

q×q′ = SqSq′ −〈Vq,Vq′〉+SqVq′ +Sq′Vq +Vq∧Vq′ for every q, q′ ∈ Q,

where 〈,〉 and ∧ denote the inner product and cross products in R3, respectively. The quaternion multiplication is associative and distributed
but non-commutative. So Q is a real algebra and it is called quaternion algebra.
Now, the symetric, non-degenerate, bilinear form h on Q is defined as :

h : Q×Q→ R,

h(q,q′) =
1
2
(q× γq′+q′× γq) for q, q′ ∈ Q

and the norm of any real quaternion q is determined as:

‖q‖2 = h(q,q) = q× γq = S2
q +
〈
Vq,Vq

〉
.

So the mapping h is called the quaternion (or Euclidean) inner product [2].
In this paper, a quaternionic curve in R4 is denoted by α(4) and the spatial quaternionic curve in R3 associated with α(4) in R4 is denoted by
α . Bharathi and Nagaraj introduced the Serret-Frenet formulas for spatial quaternionic curves in R3 and quaternionic curves in R4 follow as:

Theorem 2.1. (see [2])Let I = [0,1] denote the unit interval in the real line R and S be the set of spatial quaternionic curve

α : I ⊂ R−→ S,

s−→ α(s) = α1(s)e1 +α2(s)e2 +α3(s)e3

be an arc-lenghted curve. Then the Frenet equations of α are as: t ′

n′

b′

=

 0 k 0
−k 0 r
0 −r 0

 t
n
b


where t = α

′
is unit tangent, n is unit principal normal, b = t×n is binormal, where × denotes the quaternion product. k = ‖t ′‖ is the

principal curvature and r is the torsion of the curve γ. Morever these Frenet vectors hold the following equations:

h(t, t) = h(n,n) = h(b,b) = 1,

h(t,n) = h(t,b) = h(n,b) = 0.

Theorem 2.2. (see [2]) Let I = [0,1] denote the unit interval in the real line R and

α
(4) : I ⊂ R−→ Q,

s−→ α
(4)(s) = α

(4)
0 (s)+α

(4)
1 (s)e1 +α

(4)
2 (s)e2 +α

(4)
3 (s)e3

be an arc-length curve in R4. Then Frenet equations of α(4) are given by
T
′

N
′

1
N′2
N′3

=


0 K 0 0
−K 0 k 0
0 −k 0 (K− r)
0 0 −(K− r) 0




T
N1
N2
N3


where T = dα(4)

ds , N1, N2, N3 are the Frenet vectors of the curve α(4) and K =
∥∥∥T

′
∥∥∥ is the principal curvature, k is the torsion and (K− r) is

the bitorsion of the curve α(4). There exists following relation between the Frenet vectors of α(4) and the Frenet vectors of α

N1 (s) = t(s)×T (s), N2 (s) = n(s)×T (s), N3 (s) = b(s)×T (s)

and these Frenet vectors satisfy the following equations:

h(T,T ) = h(N1,N1) = h(N2,N2) = h(N3,N3) = 1,

h(T,N1) = h(T,N2) = h(T,N3) = h(N1,N2) = h(N1,N3) = h(N2,N3) = 0.
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Type 2-Quaternionic Frame for a quaternionic curve in R4 is defined as:

Theorem 2.3. (see [10] )Let I = [0,1] denote the unit interval in the real line R and

α
(4) : I ⊂ R−→ Q,

s−→ α
(4)(s) = α

(4)
0 (s)+α

(4)
1 (s)e1 +α

(4)
2 (s)e2 +α

(4)
3 (s)e3

be an arc-length curve in R4. Then Frenet equations of α(4) are given by
T
′

N
′

1
N′2
N′3

=


0 K 0 0
−K 0 −r 0
0 r 0 (K− k)
0 0 −(K− k) 0




T
N1
N2
N3

 (2.2)

where T = dα(4)

ds , N1, N2, N3 are the Frenet vectors of the curve α(4) and K =
∥∥∥T

′
∥∥∥ is the principal curvature, −r is the torsion and (K− k)

is the bitorsion of the curve α(4). There exists following relation between the Frenet vectors of α(4) and the Frenet vectors of α

N1 (s) = b(s)×T (s), N2 (s) = n(s)×T (s), N3 (s) = t(s)×T (s)

and these Frenet vectors satisfy the following equations:

h(T,T ) = h(N1,N1) = h(N2,N2) = h(N3,N3) = 1,

h(T,N1) = h(T,N2) = h(T,N3) = h(N1,N2) = h(N1,N3) = h(N2,N3) = 0.

3. Characterizations of the Quaternionic (1,3)-Bertrand Curve in Euclidean Space R4

If there exists a quaternionic Bertrand curve in R4, then the torsion−r or bitorsion K−k vanishes. So we can say that there is no quaternionic
Bertrand curves whose torsion and bitorsion are non-zero. Hence by using the method which is given by Matsuda and Yorozu [13], we give
the definition of quaternionic (1,3)−Bertrand curve according to Type 2-Quaternionic Frame and then obtain a characterization for such
curves.

Definition 3.1. Let α(4) : I ⊂ R→ R4 and β (4) : Ī ⊂ R→ R4 be a quaternionic curves. There exists a regular C∞−function ϕ : I→ I,s→
ϕ(s) = s̄ such that it corresponds each point α(4)(s) of α(4) to the point β (4)(s) of β (4), for all s ∈ I. If (1,3)−normal plane spanned by the
normal vectors N1 (s) and N3 (s) at the each point α(4)(s) of α(4) coincides with (1,3)−normal plane spanned by the normal vectors N̄1 (s̄)
and N̄3 (s̄) at the corresponding point β (4)(s̄) = β (4)(ϕ(s)) of β (4)then we called α(4) is a quaternionic (1,3)−Bertrand curve in E4 and
β (4) is called a quaternionic (1,3)−Bertrand mate of α(4).

Theorem 3.2. Let α(4) : I ⊂R→R4 be a quaternionic curve whose the curvatures functions K, −r, K−k and α : I ⊂R→R3 be a spatial
quaternionic curve associated with quaternionic curve α(4) in R4 with the curvatures k and r. Then α(4) is a quaternionic (1,3)−Bertrand
curve if and only if there exists constant real numbers a 6= 0, b 6= 0, c, d satifying

ar(s)+b(K− k)(s) 6= 0, (3.1)

aK(s)− c [ar(s)+b(K− k)(s)] = 1, (3.2)

cK(s)+ r(s) = d (K− k)(s) (3.3)

(
1− c2

)
K(s)r(s)+ c

(
K2 (s)− r2(s)− (K− k)2 (s)

)
6= 0, (3.4)

for all s ∈ I.

Proof. We suppose that α(4) is a quaternionic (1,3) Bertrand curve given by arc-lenght parameter s and β (4) is a quaternionic (1,3)-Bertrand
mate of α(4) with arc-lenght parameter s̄. Then we have

β
(4) (s̄) = β

(4) (ϕ (s)) = α
(4)(s)+a(s)N1(s)+b(s)N3(s) (3.5)

for all s ∈ I, where a, b : I→ R are differentiable functions. Taking the derivative of (3.5) with respect to s and using (2.2), we have

T̄ (s̄)ϕ p (s) = [1−a(s)K(s)]T (s)+ap(s)N1(s)
− [a(s)r(s)+b(s)(K− k)(s)]N2(s)+bp(s)N3(s)

(3.6)

for all s ∈ I.
Since Sp{N1(s),N3(s)}= Sp{N̄1(s̄), N̄3(s̄)} , we can write

N̄1(s̄) = cosθ(s)N1(s)+ sinθ(s)N3(s), (3.7)

N̄3(s̄) =−sinθ(s)N1(s)+ cosθ(s)N3(s). (3.8)
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We notice that sinθ(s) 6= 0. Otherwise, N̄1(s̄) =±N1(s). By using (3.6) and (3.7), we get

h(T̄ (s̄)ϕ
p (s) , N̄1(s̄)) = cosθ(s)ap(s)+ sinθ(s)bp(s) = 0. (3.9)

By using (3.6) and (3.8), we get

h(T̄ (s̄)ϕ
p (s) , N̄3(s̄)) =−sinθ(s)ap(s)+ cosθ(s)bp(s) = 0. (3.10)

From (3.9) and (3.10), since
∣∣∣∣ cosθ(s) sinθ(s)
−sinθ(s) cosθ(s)

∣∣∣∣= 1, we find

ap(s) = 0, bp(s) = 0.

From above equalites, we obtain that a and b are real constants.
So, we can rewrite β (4) given by (3.5) as:

β
(4) (s̄) = α

(4)(s)+aN1(s)+bN3(s) (3.11)

and the unit tangent vector of β (4) is following:

T̄ (s̄)ϕ
p (s) = (1−aK(s))T (s)− (ar(s)+b(K− k)(s))N2(s), (3.12)

where (
ϕ
p (s)
)2

= (1−aK(s))2 +(ar(s)+b(K− k)(s))2 6= 0 (3.13)

for all s ∈ I, if we denote by

cosτ (s) =
(

1−aK(s)
ϕ p (s)

)
, sinτ (s) =−

(
ar(s)+b(K− k)(s)

ϕ p (s)

)
, (3.14)

where τ is differentiable function on I, so we can rewrite (3.12) as:

T̄ (s̄) = cosτ (s)T (s)+ sinτ (s)N2(s) (3.15)

If we calculate the derivative of (3.15) with respect to s and use (2.2), we obtain

K̄(s̄)N̄1 (s̄)ϕ p (s) = (cosτ (s))p T (s)+ [cosτ (s)K(s)+ sinτ (s)r(s)]N1(s)
+(sinτ (s))p N2(s)+ sinτ (s)(K− k)(s)N3(s)

From (3.7), we know that N̄1 (s̄) ∈ Sp{N1(s),N3(s)} . So, from the above equation

(cosτ (s))p = 0, (sinτ (s))p = 0,

and it means that τ = τ0 is a real constant. Then we can rewrite (3.15) as:

T̄ (s̄) = cosτ0 (s)T (s)+ sinτ0 (s)N2(s) (3.16)

and from (3.14), we get

cosτ0ϕ
p (s) = 1−aK(s) (3.17)

and

sinτ0ϕ
p (s) =−(ar(s)+b(K− k)(s)) (3.18)

From (3.17) and (3.18)

(1−aK(s))sinτ0 =−(ar(s)+b(K− k)(s))cosτ0 (3.19)

If sinτ0 vanishes, then cosτ0 = ±1. And from (3.16), we get T̄ (s̄) = ±T (s). If we differentiate this equality and use (2.2), we have
N̄1(s̄) =±1N1(s). It is a contradiction. So sinτ0 6= 0, that is, from (3.18) implies that

ar(s)+b(K− k)(s) 6= 0.

Hence we obtain the relation (3.1).
If we denote the constant c by c = cosτ0

sinτ0
, from (3.19),

aK(s)− c(ar(s)+b(K− k)(s)) = 1

for all s ∈ I. Thus we find the relation (3.2). Differentiating (3.16) with respect to s and using the equations of Type 2- Quaternionic Frame
given by (2.2), we have

K̄(s̄)N̄1 (s̄)ϕ
p (s) = (cosτ0K(s)+ sinτ0r(s))N1(s)+ sinτ0(K− k)(s)N3(s). (3.20)
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By using (3.20) we have

(
K̄(s̄)ϕ p (s)

)2
= (sinτ0)

2

[(
cosτ0

sinτ0
K(s)+ r(s)

)2
+((K− k)(s))2

]
.

By using (3.17) and (3.18) in above equality,(
K̄(s̄)ϕ p (s)

)2
= (ar(s)+b(K− k)(s))2

[
(cK(s)+ r(s))2 +((K− k)(s))2

](
ϕ
p (s)
)−2

. (3.21)

On the other hand, from (3.2) and (3.13), we obtain(
ϕ
p (s)
)2

=
(

1+ c2
)
(ar(s)+b(K− k)(s))2 (3.22)

Then if we consider with (3.21) and (3.22), we get(
K̄(s̄)ϕ p (s)

)2
=

1
1+ c2

[
(cK(s)+ r(s))2 +((K− k)(s))2

]
(3.23)

By using (3.17), (3.18) and the ralation (3.2), we rewrite (3.20) as:

N̄1 (s̄) = cosη(s)N1(s)+ sinη(s)N3(s), (3.24)

where

cosη(s) =
−(ar(s)+b(K− k)(s))(cK(s)+ r(s))

K̄(s̄)(ϕ p (s))2 , (3.25)

and

sinη(s) =
−(ar(s)+b(K− k)(s))(K− k)(s)

K̄(s̄)(ϕ p (s))2 (3.26)

for s ∈ I. Here, η is differentiable function on I.
Taking the derivative of (3.24) and using the equations of Type 2- Quaternionic Frame given by (2.2), we have

(−K̄(s̄)T̄ (s̄)− r̄ (s̄) N̄2 (s̄))ϕ
p (s) = −cosη(s)K(s)T (s)+(cosη(s))

p
N1(s) (3.27)

+(−cosη(s)r(s)− sinη(s)(K− k)(s))N2(s)

+(sinη(s))p N3(s)

From (3.27), it satisfies

(cosη(s))p = 0 and (sinη(s))p = 0,

that is, η = η0 is a constant function on I. Let d = cosη0
sinη0

be a constant then from (3.25) and (3.26), we find following relation:

cK(s)+ r(s) = d(K− k)(s).

Thus we obtain the relation (3.3).
Since η = η0 is a constant function, we rewrite (3.27)

(−K̄(s̄)T̄ (s̄)− r̄ (s̄) N̄2 (s̄))ϕ
p (s) = −cosη0K(s)T (s)+

+(−cosη0r(s)− sinη0(K− k)(s))N2(s)

By considering above equation with (3.12), we get

−r̄ (s̄) N̄2 (s̄)ϕ
p (s) =

(
K̄(s̄)ϕ p (s)

(1−aK(s))
ϕ p (s)

− cosη0K(s)
)

T (s)

+

(
−K̄(s̄)ϕ p (s) (ar(s)+b(K−k)(s))

ϕ p(s)
−cosη0r(s)− sinη0(K− k)(s)

)
N2(s)

=
1

K̄(s̄)(ϕ p (s))2 {A(s)T (s)+B(s)N2(s)} ,

where

A(s) =
(
K̄(s̄)ϕ p (s)

)2
(1−aK(s))+(ar(s)+b(K− k)(s))(cK(s)+ r(s))K(s),

B(s) = −
(
K̄(s̄)ϕ p (s)

)2
(ar(s)+b(K− k)(s))+(ar(s)+b(K− k)(s))(cK(s)+ r(s))r(s)

+(ar(s)+b(K− k)(s))((K− k)(s))2

By using (3.23) and the ralation (3.2), we can rewrite A(s) and B(s) as:

A(s) =
(

1+ c2
)−1

(ar(s)+b(K− k)(s))
{(

1− c2
)

K (s)r(s)+ c
(

K2 (s)− r2(s)− (K− k)2 (s)
)}
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and

B(s) =−c
(

1+ c2
)−1

(ar(s)+b(K− k)(s))
{(

1− c2
)

K (s)r(s)+ c
(

K2 (s)− r2(s)− (K− k)2 (s)
)}

Since r̄ (s̄) N̄2 (s̄)ϕ p (s) 6= 0 for ∀s ∈ I , we have(
1− c2

)
K (s)r(s)+ c

(
K2 (s)− r2(s)− (K− k)2 (s)

)
6= 0

for all s ∈ I. Thus we obtain the relation (3.4).
Conversely, let α(4) : I ⊂ R→ E4 be a quaternionic curve with curvatures K, −r, (K− k) 6= 0 satisfying the equations (3.1), (3.2), (3.3),
(3.4) for constant numbers a, b,c, d and β (4) be a quaternionic curve such that

β
(4)(s) = α

(4) (s)+aN1(s)+bN3(s)

for all s ∈ I. Differentiating above equality with respect to s and using the equations of Type 2- Quaternionic Frame given by (2.2), we have

dβ (4) (s)
ds

= (1−aK(s))T (s)− (ar(s)+b(K− k)(s))N2(s),

thus, by using the relation (3.2), we obtain

dβ (4) (s)
ds

=−(ar(s)+b(K− k)(s))(cT (s)+N2(s))

for all s ∈ I. From the relation (3.1), since ar(s)+b(K−k)(s) 6= 0, the curve β (4) is a regular curve. Then there exists a regular C∞−function
ϕ : I→ Ī defined by

s̄ = ϕ (s) =
∫ ∥∥∥∥∥dβ (4) (s)

ds

∥∥∥∥∥ds

where s̄ denotes the arc-length parameter of β (4). Then

ϕ
p (s) = ε

√
1+ c2 (ar(s)+b(K− k)(s)) (3.28)

where if ar(s)+b(K− k)(s)> 0 then ε = 1, if ar(s)+b(K− k)(s)< 0 then ε =−1 for all s ∈ I. Hence we can express β (4) again as:

β
(4) (s̄) = β

(4) (ϕ (s)) = α
(4)(s)+aN1(s)+bN3(s)

Differentiating the above equality with respect to s, we have

ϕ
p (s)

dβ (4) (s̄)
ds̄

=−(ar(s)+b(K− k)(s))(cT (s)+N2(s)) (3.29)

Considering (3.28) and (3.29) with together, we can write

T̄ (s̄) =
1

ε̄
√

1+ c2
(cT (s)+N2(s)) , (3.30)

where ε̄ =−ε. Differentiating (3.30) with respect to s and using the equations of Type 2-Quaternionic Frame, we get

ϕ
p (s)

dT̄ (s̄)
ds̄

=
1

ε̄
√

1+ c2
((cK(s)+ r(s))N1 (s)+(K− k)(s)N3 (s))

Then we can calculate curvature of β (4) as:

K̄(s̄) =
∥∥∥∥dT̄ (s̄)

ds̄

∥∥∥∥=
√

(cK(s)+ r(s))2 +((K− k)(s))2

ϕ p(s)
√

1+ c2
. (3.31)

for all s ∈ I. From using the equations of Type 2-Quaternionic Frame given by (2.2), we can determine the unit normal vector N̄1 along β (4)

N̄1(s̄) =
1

K̄(s̄)
dT̄ (s̄)

ds̄

=
((cK(s)+ r(s))N1 (s)+(K− k)(s)N3 (s))

ε̄

√
(cK(s)+ r(s))2 +((K− k)(s))2

for all s ∈ I. Thus we can put

N̄1(s̄) = cosγ(s)N1 (s)+ sinγ(s)N3 (s) , (3.32)

where

cosγ(s) =
cK(s)+ r(s)

ε̄

√
(cK(s)+ r(s))2 +((K− k)(s))2

(3.33)
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and

sinγ(s) =
(K− k)(s)

ε̄

√
(cK(s)+ r(s))2 +((K− k)(s))2

, (3.34)

So differentiating (3.32) with respect to s and using (2.2), we have

N̄1(s̄)
ds̄

ϕ
p (s) = −K(s)cosγ(s)T (s)+(cosγ(s))p N1 (s)

+(−r (s)cosγ(s)− (K− k)(s)sinγ(s))N2 (s)+(sinγ(s))p N3 (s)

On the other hand, from the relation (3.3), we get

cK(s)+ r(s)
(K− k)(s)

= d

Calculating the derivative of the last equation with respect to s, we find the following equality:(
cK

p
(s)+ r

p
(s)
)
(K− k)(s)− (cK(s)+ r(s))(K− k)p (s) = 0 (3.35)

Taking the derivatives of (3.33) and (3.34) and using (3.35), we obtain

(cosγ(s))p = 0 and (sinγ(s))p = 0,

that is, γ is a real constant with value γ0. Thus we have

cosγ0 =
cK(s)+ r(s)

ε̄

√
(cK(s)+ r(s))2 +(K− k)2 (s)

(3.36)

and

sinγ0 =
(K− k)(s)

ε̄

√
(cK(s)+ r(s))2 +(K− k)2 (s)

(3.37)

Hence we can rewrite (3.32) as:

N̄1(s̄) = cosγ0N1 (s)+ sinγ0N3 (s) (3.38)

Differentiating (3.38) with respect to s and using the equations of Type 2- Quaternionic Frame given by (2.2), (3.36), (3.37), we have

dN̄1(s̄)
ds̄

= − (cK(s)+ r(s))K(s)

ε̄ϕ p (s)
√

(cK(s)+ r(s))2 +((K− k)(s))2
T (s)

− (cK(s)+ r(s))r(s)+((K− k)(s))2

ε̄ϕ p (s)
√

(cK(s)+ r(s))2 +((K− k)(s))2
N2(s)

By using (3.30) and (3.31), we have

K̄(s̄)T̄ (s̄) =
(cK(s)+ r(s))2 +((K− k)(s))2

ε̄ϕ p (s)
(
1+ c2

)√
(cK(s)+ r(s))2 +((K− k)(s))2

(cT (s)+N2(s))

By using the above equalities, we have

dN̄1(s̄)
ds̄

+ K̄(s̄)T̄ (s̄) =
P(s)
R(s)

T (s)+
Q(s)
R(s)

N2(s),

where we can easily show

P(s) = −
[(

1− c2
)

K(s)r(s)+ c
{

K2(s)− r2(s)− (K− k)2 (s)
}]

Q(s) = c
[(

1− c2
)

K(s)r(s)+ c
{

K2(s)− r2(s)− (K− k)2 (s)
}]

R(s) = ε̄ϕ
p (s)

(
1+ c2

)√
(cK(s)+ r(s))2 +((K− k)(s))2 6= 0.

Since dN̄1(s̄)
ds̄ + K̄(s̄)T̄ (s̄) =−r̄ (s̄) N̄2(s̄), we obtain the torsion of β (4)

−r̄ (s̄) =

∥∥∥∥dN̄1(s̄)
ds̄

+ K̄(s̄)T̄ (s̄)
∥∥∥∥ (3.39)

=
1

R(s)

√
P2(s)+Q2(s)

=

∣∣∣(1− c2)K(s)r(s)+ c
{

K2(s)− r2(s)− (K− k)2 (s)
}∣∣∣

ϕ p (s) ε̄
√

1+ c2
√

(cK(s)+ r(s))2 +((K− k)(s))2
.
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Now we can define unit vector field N̄2(s̄) along β (4),

N̄2(s̄) =−
1

r̄ (s̄)

(
dN̄1(s̄)

ds̄
+ K̄(s̄)T̄ (s̄)

)
,

that is,

N̄2(s̄) =
1

ε̄
√

1+ c2
(−T (s)+ cN2(s)) (3.40)

Also, we can define the unit vector field N̄3(s̄) along β (4) as:

N̄3(s̄) = −sinγ0N1 (s)+ cosγ0N3 (s)

=
1

ε̄

√
(cK(s)+ r(s))2 +((K− k)(s))2

(
−(K− k)(s)N1 (s)

+(cK(s)+ r(s))N3 (s)

)
(3.41)

Finally we define the bitorsion of β (4)

(
K̄− k̄

)
(s̄) =

〈
dN̄2(s̄)

ds̄
, N̄3(s̄)

〉
=

(K− k)(s)K(s)
√

1+ c2

ϕ p (s)
√

(cK(s)+ r(s))2 +((K− k)(s))2
(3.42)

for all s ∈ I. Using the Frenet vectors T̄ , N̄1, N̄2, N̄3 we can easily see that

h(T̄ , T̄ ) = h(N̄1, N̄1) = h(N̄2, N̄2) = h(N̄3, N̄3) = 1,

and

h(T̄ , N̄1) = h(T̄ , N̄2) = h(T̄ , N̄3) = h(N̄1, N̄2) = h(N̄1, N̄3) = h(N̄2, N̄3) = 0,

for all s ∈ I where {T̄ (s̄), N̄1(s̄), N̄2(s̄), N̄3(s̄)} is Frenet frame along quaternionic curve β 4 in E4. And it is fact that (1,3) normal plane
Sp{N1,N3} of α(4) coincides (1,3) normal plane Sp{N̄1, N̄3} of β (4). Consequently, α(4) is a quaternionic (1,3) Bertrand curve in E4 and
β (4) is quaternionic (1,3) Bertrand mate of it. This completes the proof.

Theorem 3.3. Let α(4) : I ⊂ R→ E4 be a quaternionic (1,3) Bertrand curve and β (4) be a quaternionic (1,3) Bertrand mate of α(4) and
ϕ : I→ Ī, s̄ = ϕ(s) is a regular C∞−function such that s and s̄ are arc-length parameter of α(4) and β (4), respectively. Then the distance
between the points α(4)(s) and β (4)(s̄) is constant for all s ∈ I.

Proof. Let α(4) : I ⊂ R→ E4 be quaternionic (1,3)-Bertrand curve in E4 and β (4) : Ī ⊂ R→ E4 be a quaternionic (1,3)-Bertrand mate of
α(4). Then we can write,

β
(4) (s̄) = α

(4)(s)+aN1(s)+bN3(s)

where a and b are non-zero constants. Thus, we can write

β
(4) (s̄)−α

(4)(s) = aN1(s)+bN3(s)

and ∥∥∥β
(4) (s̄)−α

(4)(s)
∥∥∥=√a2 +b2.

Theorem 3.4. Let α(4) : I ⊂ R→ E4 be a quaternionic (1,3)-Bertrand curve such that α : I ⊂ R→ E3 is a spatial quaternionic curve
associated with α(4). If β (4) is a quaternionic (1,3)-Bertrand mate of α(4) then the curvature functions of β (4) are determined in terms of
the principal curvature K of the curve α(4) and the principal curvature k of the curve α as follows:

K̄(s̄) =
c
√

1+d2 (K− k)(s)
ε̄δ
(
1+ c2

)
(1−aK(s))

,

−r̄(s̄) =
c
∣∣(c(1+d2)(K− k)(s)−

(
1+ c2)dK(s)

)∣∣
ε̄
(
1+ c2

)√
1+d2 (1−aK(s))

,

K̄(s̄)− k̄(s̄) =
cK (s)

ε̄δ
√

1+d2 (1−aK(s))
,

where δ is the signature of the curvature K− k, that is, δ (K− k)> 0.
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Proof. We suppose that α(4) : I ⊂ R→ E4 is a quaternionic curve whose the curvatures functions K, −r, K− k and α : I ⊂ R→ E3 be a
spatial quaternionic curve associated with quaternionic curve α(4) in E4 with the curvatures k and r. In that case for constant real numbers
a 6= 0, b 6= 0, c, d hold the relations (3.1), (3.2), (3.3), (3.4). If β (4) is a quaternionic (1,3)-Bertrand mate of α(4) then the curvature functions
of β (4) are defined by the equations (3.31), (3.39) and (3.42) in Theorem 3.2. If we consider (3.31), (3.39) and (3.42) with the relations (3.1),
(3.2), (3.3), (3.4), we obtain these curvature functions in terms of the principal curvature K of the curve α(4) and the principal curvature k of
the curve α .

Remark 3.5. We note that if α(4) is a quaternionic (1,3)-Bertrand curve and β (4) is a quaternionic (1,3)-Bertrand mate of α(4) then the
curvature functions of β (4) is independent of the torsion −r of α(4).

Theorem 3.6. Let α(4) : I ⊂ R→ E4 be a quaternionic (1,3)-Bertrand curve and β (4) be a quaternionic (1,3)-Bertrand mate of α(4).
Then the curvature functions of the curve β which is a spatial quaternionic curve associated with β (4) are defined by

k̄(s̄) =
c
[(

1+d2)(K− k)(s)−
(
1+ c2)K(s)

]
ε̄δ
(
1+ c2

)√
1+d2 (1−aK(s))

,

r̄(s̄) = −
c
∣∣(c(1+d2)(K− k)(s)−

(
1+ c2)dK(s)

)∣∣
ε̄
(
1+ c2

)√
1+d2 (1−aK(s))

.

Proof. It is obvious from Theorem (3.4).

Example 3.7. We will examine a special case of the example which is given by Matsuda and Yorozu in [13] for quaternionic (1,3)-Bertrand
curve according to Type 2-Quaternionic Frame and we will see that the Theorem (3.2) is provided with this example.
Let consider a quaternionic curve α(4) (s) in R4 defined by

α
(4)(s) =


cos
(

3√
10

s
)
,

sin
(

3√
10

s
)
,

cos
(

1√
10

s
)
,

sin
(

1√
10

s
)

 .

for s ∈ I. The curve α(4) is a unit speed regular curve. With the help of Type-2 Quaternionic Frame, we get α spatial quaternionic curves in
R3 associated with quaternionic curve α(4) in R4 as:

α (s) =
1√
82

(
6√
10

s,−7cos
(

4√
10

s
)
,−7sin

(
4√
10

s
))

.

The principal curvature and torsion of α are given

k =
112

10
√

82
and r =

24
10
√

82

Then we have the curvatures of α(4) as :

K =
82

10
√

82
, − r =− 24

10
√

82
, K− k =− 30

10
√

82
.

For a = 10
√

82, b = −10
√

82, c = 3
2 , d = − 49

10 , the curvatures of quaternionic curve α(4) satisfy the relations (3.1), (3.2), (3.3), (3.4).
Hence α(4) is a quaternionic (1,3)-Bertrand curve and its quaternionic (1,3)-Bertrand mate β (4) is obtained as:

β
(4)(s̄) = 9


−11cos

(
3s̄

27
√

130

)
,

−11sin
(

3s̄
27
√

130

)
,

9cos
(

s̄
27
√

130

)
,

9sin
(

s̄
27
√

130

)

 .

where s̄ = ϕ (s) = 27
√

13s. By using Type-2 Quaternionic Frame given by (2.2), β spatial quaternionic curves in R3 associated with
quaternionic β (4) in R4 is obtained as:

β (s̄) =
1√
122

(
− 22√

130
s̄,−837cos

(
4s̄

27
√

130

)
,−837sin

(
4s̄

27
√

130

))
The principal curvature and torsion of β are given

k̄ =
496

3510
√

122
and r̄ =− 88

3510
√

122

So, the curvatures of β (4) are computed as :

K̄ =
366

3510
√

122
, − r̄ =

88
3510

√
122

, K̄− k̄ =− 130
3510
√

122

From (3.31), (3.39) and (3.42), we can compute the curvatures of β (4) by using the curvatures of α(4) and the real numbers a, b, c, d, too.
Hence we see that Theorem (3.2) is provided.
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4. Conclusion

Since there is no Bertrand curves whose torsion and bitorsion are non-zero in R4, Matsuda and Yorozu defined a new type of Bertrand curves
which is called (1,3)-Bertrand curve. Keçilioğlu and İlarslan introduced quaternionic (1,3)-Bertrand curves in Euclidean 4-space by using the
quaternionic frame given by Bharathi and Nagaraj. Kahraman Aksoyak defined a new type of quaternionic frame in R4 which is called
Type 2-Quaternionic Frame. In this paper, we investigate quaternionic (1,3)-Bertrand curve according to Type 2-Quaternionic Frame. The
most important point of working on quaternionic curves is this: if a quaternionic curve is given in R4, a spatial quaternionic curve in R3 is
determined individually. So, when we study about curves in R4, we get an idea of curves in R3. It allows us to work with curves in both R3

and R4
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[11] M. Karadağ and A.İ. Sivridağ , Quaternion Valued Functions of a Single Real Variable and Inclined Curves, Erciyes Univ. J. Inst. Sci. Technol 13

(1997), 23-36.
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[14] M. Önder , Quaternionic Salkowski Curves and Quaternionic Similar Curves, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci., 90 (3) (2020), 447-456.
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[23] D.W. Yoon , Y. Tunçer and M.K. Karacan , Generalized Mannheim Quaternionic Curves in Euclidean 4-Space. Appl. Math. Sci. (Ruse) 7 (2013),

6583–6592.


	Introduction
	Preliminaries
	Characterizations of the Quaternionic ( 1,3)-Bertrand Curve in Euclidean Space R4
	Conclusion

