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Abstract- In this paper, the power quality (PQ) disturbances have been detected and classified using Stockwell’s transform (S-
transform) and rule-based decision tree (DT) according to IEEE standards. The proposed technique based on the extracted 
features of the PQ events signals, which are extracted from the time-frequency analysis. Several PQ disturbances are considered 
with simple and complex disturbances to include spike, flicker, oscillatory transient, impulsive transient, and notch. The 
performance and robustness of the proposed technique for the recognition of PQ disturbances have been demonstrated through 
the results of the various disturbances. By comparing the performance of the proposed technique with other reported studies it 
was distinguished results under noiseless and noisy conditions. 
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1. Introduction 

Increasing use of Equipment and appliances that non-
linear, computers, variable speed drives and solid-state 
switching devices in the electrical network and the multiplicity 
and different types of consumers like residential, commercial, 
industrial and agricultural have been led to the important issue 
of power quality each both customers and utilities [1].  

It all causes power quality disturbances events, that leads 
to distortion of voltage and current signals because of the 
effect PQ disturbances such as harmonics, flicker, sag, swell, 
notches, transient, interruption, spike, impulsive transient, 
unbalance voltage and current [2]. The effect of poor in PQ is 
miss operation of equipment and devices, failures of motors, 
overheating in lines and equipment, interruption in power 
supply on devices, or destroy this device and decreasing 
efficiency [3].  

It's so important to know the type of PQ disturbances 
before PQ improvement action, through detection and 
classification PQ disturbances and localized it. 

Many of intelligent artificial and mathematical advanced 
process signals are proposed to classification and to detection 
PQ disturbances that which features overlap each other [4]. 
some of these techniques used to classify PQ disturbance are 
Fourier transforms (FT), short-time Fourier transform (STFT), 
wavelet transform (WT), continuous wavelet transforms 
(CWT), and discrete wavelet transforms (DWT), but WT is 
more efficient and successful than FT and STFT, where found 
the STFT is not much success to classify PQ disturbance. 
However, CWT and DWT more efficient to analysis transient, 
but these techniques are not efficient to analysis PQ 

disturbance signal with electrical noise [5]-[7].  The WT 
dyadic-orthonormal to classify and localize PQ disturbances 
has been proposed in [8].  

Stockwell's transform combines between features of both 
WT and STFT, it depends on the window that width decrease 
with the frequency and provides resolution depending on 
frequency [9], ST provides a high accuracy even in the high 
level of noise [10]-[11].  ST can be used for online monitoring 
of PQ disturbance in the network to detect and recognition 
disturbances [12]. 

Support vector machine (SVM) and artificial neural 
network (ANN) have been used for automatic classification of 
PQ disturbances based on ST [13]-[15]. 

In 1980 invented the detection tree algorithm by Breiman 
and this algorithm has considered as classifier tool supported 
by the decision rules. the first scientist implement DT is 
Wehenkel in 1989 and used this algorithm in the power system 
filed [16]. the DT presented as a binary graph tree that used to 
detection unknown relationships between input and output 
parameters [17]. DT drown graph like tree starting from the 
root node down to a leaf node. the response and result of DT 
there are in the leaf node and root node has the first edition 
rules [18]. 

In this paper a method of extraction feature for PQ 
disturbances detection and classification from time frequency 
representation using ST has been presented. The proposed 
classifier use of these features that rule-based DT to classify 
various PQ disturbances. As well as, the performance of the 
proposed algorithm has been studied with noise and efficiency 
comparison between the proposed method and other methods 
used in the literature has been carried out. 
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2. Stockwell Transform 

In 199 4  Stockwell proposed transform signal processing 
name it Stockwell transform, the Stockwell transform 
contained a mix of elements of both WT and STFS but ST 
located at different categories [19].  

A signal varying with time like PQ disturbances signal 
can be analyzed by ST by using MAR while kept the absolute 
phase of each frequency [20]-[21]. So, ST used effectively to 
analyze signal that varies with time like PQ disturbances. The 
ST is defined as:  

dteftwthfS fti∫
∞

∞−

−−= πττ 2),()(),(                       (1) 
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Where  
),( ftw  is the Gaussian window function 

f
f 1)( =σ  is the window width. 

S-matrix is a complex matrix represents the output of S-
transform with size n×m. S-matrix (Rows): represents the 
time-domain distribution of the signal in the particular 
frequency. S-Matrix (columns): represents the amplitude 
frequency characteristics.  

the S-matrix makes us able to extract important 
information of the signal in some certain time in terms of 
magnitude, frequency and phase, as well as extract many 
important curves for the signal like: curves of amplitude, 
phase, the sum of absolute values, amplitude-frequency and 
time-frequency contour.  

3. Proposed methodology  

Rule-based decision tree algorithm will be used for 
detection, classification and localization of the PQ 
disturbances as shown in Fig. 1, below. 

 

Fig. 1.  Blok diagram of PQ disturbance by using rule-based 
decision tree. 

The Mathematical models of PQ disturbances signals has 
been obtained from the IEEE-1159 standard [22], and then 
have been generated by Matlab after that analysis of these 
signals by multi-resolution analysis (MRA) based on S-
transform to get a complex S-matrix. all features F1 to F9 
extraction from S-matrix, where F1 to F8 is used to obtain the 

rules of the decision tree, whereas F9 presented the localize the 
PQ disturbances. 

4. Power Quality Disturbance Analysis Using S-
Transform 

In this part the analysis of various PQ disturbances based 
on the features extracted from ST will be presented. The 
disturbance signals have been generated based on IEEE-1159 
standard using MATLAB program. Table 1, below represents 
the mathematical modeling for the generated PQ signals: 

Table 1. Mathematical model of PQ disturbances. 

S Type Equation Parameters 

S1 Pure sine 
wave sin(ωt) fHzf πω 2,50 ==  

S2 Flicker h(t) = ( 1+ αf 
sin(βωt) )sin(ωt) 

0.1≤ αf ≤0.2, 5Hz≤ 
β ≤20Hz 

S3 Oscillator
y transient 

h(t) = sin(ωt) + 
αe−(t−t1)/τ 
*sin(ωn) 

(t−t1)(u(t2)−u(t1)) 

0.1≤ α ≤0.8, 0.5T 
≤t2−t1 ≤3T, τ 

=(t1+t2)/2, 300Hz≤ 
fn ≤900Hz 

S4 Impulsive 
transient 

h(t) = sin(ωt) 
+sgn[sin(ωt)]* α( 

u(t2)−u(t1) ) 

0.1≤ α ≤0.4, 0.05T 
≤t2−t1 ≤0.2T 

S5 Notch 
h(t) = sin(ωt) -

sgn[sin(ωt)]* α( 
u(t2)−u(t1) ) 

0.1≤ α ≤0.4, 0.05T 
≤t2−t1 ≤0.2T 

S6 Spike 
h(t) = sin(ωt) 

+sgn[sin(ωt)]* α( 
u(t2)−u(t1) ) 

0.1≤ α ≤0.4, 0.005T 
≤t2−t1 ≤0.02T 

 
All the generated signals with frequency of 50Hz, 10 

cycles and sampling frequency of 3.2kHz. The disturbance 
signals were denoted by symbols S2 to S12, while the pure sine 
wave was denoted by S1, these signals was analyzed by S-
matrix. 

4.1. Pure sine Wave 
The plots obtained for the pure sine wave is considered as 

a reference for PQ disturbance detection. All curves were of 
constant amplitude except for amplitude-frequency curve 
which showed one amplitude appeared at 50Hz. 

4.2. Flicker 
Voltage flicker and related ST plots are shown in Fig. 5. 

The voltage flicker can be recognized from a series of circles 
in the frequency contour as shown in Fig. 2, (b) and a 
continuous ripple the sum of absolute values curve Fig. 2, (d) 
also a finite value between 0.25 to 0.4 of the normalized 
frequency predicts the presence of flicker. 

Fig. 2 shows plots of the flicker signal and ST related, the 
series circles showed in the S-contour curve, and continuous 
replies in sum absolute values curve their indicators to detect 
flicker, In Fig. 2 (f) the amplitude-frequency curve has two 
peaks. a finite value frequency between 0.25 to 0.40 of the 
normalized frequency predicts the presence of flicker. 
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Fig. 2. (a) Flicker (b) frequency contour (c) amplitude-
time curve (d) sum absolute values curve (e) phase curve 

(f) amplitude-frequency curve. 

4.3. Oscillatory Transient  
Fig. 3 shows the S-transform plots of oscillatory transient 

event. As shown in Fig. 3(b) by single isolated contour in the 
frequency contour oscillatory transient can be depicted, also 
changes in all curves can indicate the presence of this 
disturbance. Localization is achieved by the second derivative 
of the sum of absolute values curve Fig. 3(e). 

 

Fig. 3. (a) Oscillatory transient (b) frequency contour (c) 
amplitude-time curve (d) sum absolute values curve (e) 

second derivative of sum absolute values curve (f) phase 
curve (g) amplitude-frequency curve. 

4.4. Impulsive Transient  
Fig. 4 shows impulsive transient and related plots according 

to S-transform. Impulsive transient event in any signal can be 
depicted from frequency contour plot as shown in Fig. 4(b) as 
well as from sum of absolute values curve as shown in Fig. 
4(d).  

The impulsive transient event usually contains all the 
frequency components thus a considered value of frequency 
within the accepted range of frequency is noticed in the 
amplitude frequency curve as shown in Fig. 4(g). 

 
Fig.4. (a) Impulsive transient (b) frequency contour (c) 
amplitude-time curve (d) sum absolute values curve (e) 

second derivative of sum absolute values curve (f) phase 
curve (g) amplitude-frequency curve. 

4.5. Multiple Notches 
According to S-transform the plots of the multiple notches 

event are shown in Fig. 5. This event can be detected by the 
chain of discontinuous contours in the frequency-contour as 
shown in Fig. 5(b) and by series of repeated peaks as 
illustrated in Fig. 5(d) which represents the sum of the 
absolute values curve. Moreover, the ascending increase in the 
amplitude of frequency through all the frequency range as 
shown in Fig. 5(g) which depicts the amplitude frequency-
curve is an indication for the presence of notches. 

 

 

Fig. 5. (a) Multiple Notches (b) frequency contour (c) 
amplitude-time curve (d) sum absolute values curve (e) 

phase curve (f) amplitude-frequency curve. 

4.6. Multiple Spikes 
Fig. 6 shows the plots of multiple spikes event depending 

on S-transform results. All the plots are the same as in the 
notches. However, the number of contours in Fig. 6(b) and the 
number of peaks in Fig. 6(d) rely on the number of spikes in 
the signal. 

5. Feature Extraction 

The proposed approach for detection of power quality events 
is based on the extracted feature from S-transform results. In 
this study, these features are labelled as F1, F2... F9. The 
extracted features can be defined as follows: 
F1: Sum factor ( fS ) 

)min()max()min()max( RRSSS f −−+=  
Where S represents the data array collected from the sum of 
the absolute values of the distorted signal. R represents the  
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Fig. 6. (a) Multiple Spikes (b) frequency contour (c) 

amplitude-time curve (d) sum absolute values curve (e) 
phase curve (f) amplitude-frequency curve. 

data array collected from the sum of the absolute values of the 
pure sinusoidal signal. 
F2: Number of peaks in the frequency amplitude curve. 
F3: Skewness of phase curve. Skewness of a signal is defined 
as: 

3

3)(
σ

µ−
=

xES                                                (3) 

Where x refers to the data array of signal,µ : mean of x, σ : 
standard deviation of x, and E: expected value of the quantity. 

F4: Amplitude factor ))()(1( BDACAf −+−+=  where C 
is the maximum value of the amplitude curve of the distorted 
signal. D is the minimum value of amplitude curve of the 
distorted signal. A is the maximum value of the amplitude 
curve of the pure sinusoidal signal. B is the minimum value of 
amplitude curve of the pure sinusoidal signal. 
F5: Kurtosis of amplitude curve. The Kurtosis of a signal is 
given by the following formula: 

4

4)(
σ

µ−
=

xEk                                       (4) 

Where x:  array of data of signal, µ : mean of x, σ : standard 
deviation of x, and E: expected value of the quantity. 
F6: Kurtosis of phase curve. 
F7: Kurtosis of sum absolute values curve. 
F8: Kurtosis of amplitude-frequency curve.  
F9: Second order derivative of sum absolute values curve: 

   )(2)1()1(9 2

2

nfnfnf
n

fF −−++=
∂
∂

=           (5) 

Where )(nf represents the sum of the absolute values of the 
signal. n refers to the sample number. The power quality 
events can be localized according to the detected spikes using 
the feature F9.  

6. Detection and classification using rule-based decision 
tree 

The adopted classification technique in this study for power 
quality disturbances is built on the rule-based decision tree 
(RBDT) and depending on the extracted features F1 to F8 from 
the S-transform. When the value of feature F1 equals zero that 
indicates no distortion in the tested signal. On the other hand, 
when the value of feature F1 equals a finite value indicates a 
distortion in the tested signal. Table 2 contains the numerical 
values of the extracted features (F1 to F8) depending on the S-
transform results. These values have been used in building the 
RBDT.  

According to the extracted feature (F2) that represents the 
number of peaks in the amplitude-frequency curve the first 
signals are classified into two main groups. In the first group, 
the value of F2 equals 1, whereas in the second group, it's more 
than 1. Under each group there are several subgroups based on 
the value of F1.  The classification process of PQ events 
continues till the end of the rules. The flowchart of the 
proposed algorithm is illustrated in Fig. 7. 

The threshold values have been selected depending on the 
MRA of the S-transform. The performance and efficiency of 
the proposed technique is summarized clearly in Table 3. 

7. Performance Comparison 

The performance of the proposed technique has been 
compared with others techniques proposed in references as 
tabulated in Table 4. Evidently, the higher performance is for 
the proposed algorithm. 

 

 

 

 

 

Table 2. S-Transform Based Features of PQ Disturbances 

PQ  Disturbance PQ Symbol 
Features of PQ Disturbances 

F1 F2 F3 F4 F5 F6 F7 F8 
Pure sine wave S1 0 1 -1.3514 1 2.0317 1.9206 242.034 74.03 

Flicker S2 4.827 2 7.8275 1 2.1881 4.4676 1.739 33.7382 

Oscillatory transient S3 30.3679 2 1.4619 1.3123 11.5043 11.427 7.6898 2.4878 

Impulsive transient S4 36.5376 3 1.0537 1.1139 2.6907 2.5511 43.6471 3.3385 

Notch S5 10.6233 1 -0.9528 0.9248 2.4089 2.4088 3.0134 19.3115 

Spike S6 15.489 1 1.094 1.0159 2.6476 2.6584 8.3565 7.7361 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [sec]

-1
0
1

Am
pl

itu
de

 [p
u]

0
0.5

1

0
1
2

0
0.5

1

0
1
2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency [normalized]

0
0.5

1

(a)

(b)

(c)

(d)

(e)

(f)



INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION  
F. Zaro, Vol.5, No.1,  March 2021 

5 
 

 

Table 3.  Rule-Based Decision Tree Classification Result 

PQ event 

PQ
 sym

bol 

Correctly 
Classified Efficiency (%) 

Without 
noise 

20 
dB 

SNR 

Without 
noise 

20 dB 
SNR 

Pure sine wave S1 100 100 100% 100% 

Flicker S2 98 98 98% 98% 
Oscillatory 

transient S3 99 99 99% 99% 

Impulsive 
transient S4 100 97 100% 97% 

Notch S5 100 100 100% 100% 

Spike S6 98 96 98% 96% 

Overall Efficiency 99.3% 98.1% 

 

  Table 4. Performance Comparison 

Referenc
e 

Type of 
algorithm 

No. of 
Compared 

PQ 
disturbance

s 

Overall 
Efficiency (%) 

withou
t noise 

20 dB 
SNR 

[6] (ST+TT+ANN
) S3 92.1% - 

[14] (SSD+HD) S5 96.7% 95.4
% 

Proposed (ST+DT)  99.14 98.20 

 

 

 

8. Conclusion  

The proposed technique for detection and classification of the 
power quality disturbances has been effectively done based on 
the extracted features from the S-transform labeled F1 to F8 to 
create the rule-based decision tree. Whereas, the extracted 
feature F9 has been used for the localization of power quality 
events in time. The superiority and effectiveness of the 
proposed technique have been tested over hundreds of data 
sets for each PQ event as well as the results proved to have an 
efficiency greater than 98% even in a noisy environment. 
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