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Abstract

In this paper, a numerical matrix method is used to solve the systems of high-order linear Fredholm integro-differential
equations with variable coefficients under mixed conditions. The technique consists of collocation points and the Morgan-
Voyce polynomials. The residual error functions of numerical solutions of the method are also presented. Firstly, the
approximate solutions are formed and secondly, an error problem is constituted in favor of the residual error function.
The numerical solutions are computed for this error problem by using the present method. The approximate solutions of
the original problem and the error problem are the corrected Morgan-Voyce polynomial solutions. When the exact
solutions of the problem are not known, the absolute errors can be approximately constructed through the approximate
solutions of the error problem. Numerical examples are included to demonstrate the validity and the applicability of the
technique, and also the results are compared with the different methods. All numerical computations have been

performed using MATLAB v7.11.0 (R2010b).
Keywords: Morgan-Voyce Polynomials, Systems of Linear Fredholm Integro-Differential Equations, Collocation Points,
Residual Error

LINEER FREDHOLM INTEGRO-DIFERANSIYEL DENKLEM SISTEMLERININ
COZUMLERI iCIN GELISTIRILMIS BiR YAKLASIM

Ozet

Bu c¢alismada, karisik kogullar altinda degisken katsayili yiiksek mertebeli dogrusal Fredholm integro-diferansiyel
denklem sistemlerini ¢6zmek icin sayisal bir matris yéntemi kullanilmistir. Bu yéntem, siralama noktalarina ve Morgan-
Voyce polinomlarina dayanmaktadir. Yéntemin sayisal ¢éziimlerinin artik hata fonksiyonlart da verilmistir. Ilk olarak
yaklagsik ¢oziimler elde edilir, ikinci olarak artik hata fonksiyonu ile bir hata problemi olusturulur ve bu hata problemi
mevcut yéntem kullanilarak ¢éziiliir. Orijinal problemin ve hata probleminin yaklasik ¢éziimleri toplanarak, diizeltilmis
Morgan-Voyce polinom ¢oziimleri elde edilir. Problemin kesin ¢éziimleri bilinmediginde, mutlak hatalar yaklasik olarak
hata probleminin yaklasik ¢oziimleri ile hesaplanabilir. Yontemin gegerliligini ve uygulanabilirligini gdstermek igin
sayisal 6rnekler verilmis ve ayrica sonuglar farkl yontemlerle karsilastirilmistir. Ttim sayisal hesaplamalar icin MATLAB
v7.11.0 (R2010b) programi kullanilmigtur.

Anahtar Kelimeler: Morgan-Voyce Polinomlari, Lineer Fredholm Integro-Diferansiyel Denklem Sistemleri, Siralama
Noktalari, Rezidiiel Hata
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1. Introduction Since 1994 the Taylor, Bessel, Pell-Lucas, Morgan-Voyce,
Dickson, Bernstein, orthoexponential, and Bernoulli
matrix methods have been applied to the linear
differential, integro-differential equations, fractional
differential equations, and nonlinear differential
equations, delay differential equations [11-28].

Systems of high-order linear integro-differential
equations have an essential role in science and
engineering, such as the glass-farming process [1],
dropwise condensation [2], wind ripple in the desert
[3]- Thus, it is important to solve the equations.
However, these equations can be solved using numerical
methods. There are several numerical methods [4-10].
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Some properties of Morgan-Voyce polynomials of the
first kind are defined [29],

1. B,u1B, ,—B?=—-1

2. B (x) = nB,_1(x) + B;,_,(x)

3. B (0) = nB"(x) + B (%)

4. By(x) = (x + 2)Bp_1(x) = By (%)

n=2,3,..,with, Bj(x) = 1,B;(x) =2+ x

In this paper, we introduced a method using the
methods mentioned above. Firstly, we obtained the
matrix  relations between the Morgan-Voyce
polynomials and their derivates, and using these
relations; we find the approximate solutions. This
method is known as the Morgan-Voyce collocation
method for solutions of a system of high-order linear

Fredholm differential equations with variable
coefficients in the form
m k b k
D RN =@+ [ Y Kyt @de
n=0 j=1 a =1
i=12,..k 0<a<x<bh (D
with the mixed conditions
m-1
Z a y™ (@) + by ™ (b) = 1,
Lj7] Lj/j n,i»
j=0
i=12,..m—-1 n=12, ..,k (2)

where, y].(o) (x) = y;(x) will be found, the given functions
P;(x), gi(x), K;j(x,t) are defined in the interval
a < x,t < b, the functions K;;(x,t) for i,j=12,..k
can be written in Maclaurin series and also a}';, b;'; and
An; are propers numbers.

We aim to solve the problem (1) and (2) expressed in
the truncated Morgan-Voyce series form

N

W) = ) @B, () 3)

n=0

Here, a,, n=0,1,..,N are defined Morgan-Voyce
coefficients; N is an arbitrary positive integer (N = 2).
We will calculate a,. B,(x), n=0,1,..,N are the
Morgan-Voyce polynomials defined by [29],

N

B, (x) =Z(":f:l)xk, neN
n=0

In this paper, we obtain the fundamental matrix
relations of systems of linear Fredholm-integro-
differential equations and introduce the method in
section 2. We describe residual error analysis in Section
3. In Section 4, we give numerical examples to support
our method. Section 5 concludes this paper.

2. Method for Solution

The matrix form of Morgan-Voyce polynomials is as the
following,

BT(x) = RX"(x) © B(x) = X(x)RT (4)
where
B(x) = [Bo(x) By(x) .. By(x)]
X(x)=[1 x' x% .. xV]

(5 0

0

<n-i—1> <n-i—2> (n-i—3> (Zn'-}-1>
L\ n n—1 n—2 0 -
The matrix form of the desired solutions y;(x) of

Equation (1)
[}’j(x)] = B(x)4,,

j=12 .k
where

A =[%0 %G1 G a;n]7T or from Equation (4)
by = XCOR™A,

Otherwise, XV (x) is known as the derivative of the
matrix X(x). So, X (x) can be written in terms of the
matrix X (x) as the following,

j=12 ..k (5)

XD) = X)TT, XO(x) = X(x) (6)
here
o 10 - 0 0 O
[0 02 - 00 0]
TT=|0 00 = 00 0|
lO o 0 - 0 O NJ
o0 o0 < 0 0 O

We derive from Equation (6) and Equation (4)
XO(x) = X(x)
XD(x) = X1

X®(x) = XV)TT = X(x)(TT)?
(7)
X®(x) = XED )T = X() (TTH*
and so

B®(x) = X9 (x)RT = X(x)(TT)*RT (8)
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Here, (TT)® = [I](y+1)xv+1) 1S the unit matrix.

We derive from Equation (5), Equation (7), and
Equation (8) the matrix equation

¥ @) = BO(x)4; = XD ()RTA; = X(x)(TT)*R" 4;

i=01,..,m j=01, ..,k 9)
So, we can write the matrices y(i) (x), i=01,..,m as
yD () = X@)(T) (ORA, i=12,..,m (10)
where
[P ()] 4,
yi(x) = yz(L).(X) A= A:z ’
lylsi)(x)_ A;
X(x) 0 - 0
x=| 9 X0 o0
| 0 0 - Xl
RT 0 0 T 0 0
_ T _ T
R=|0 R 0 g0 1T -0
0 0 RT 0 0 TT Lk

The system (1) can be written in the matrix form

> P @YD) = g +10) (11)
j=0
in here
PR PR - PR <x>]
P.(x) = ré?ﬁx) PR - BRG) ‘
PO BYG) PO
[yf‘:)(X)] 9,(0) 1,(x)
yi(x) — yz(L):(X) L g(x) = gz:(x) I(x) = 12(:35) )
YO (%) 1 (%)

I(x) = [} K(x, )y (t)dt,

where
[Kl_l(x, t) Ki,(xt) Ky i (x, t)]
K(x,t) = |K2'1(;x’ t) K, Ex, t) szkEx, t) ,
Ko t) Kin(ot) - K 0)]

and

k

Ii(x) = fab

We can find the kernel function K;;(x,t) with the
truncated Morgan-Voyce series and the truncated
Taylor series,

j=1

Kyt = Y > Mk B 0B, (13)

m=0n=0

where, K =[Mk3,] and

N N
KiyGot) = D0 ) teihyxmen, K = kil (14)

m=0n=0
in here
ty, U — ) . _
Femn = min!l  9xmotn m,n=20,1,..N,
i,j=01,..,k

We convert Equation (13) and Equation (14) to the
matrix form and then equate them, so we have the
relation

[K;;(x,)] = BOOKSBT(t) = X(x)K X" (t) (15)
So, we derive from Equation (15) the following relation
K;\f[ — (R_l)TK:.jR_l

Equation (5) and Equation (13) are substituted into
Equation (12), the matrix equation is obtained following
as

b k
I,(x) = j > B@KY B OXOR 4;dt
a =

&

b
=Z B(x)K'BT()X(t)RT A;dt

j=1"¢
k
j=1

from here

b
[Q:] =J- BT(t)X(t)R"dt

a
b

= j RXT()X(t)RTdt = RHRT
a

in here

J-b br+s+1 _ ar+s+1

= T = . =
H X (OX () dt = [hys]; Ry ]

’
a
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r,s=0,12,..,N

The matrix form of (4) is substituted into Equation (16),
the matrix relation is obtained as,

K
1 ()] = ) XRTKYQy 4 (17)
j=0
We define the collocation points following as
X, =a+=%, s=012,..,N (18)

and the collocation points are placed in Equation (11),
so we have the system of the matrix equations

D P GIYO) = gxs) +16xs)

j=0

or concisely the fundamental matrix equation

Zpi YO =G+1 (19)
j=0
where
P;(x) 0 0 [y(i)(xo)]
p=| 0 Pl RO
6 0 Pi(;cN) ly(i)ixN)J
9g(xo) I(x,)
G — g(xl) , I — I(xl)
PICD 1Gey)

By placing in Equation (10) the collocation points (18),
we get the matrix relation as the following

y(x) = X(x)(T) RA (20)
s=12,..,N,i=12,..,m
briefly, we can write Equation (20) following as
y® = X(T)'RA,

where

[X(x) X(x) 0 = 0
re[fe0| xep=| 0 K 0

li(;cN)J 0 0 X))

s=12,..,N,i=12,...,m

we substitute the collocation points (18) in the matrix
relation (17), and so the relation is as

X(x)R'K}Qy; A;
0

[Ii (xs)] =

J

k
(21)
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s=12,.,N,i=12,...,m

and substituting Equation (18) into the matrix I(x)
given in Equation (11) and using Equation (21), we have

[1(x5)
I(x,) = ’Z(f‘s) = X(x,)RK,04, (22)
[k(xs)
where
X(x5) 0 0
X(x,) = 0 X(xg) - 0
0 0 X(x)d,
RT 0 - 0 Q 0 - 0
R= o RT ... 0 6= 0 Q - 0
0 0 RT 0 0 eee Q
K3 K3? K}w"] A
K; = K3 Ki? Ki| 42|42
Kt Ki? K As

So, by using Equation (22) and the matrix of the
Morgan-Voyce coefficients, we can write Equation (19)
in matrix form as the follows

1(x)
1= ’(’:‘1) = XRK,QA (23)
1Gx)
where
[}(xo)]
e [F)

1%,

If we substitute Equation (20) and Equation (23) into

Equation (19), we have the fundamental matrix
equation
m
—i— — —
Z {PiX(T) R- XRKfQ}A =G (24)

i=0
Therefore, Equation (24) equal to Equation (1) can be
expressed in the form

WA =G or [W;G] (25)

This form refers to a linear system of k(N + 1) algebraic

equation with k(N + 1) the unknown Morgan-Voyce

coefficients, so

m
i .

w= Z P.X(T) R — XRK:Q = [wq],

i=0

p,q=12,..,k(N+1)
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Now, we build the matrix symbols of the conditions.

When we use the conditions (2), we get

m

-1
> @+ by ®)] = 4y,

—.
o

3
AN

a2 (@) + bE " ®)] = 2,

—.
]
(=]

3
o

|y @ + By ()] = A

j=0
or
m-—1
[at @ + byl )] = 4
=0
m—1
|atj” @ + b2y ()] = 2,
Jj=0

m-—1
> aky? @ + by )] = A
=0

in that equation

AR
11‘1] P | Ay, ' b ;
= ) L — J | i—| P1j |
S T T Al R Al I
lli-m‘ljmm la;n—Lijxl lbin—l.ijxl
i=12,..,k
or briefly
m-—1
> @ + by )] =2 (26)
j=0
where
a]-1 0 0 bjl 0
0 a? 0 0 b?
aj = S L P Y I
0O 0 - a]’,\f O 0 .- bk
kxk J “kxk
A
a=|b
A kx1

We substitute the points a and b in Equation (10), we
have

yO(@ =X@(T)RA, i=12,..m
(27)

87

yOb) =X(b)(T)RA, i=12,..,m

The matrix relations in Equation (27), which depend on
the matrix of Morgan-Voyce coefficients, are substituted
in Equation (16), and the equation is simplified, we get

> [a%@ + bX(®)](T) RA = 2

i=0

(28)

Now, we define U following as,

U= [aX@ +bX®)|(T)R

i=0
so, for the conditions, the matrix relation becomes as
UA=21 or [U;2] (29)

Finally, we replace the rows of the matrix U and A, by

the rows of matrix W and G, respectively, we get
WA=G (30)

By replacing the last mk rows of the matrix W, we
obtain the augmented matrix following as,

Wi Wiz W1 k(N+1) g1(x) ]
Wz, W2 W2 k(N+1) g2(x)
Wiz Wi Wi k(N+1) i (x0)
Wit1,1 Wit1,2 Wi 1,k(N+1) AEN)
[W E] _ | Wk-m+1)1 Wi, (N-m+1),2 - Win-m+k(v+1) 5 Gk (Xy—m)
V11 V12 V1,k(N+1) Ao
V21 Va2 V2, k(N+1) Aa
Vi1 Vk2 Uk k(N+1) Aym—1
Vk+11 Vk+1,2 Vk+1,k(N+1) 220
Vmk,1 VUmk,2 Vi k(N+1) Agm-1

But, the last rows haven't to be replaced. For instance, if
the matrix W is singular, then the rows with the same
factor or all zeros are returned.

If rank W = rank[W; G] = N + 1, it can be written

A= (W) 'G. Thereby, the unknown coefficients
ay, a4, ..,y can be uniquely determined. Thus, the
problem (1) and (2) has a unique solution, and this
solution is expressed by Morgan-Voyce series solution
(3).

3. Error Estimation

In this section, with the residual error function [30] for
the Morgan-Voyce polynomial solutions (3), an error
estimation is obtained. With the help of the residual
error function, the Morgan-Voyce polynomial solution
(3) is improved. Firstly, the residual function of the
Morgan-Voyce collocation method can be constructed as

Rin(x) = L[y (0)] = g:(x) (32)
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Here y; y(x) is the Morgan-Voyce polynomial solution of

Equation (1) with condition (2). Thus, y; y(x) satisfies

the problem
m k
L@l = ) > PR @

n=0j=1

k
f D iy (6, 071 (Ot = ,G) + Rin )
]:

i=12 ..,k 0<a<x<b

m-—1

@y (@) + bEyda () = Ay,
j=0

n=12..,k

The error functions of approximate solutions y; y(x) to
y;(x) are

egn(x) =y;(x) = yin(x) (33)
where y;(x) is the exact solution of problem (1) and (2).

From Equation (1), Equation (2), Equation (32) and
Equation (33) the error differential equation is

Lle;y(0)] = LIyi ()] — L[yin ()] = =Ry (%)

with the conditions

Z (@ljeih(a) + biyel (b)) = 0

i=012.. m—-1n=12 ..,k

or Clearly, the error problem is

ZZ e [ Z&,(x Deqn()dt = ~Ryy (<)

n=0 j=1
1:1,2,...,k, 0<a<x<bh
6D n (1) _ _ _
Z(al, e (@ +blelh ) =0, i=12,.,m-1
n=12,..,k
(34)

If we solve problem (34) by using the method given in
section (2), we have the approximation solutions,

M
einu(x) = Z apB,(x), M=N
n=0

to e; v (x).

Consequently, utilizing the polynomials y;y(x) and
eenu(*), (M=N), the correct Morgan-Voyce
polynomial solutions are obtained as y;yu(x) =
Yin(x) + e;yu(x). Also, we construct the error function
as e;y(x) =y;(x) —y;n(x), the correct error function

solution |Ei,N_M(x)| = |ei,N(x) - ei‘N‘M(x)| =

88

|yi (x) - yi‘N‘M(x)| and the estimated error function

€iN.M ().

If we have not the exact solution of Equation (1), we
cannot find the absolute errors |e;y(x;)| = |yi(x) —
yi_N(xi)|, (0<x; <bh). Otherwise, we can
approximately calculate the absolute errors using the
estimated absolute error function |ei_N,M(x)|. This
method is an important and very useful tool for the
solution of the problem.

4. Illustrative examples

This section investigates the proposed method's
accuracy and efficiency. We present two numerical
examples which compare errors|ei,N(x)|, |Ei_N,M(x)|
and e;y p(x). These comparisons have been given in
Tables and Figures at the specified points of the given
interval.

Example 1. With the exact solutions y;(x) = e ™ and

vy (x) = e* and the initial conditions y;(0) =
1, y1(0) = -1,¥,(0) =1, y3(0) =1, y{(0) =
1, y5/(0) =1,for 0 < x <1, consider the equations

2,07

=y1" () — x%y3 (x) — xy1(x) + 2y, (%)
1
= 9,00 + [ [Gre a0 + (e tsima)y, 0)de
0
(35)
y2' (%) +y1' () — ya(x) — xy,(x)
1
= 8,00+ [ [(efeos)y, () + Gx + Oy, (e
0
where g;(x) =e™(x+ 1) —x—sinx and g,(x) =
e (1 —x)—cosx — 1.
The approximate solutions y;(x) by the truncated
Morgan-Voyce series are
6

Yi,6(x) = Z ai,an(x):

n=0

i=1.2

Now we can use the method to get the approximate
solutions. Firstly we construct the matrix relation, and
then by using the collocation points and Equation (35)
we can write the fundamental matrix equation as the
following,

— — _2— —\3—
{Pox R+ P, XTR + P,X(T) R+ P;X(T) R
~XRKQ}A=G
Hence, from the method given in Section 2, for i =1,2
and N =6 by the Morgan-Voyce polynomials the

approximate solutions of the problem respectively are
as the following,
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Y16(x) = 1 —x + 0.5x2 — 0.166666666667x>
+(0.41625019037e — 1)x* — (0.815499085386€ — 3)x5
+(0.10848283106¢ — 3)x°

V26(x) =1+ x + 0.5x2 + 0.166664620327x>
+(0.41727698665¢ — 1)x* — (0.807449560784e — 2)x5
+(0.17920672461e — 2)x°

Now, let us find the corrected Morgan-Voyce polynomial
solutions for M =9 with the method introduced in
Sections 2 and 3. For this purpose, firstly, we find the
estimated absolute error functions as follows

e169(x) = (—7.346e — 40) — (1.836e — 40)x
—(4.591e — 40)x? + (0.388e — 40)x3 + (0.416e — 9)x*
—(0.178e — 3)x5 + (0.303e — 3)x® — (0.197e — 3)x”
+(0.237¢ — 4)x® — (0.196e — 5)x°
e260(x) = (7.34e — 40) — (1.836e — 40)x? + (0.204e — 5)x3
—(0.611e — 4)x* + (0.258e — 3)x°> — (0.403e — 3)x®
+(0.199¢ — 3)x7 + (0.231e — 4)x® — (0.388e — 5)x°

Besides, we have the

polynomial solutions

V169(x) = 0.99999 — x + 0.49999x% — 0.16666x>

corrected Morgan-Voyce

+0.0416x* — 0.00833x5 + 0.00138x° — (0.197e — 3)x’
+(0.237e — 4)x® — (0.196e — 5)x°

V2,69(x) = 0.99999 4 0.99999x + 0.49999x?
+0.16666x3 + 0.0416x* + 0.00833x> + 0.00138x°
+(0.199¢ — 3)x7 + (0.231e — 4)x8 + (0.388e — 5)x°

In Table 1 and Table 2, we compare the errors e; y(x;)
and ey (x;) (exn(x;) and e,y (x;)) for N = 6,9 and
M =9,12,15 and also compare the error functions
e, n(x) and the ey yy(x) for N =6,9 and M = 9,12,15
in Fig. 1a and Fig. 1b. These results show that the
difference between the estimated absolute errors and
the actual absolute errors is very small. Table 3 and
Table 4 illustrate the errors |E1,N‘M (xl-)| and |E2‘N,M (xi)|
for N=6,9 and M = 9,12, 15, respectively. We give the
error functions |E1,N,M(xi)| and |E2_N‘M(xi)| in Fig. 1c.
We see from Tables 1, 2, 3 and 4 and Fig. 1a, Fig. 1b, and
Fig. 1c that the errors decrease when N and M are
increased.

10° 0°

0z 03 04 05 06 07 08 08 1

Figure 1a. Comparison of e; y(x) and the e, y 5 (x) for
N =6,9,M =9,12,15 of Equation (35).
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—o— ey

—o—ley gl

ey g0 —B— ey 1,0l

—t— e g 150l

—e— ey,

08 09 1

10

o |
10
02 03 04 05 06 07 02 03 04 05 06 07 08 09 1
X X

Figure 1b. Comparison of e, y(x) and e,y (x) for
N =6,9,M =9,12,15 of Equation (35).

10° 10°

10° | —e— 150 -

—o— [yt

10| —6— By 1500 e
«

N

ot .

|

]

10" ‘s B )
"
10
—E Fagusl

0 10"
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1

Improved absolute errors
\
\

Improved absolute errors

L

Figure 1c. Comparison of Ey y »(x) and E, y 5 (x) for
N =6,9, M =9,12,15 of Equation (35).

Example 2. With the exact solutions y; (x) = sin(—5x)
and y,(x) = e™3%,for 0 < x < 1, consider equations
1
7100 = 9100 + [ [t (0 + x, Ot
0
(36)
1

Y2 (0) = 9200 + j [e(t + Dy, () + xPty, (©)]dt
0

where

_ 23 2 2
g1(x) = —sin(5x) — x (— ECOS(5) + ﬁsm(S) — ﬁ)

g:(x) = e —x (é cos(5) — 2—15sin(5) — %)

I - 1)

x ( 9¢ 3

When the presented method is applied to this system,
the approximate solutions are obtained for different
values of N and M. In Table 5 and Table 6, the absolute
errors by the present method, the Bessel Collocation
method (BCM) [22], and Modified Homotopy
Perturbation Method (MHPM) [8] are compared. In Fig.
2, the absolute error functions are compared.
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4+ MHPM for N=10
—o— Bessel Collocation Method for N=10
o Present Method for N=10

01 02 03 04 05 06 07 08 09 1

—O— MHPM for N=10

—+— Bessel Callocation Method for N=10
o - Present Method fo N=10
01 02 03 04 05 06 07 08 09 1

10

Figure 2. Comparison of e; 14(x) and e, 14(x) of Eqn.
(5.2).

5. Conclusions

In cases where the high-order linear integro-differential
equations system is complicated to solve analytically,
solutions should be approximated. In this article, a new
technique using the Morgan-Voyce polynomials to
numerically solve high-order linear Fredholm
differential equations systems is proposed. This
technique is related to the residual error function.
Besides, an error estimation is introduced using the
residual error function. Moreover, suppose the exact
solution to the problem is unknown. In that case, the
|9i,1v(xi)| = |yi(xi) - yi,N(xi)|'
(a < x; <b) can be estimated by the approximation

absolute errors

|ei,N,M (x)|. As aresult of numerical approaches, it is seen
that the proposed method is a useful method for
solutions of a system of linear integro-differential
equations. The crucial benefit of the technique is that
approximate solutions can be computed very easily and
quickly by using MATLAB v7.11.0 or MAPLE 15 and
Morgan-Voyce polynomials can be applied to this
method. This method can be improved and applied to
the nonlinear differential equations, nonlinear integral
and integrodifferential equation, fractional differential
equations, and also systems of the partial differential
equation, but it is required some modifications.
Moreover, the convergence of the approximation can be
investigated.
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Table 1. Comparison of the absolute error functions of y,(x) Equation of (35)

Absolute errors for Morgan-Voyce

Estimated absolute errors for Morgan-Voyce

polynomial solutions

polynomial solutions

Xi |el,6(xi)| |el‘9(xi)| |el,6,9(xi)| |e1,9,12(xi)| |el,6,12(xi)| |e1,9,15(xi)|
0.0 7.1734e-17 2.5849e-13 7.3468e-40 8.5522e-40 4.9622e-40 5.8775e-03
0.2 2.6549e-08 2.4862e-12 2.6547e-08 2.2191e-12 2.6549e-08 2.2190e-01
0.4 1.7586e-07 6.1814e-11 1.7586e-07 6.1553e-11 1.7586e-07 6.1552e-11
0.6 5.5197e-07 3.4135e-10 5.5195e-07 3.4111e-10 5.5197e-07 3.4111e-10
0.8 5.3582e-07 1.1055e-09 5.3579e-07 1.1053e-09 5.3582e-07 1.1052e-09
1.0 8.7487e-06 1.5305e-09 8.7498e-06 1.5303e-09 8.7487e-06 1.5303e-09
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Table 2. Comparison of the absolute error functions of y,(x) Equation of (35)

Absolute errors for Morgan-Voyce

Estimated absolute errors for Morgan-Voyce

polynomial solutions polynomial solutions
Xi |62,6(xi)| |32,9(xi)| |ez,6,9(xi)| |ez,9,12(xi)| |eZ,6,12(xi)| |32,9,15(xi)|
0.0 9.0937e-18 1.0165e-13 7.3468e-40 1.4694e-39 3.2806e-40 2.2041e-39
0.2 2.1651e-08 1.8350e-11 2.1655e-08 1.8157e-11 2.1651e-08 1.8157e-11
0.4 9.0288e-08 1.3697e-10 9.0307e-08 1.3640e-10 9.0288e-08 1.3640e-10
0.6 1.5082e-07 4.6763e-10 1.5086e-07 4.6659e-10 1.5082e-07 4.6659e-10
0.8 1.3471e-06 1.1724e-09 1.3470e-06 1.1708e-09 1.3471e-06 1.1708e-09
1.0 2.2947e-05 5.0040e-09 2.2944e-05 5.0015e-09 2.2947e-05. 5.0016e-09
Table 3. Numerical results of the corrected error functions of y; (x;) of Equation (35)
Xi |E1,6,9(xi)| |E1,6,12(xi)| |E1,9,12(xi)| |E1,9,15(xi)|
0.0 7.1734e-17 7.1734e-17 2.5849e-13 2.5849e-13
0.2 1.6581e-12 1.4319e-16 2.6713e-13 2.6718e-13
0.4 8.4701e-12 3.9159%e-16 2.6106e-13 2.6135e-13
0.6 1.9584e-11 8.3624e-16 2.4192e-13 2.4262e-13
0.8 3.7650e-11 1.5149e-15 2.1405e-13 2.1542e-13
1.0 1.1300e-09 3.9365e-14 2.2807e-13 1.8852e-13
Table 4. Numerical results of the corrected error functions of y,(x;) of Equation (35)
Xi |E2,6,9(xi)| |E2,6,12(xi)| |E2,9,12(xi)| |E2,9,15(xi)|
0.0 9.0937e-18 9.0937e-18 1.0165e-13 1.0165e-13
0.2 3.3935e-12 9.0210e-17 1.9282e-13 1.9294e-13
0.4 1.8602e-11 5.4901e-16 5.6857e-13 5.6917e-13
0.6 4.8260e-11 1.4033e-15 1.0416e-12 1.0431e-12
0.8 1.0590e-10 2.7071e-15 1.6337e-12 1.6366e-12
1.0 2.6006e-09 9.4434e-14 2.4733e-12 2.3793e-12
Table 5. Numerical results of the absolute error functions e; 1o(x) of y,(x;) of Equation (36)
MHPM [8] Bessel Collocation Method [22] Present method
Xi |e1,1o(xi)| |e1,10(xi)| |el_10(xi)| |E1,10,13(xi)| |E1,10,15(xi)|
0.1 8.7765e-07 9.5559¢e-09 9.4270e-09 5.8922e-009 1.5115e-09
0.4  3.5106e-06 3.8223e-08 4.7241e-08 8.1562e-010 3.4479e-09
0.7 6.1436e-06 6.6891e-08 1.0233e-08 1.4400e-010 5.3863e-09
1.0  8.7765e-06 9.5559¢e-08 8.8797e-08 3.0570e-009 7.8197e-09
Table 6. Numerical results of the absolute error functions e, 14(x) of y,(x;) of Equation (36)
MHPM [8] Bessel Collocation Method [22] Present method
Xi |ez,10(xi)| |92,10(xi)| |32,1o(xi)| |E2,10,13(xi)| |E2,1o,15(xi)|
0.1 6.3461e-06 1.7995e-08 1.8764e-08 2.1278e-09 1.4651e-09
0.4  2.8625e-05 8.1196e-08 9.4569e-08 5.4951e-09 8.4035e-09
0.7  5.5765e-05 1.5822e-07 1.6867e-07 1.1447e-08 1.6892e-08
1.0  8.7765e-05 2.4907e-07 2.7485e-07 1.8293e-08 2.6850e-08
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