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Abstract 

This study examines the persistence and long-term correlation of monthly and seasonal precipitation time series of the Kırşehir 

province (Turkey) for the period of 1960-2019, with the widely used Hurst exponent (H) and Detrended Fluctuation Analysis (DFA) 

methods. Both methods can be used to detect the long-term memory and correlation to be assessed as a reference of predictability. 

In order to support the study results, Augmented Dickey Fuller (ADF) and Mann-Kendall (MK) tests were applied to the time series 

under consideration. In some of the precipitation series, the evidence of persistence and long-term correlation was identified. 

According to the H exponent values, 10 out of 12 months, winter, and autumn seasons (with both simple R/S and corrected R/S 

methods), and spring and summer seasons (respectively with simple R/S and corrected R/S methods) exhibit long term correlations.  

On the other hand, according to the DFA scaling exponent values, 4 out of 12 months, winter and autumn seasons reveal long term 

correlations. When the H exponent and DFA scaling exponent values are compared only four monthly and two seasonal precipitation 

series are found to be consistent with each other. 
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1. Introduction 

 

It is a common acceptance that climate change will have significant effects on the water cycle (Osborn et al., 2015). Long- and short-

term climatic variability is observed all around the world and may have significant impacts on water resources (Meshram et al. 2020). 

In some regions, such changes are expected to change precipitation regimes (e.g., increase in the frequency and intensity of precipitation 

extremes as presented by Zhou et al., 2012; Papagiannaki et al., 2015). In this manner precipitation becomes the main driver for water 

resources both for drought and flood conditions and not only observed but also expected conditions gain importance yet because of the 

mechanism and dependencies behind precipitation it is not an easy process to make substantial predictions (Chandrasekaran et al. 

2019). 

Discovered by Hurst (1951), the Hurst phenomenon states that the variability of climate variables is not an irregular process, but also 

indicates that the future states of a system may be affected by the current state of the system known as long-term memory (LTM) (Xie 

et al. 2019). The phenomenon was first used for the flood analyses of Nile River by Hurst with a form of exponent hereafter named 

Hurst exponent. Since then, Hurst exponent is used for many studies ranging from hydrology to capital markets. For instance, Tatli 

(2015) applied H exponent for persistence of a drought index over Turkey, Agbazo et al. (2018) analyzed the long-term memory in 

precipitation over Benin, Correa et al. (2017) analyzed long term memory in Southern Oscillation Index (SOI) and stationary signals 

associated with it for Alacantara, Brasil. Moreover, Raimundo and Okamoto Jr. (2018) used H exponent for Forex securities’ 

classification. Meshram et al. (2020) used a coupled Mann-Kendall and Hurst Exponent analyses for temperature effects over 

agricultural crop production in the Chhattisgarh State, India. Besides, studies support that the strength of long term memory affects the 

predictability of the variable of interest and it is suggested that considering the long term memory effect may improve the prediction 

performance (Zhu et al. (2010), Yuan et al. (2013), Yuan et al. (2014), Xie et al. (2019)).  

In recent years, Detrended Fluctuation Analysis (DFA) (Peng et al. 1994) has also been used as an important tool to detect long-range 

correlations especially in time series with potential nonstationarities. DFA is a scaling analysis method that calculates a quantitative 

parameter as a representative of the long-range autocorrelation (Yue et al. 2010). Moreover, DFA is said to be enabling the correct 

estimation of the Hurst exponent in the context of nonstationaries (Kantelhardt, 2015). Likewise, the Hurst exponent, DFA has also 

been used in many studies in various areas such as hydrology, finance/stock market or health sectors (Kurnaz, 2004; Yue et al. 2010; 

Golinska, 2013; Marton et al. 2014; Bu and Shang, 2014; Zeybekoglu and Keskin, 2020).  

 

Under climate change conditions, the Central Anatolia Region in which the Kırşehir provinve is located, is expected to be one of the 

most affected parts in Turkey (Bozoğlu et al. 2019). Mall et al. (2006) and Palmer et al. (2008) stated the sensitivity of drier and 

populated regions to climate change and the potential water stress around the world. Moreover, Dudu and Çakmak (2018) pay attention 

to the effect of extreme climatic conditions such as droughts or floods in the western and central regions of Turkey and their negative 

economic and agricultural impacts which are supported by Dellal et al. 2011 under climate change conditions with a projected decrease 

in crop yield in the Central Anatolia. Gönençgil and Acar (2021) figure out that Eastern Anatolia and Central Anatolia Regions 

exposed to the highest extreme humid days for summer. Bacanlı et al. (2011) investigated Palmer Drought Severity Index (PDSI), 

Erinc and De Martonne with monthly mean observed precipitation and temperature data and revealed that the Central Anatolian Region 

in Turkey has a potential to face severe drought conditions. Turkes et al. (2020) indicated that the Central Anatolian Region is one 

of the regions that will experience semi-arid and dry sub-humid conditions in the future while Altın et al. 2012 also stated temperature 

increase in all of the studied stations and decrease in mean rainfall intensity at the twelve stations including Kırşehir in their study. 

Oruc (2021) also stated that the Central Anatolia Region is expected face fluctuations in terms of precipitation and drought conditions 

Furthermore, Boyacı and Küçükönder (2021) indicated the potential water stress for the Kırşehir Province for the coming years. For 

this reason, the Kırşehir province was chosen for the Hurst exponent and DFA analyses. 

This paper investigates long term memory and correlation of historical (1960-2019) monthly and seasonal precipitation in annual 

time scale by the Hurst exponent and DFA methods. Furthermore, to support and better interpret the long-term analyses of the data, 

Augmented Dickey Fuller (ADF) test for nonstationary signals and well-known Mann-Kendall (MK) test for trend were used.  

2. Study Area and Data 

 

2.1. Study Area 

The Kırşehir province (Turkey) is located in the Central Anatolia Region which includes some parts of the Kızılırmak river basin 

(Figure 1). The elevation of the study area ranges from 860 m to 1310 m. The area has typical continental climatic characteristics 

and receives most of the annual precipitation (384.5 mm in average) in winter and spring seasons. Hot and dry summers are followed 

by cold winters in the study area. The average air temperature is about 11.5 oC. Its surface area is approximately 6530 km2. The 

lands of the province constitutes, 0.8 percent of the country's land, 2.9 percent of the Central Anatolia Region. The coordinates of 

the province are 38°50'-39°50' North latitudes and 33°30'-34°50' East longitudes. Provincial territory is made up 900-1200 m. of 

high plateaus. There are mountains that reach 1700 m above the plateau surface. Many large and small rivers pass through Kırşehir 

province which Kızılırmak is one of them. Kırşehir is poor in terms of forest and generally looks like a steppe 

https://www.psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
https://link.springer.com/article/10.1007/s00704-018-2608-0#ref-CR49
https://link.springer.com/article/10.1007/s00704-018-2608-0#ref-CR45
https://link.springer.com/article/10.1007/s00704-018-2608-0#ref-CR46
https://www.sciencedirect.com/science/article/pii/S1364682620300298#bib23
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Figure 1. Location of the Study Area (Özdemir, 2020) 

2.2. Precipitation Data 

Daily (1960-2019) precipitation records of Kırşehir station (No:17160) were officially provided by the Turkish State Meteorological 

Service which were quality controlled before distributed. The monthly and seasonal precipitation amounts used in the analyses were 

calculated from the daily records which has continuous data from 1960 to 2019. Monthly precipitation variation during the study period 

is presented in Figure 2.  

 

 

 
Figure 2. Monthly Average Precipitation Between 1960-2019 

3. Methodology  

 

Classification of long-term memory/persistence of the monthly and seasonal time series were investigated by Hurst Exponent DFA 

methods. Hurst exponents are calculated by various methods yet in this study simple and corrected R/S method is selected (Weron, 

2001). R packages pracma (Borchers, 2021), nonlinearTseries (Garcia, 2021), tseries (Trapletti and Hornik, 2021) and trend (Pohlert, 

2020) from the R Foundation for Statistical Computing used for the calculations.  

 

3.1. Hurst Exponent and DFA 

The Hurst exponent (H) provides a measure for the long-term memory of a time series. With values H exponent < 0.5, H exponent = 

0.5, and 0.5 < H exponent < 1, it defines the dependence of future over present. Similar to H exponent, time series is classified according 

to the DFA scaling exponent, which α = 0.5 indicates an uncorrelated time series, α < 0.5 indicates an anti-correlated time series, and 

0.5 < α < 1 indicates positive correlations. 

0

10

20

30

40

50

60

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
ai

n
fa

ll
 i

n
 m

m



UMAGD, (2022) 14(1), 246-255, Oruc 

249 

Several techniques have been proposed in the literature for calculating the H exponent. In this study R/S and DFA methods were used 

to calculate the Hurst Exponent. More details regarding R/S can be found in (Weron, 2001; Hurst, 1951; Peters, 1994; Taqqu et al., 

1995; Mandelbrot and Wallis, 1969).  

Considering the R/S method; time series of length L divided into d subseries of length n and for each subseries m = 1, . . ., d: the data 

(Zi,m) is normalized by subtracting the sample mean Xi,m=Zi,m−Em for i=1, . . . ,n;  

• cumulative time series  Yi,m = ∑ Xj,m
i
j=1   for i = 1, . . . ,n; is obtained 

• the range Rm = max{Y1,m, . . . ,Yn,m} − min{Y1,m, . . . ,Yn,m}; is calculated 

• the range Rm/Sm is rescaled and the mean value of the rescaled range for all subseries of length n; is calculated 

 

(
R

S
)n =

1

d
 ∑

Rm

Sm

d
m=1              (1) 

 

(
R

S
)n = cn

H             (2) 

log(
R

S
)n = log(c) + Hlog(n)            (3) 

 

DFA can be found in (Peng et al., 1994, Weron, 2001; Penzel et al. 2003; Bryce and Sprague, 2012; Hardstone et al. 2012). Considering 

the DFA, time series of length L divided into d subseries of length n and for each subseries m = 1, . . . , d:  

 

• a cumulative time series  Yi,m = ∑ Xj,m
i
j=1   for i = 1, . . . , n; was created 

• a least-squares line  Ym(x)  =  amx + bm to {Y1,m, . . . ,Yn,m}; fitted 

• the root mean square fluctuation (i.e. standard deviation) of the integrated and detrended time series is calculated 

 

F(m) = √
∑ (Yi,m−ami + bm)

2n
i=1

n
           (4) 

 

F(n) =
1

d
 ∑ F(m)d

m=1             (5) 

 

The value of H can be obtained by performing the same simple linear regression like in the R/S method. 

 

3.2. Augmented Dickey Fuller (ADF) Test 

ADF test is used to detect the stationarity in time series of a given period. Augmented Dickey Fuller (ADF) (Dickey and Fuller, 1979; 

Said and Dickey, 1984; Fuller, 1996) which is still a unit root test for stationarity, was revised to tackle autocorrelation problems from 

DF test (Dickey and Fuller, 1979). This ADF test is conducted by augmenting the DF equation in which the lagged difference form of 

the dependent variable ∆Xt is added. The new equation takes the following form; 

Xt = ρXt−1 +∑j=1
p
ψjΔXt−j + ut   or    ΔXt = πXt−1 + ∑j=1

p
ψjΔXt−j + ut      (6) 

ΔXt−1 = (Xt−1  −  2), ΔXt−2 = (Xt−2  −  Xt−3), etc.           (7) 

 

3.3. Mann-Kendall Trend Test 

There are two categories of trend test in general, namely parametric and non-parametric tests and the latter are considered to be more 

appropriate for the trend detection of hydro-meteorological variables.  

 

The MK trend test (Mann, 1945; Kendall, 1975) which is also a non-parametric and rank based test, was used to detect trends in the 

precipitation data in this study. 

The MK test was formulated by the following equations: 

S =  ∑ ∑ sgn(xj
n
j=i+1 − xi) 

n−1
i=1            (8) 

here S is the test statistic. 

sgn(xj − xi) =  {
+1
0
−1

{

(xj − xi) > 0

(xj − xi) = 0

(xj − xi) < 0

          (9) 

 

V(S) =
n(n−1)(2n+5)−∑ ti(ti−1)(2ti+5)

m
i=1

18
          (10) 
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Z =  

{
 
 

 
  

S−1

√V(S)
  , S > 0 

      0   , S = 0
S+1

√V(S)
  , S < 0

            (11)

        

When the absolute value of Z is greater than the critical value Zα, the null hypothesis, H0, that there is no trend is rejected. Significance 

level α can be defined by the user and can get different values regarding the desired significance of the study (Mann 1945; Kendall 

1975; Militino et al. 2020). 

4. Results and Discussion 

 

The Hurst exponent and DFA scaling exponent values of the precipitation time series for each season and calendar month were 

evaluated at an annual time scale together with annual totals for the period of 1960-2019. Simple and corrected H exponents were 

calculated for the precipitation series. Furthermore, three DFA scaling exponents were calculated based on window size and window 

size range to prevent sensitivities regarding window size. The means of calculated three DFA scaling exponents for each month and 

season were then used for the comparison with the H exponent values of same precipitation series. At first summary statistics of 

monthly, seasonal, and annual precipitation series are given in Tables 1. and 2, respectively to make a brief description of the 

precipitation characteristics for the study area. In general, the mean and standard deviation (SD) values of July, August and September 

are smaller than the rest of the months. However, the precipitation amounts in these moths show relatively higher variability (high 

coefficient of variation, CV) compared to those in other months. In addition, the statistical values indicated that January, June, July, 

August, September, and October accommodate positively, and highly positively skewed precipitation which indicates the distortion of 

the series from normal distribution. When kurtosis values are considered for outliers, it is convenient to conclude that January, June, 

July, August, September, and October months showed remarkable sign of outlier precipitation values for the Kırşehir station which 

can be one of the reasons of high cv values of July, August, and September monthly precipitation amounts. 

Table 1. Summary Statistics of Monthly Precipitation 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean 45.56 34.53 37.94 44.04 45.02 36.76 7.00 6.26 12.78 28.80 37.56 48.54 

SD 29.22 19.32 21.15 22.54 26.73 30.10 9.34 11.24 14.45 24.76 26.72 26.64 

CV 0.64 0.56 0.56 0.51 0.59 0.82 1.33 1.80 1.13 0.86 0.71 0.55 

Skewness 1.02 0.96 0.94 0.53 0.89 1.46 1.73 2.63 1.55 1.37 0.85 0.18 

Kurtosis 1.16 0.85 0.47 -0.28 0.27 3.14 2.43 7.75 2.52 2.91 0.35 -0.97 

Considering the seasonal precipitation, the mean- and standard-deviation values of Summer and Autumn exhibited smaller values. 

Summer season showed positive skewness while the rest of the seasons show low skewness values. Moreover, only the summer season 

had a positive kurtosis which is also the highest among the other seasons that have lighter tails.  

Table 2. Summary Statistics of Annual and Seasonal Precipitation 

 Annual Winter Spring Summer Autumn 

Mean 384.80 128.60 127.00 50.03 79.15 

SD 73.19 49.71 40.64 38.49 37.95 

CV 0.19 0.39 0.32 0.77 0.48 

Skewness 0.16 0.40 0.21 1.39 0.56 

Kurtosis -0.92 -0.88 -0.50 2.25 -0.15 

In Table 3., ADF test, MK test, H exponent and DFA scaling exponent results were exhibited for the monthly precipitation series. 

Depending on the H and DFA results, monthly precipitation series showed various persistence and long-term correlation characteristics.  
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Table 3. ADF Test-MK Test-H Exponent-DFA Results of Monthly Precipitation 
 

ADF p 

value 

MK z 

value 

MK p 

value 

Simple 

R/S H 

Corrected 

R/S H 

DFA1 DFA2 DFA3 Avg 

January 0.082 0.497 0.619 0.579 0.722 0.58 0.60 0.61 0.60 

February 0.010 -1.403 0.161 0.571 0.796 0.66 0.65 0.66 0.66 

March 0.051 -0.651 0.515 0.535 0.460 0.38 0.33 0.43 0.38 

April 0.241 -1.410 0.159 0.611 0.862 0.47 0.41 0.52 0.47 

May 0.010 -0.472 0.637 0.470 0.532 0.23 0.22 0.22 0.22 

June 0.011 -0.159 0.873 0.520 0.616 0.36 0.35 0.37 0.36 

July 0.010 1.676 0.094 0.415 0.307 0.28 0.27 0.30 0.28 

August 0.414 1.569 0.117 0.555 0.692 0.60 0.60 0.50 0.57 

September 0.010 0.185 0.853 0.545 0.679 0.43 0.47 0.46 0.45 

October 0.054 1.040 0.299 0.536 0.663 0.48 0.46 0.44 0.46 

November 0.333 0.593 0.553 0.611 0.664 0.71 0.68 0.71 0.70 

December 0.014 -1.142 0.254 0.531 0.692 0.31 0.31 0.36 0.33 

 

The H values ranges between 0,415 to 0,611 for simple R/S method and 0,307 to 0,862 for the corrected R/S method. Table 3 suggests 

that the precipitation record in Kırşehir is most likely to contain the Hurst effect of dependence and persistence because of its relative 

instability. The Hurst exponent (H) provides a measure for the long-term memory of a time series. With values H exponent < 0.5, H 

exponent = 0.5, and 0.5 < H exponent < 1, it defines the dependence of future over present. Similar to H exponent, time series is 

classified according to the DFA scaling exponent, which α = 0.5 indicates an uncorrelated time series, α < 0.5 indicates an anti-

correlated time series, and 0.5 < α < 1 indicates positive correlations. 

 

The results show convincing evidence of the Hurst effect in the precipitation series except March, May, and July months which have 

H values of 0.535, 0.470, 0.415, and corrected H values of 0.460, 0.532, 0.307. It can be concluded from the H values that monthly 

time series show evidence of long-term persistence for the period 1960- 2019.  

 

Considering the DFA, results of the three scaling exponents of annual time series of monthly precipitation showed closer values. 

Averages of these values ranges from 0.22 to 0.70 whereas only four of the precipitation series, namely, January, February, August 

and November show signal of persistence.  

 

The precipitation series that were identified as persistent also show long-term dependence based on the Hurst exponent values. 

Furthermore, among these months, January, August and November precipitation series also showed nonstationary characteristics and 

it can be concluded that DFA analyses successfully overcome the nonstationarity, which is also indicated by ADF results, based on the 

calculated scaling exponent for these series.  

 

Based on the combined results of Hurst exponent and DFA methods, January, August, and November monthly precipitation values of 

Kırşehir station are expected to increase while February precipitation will tend to decrease. These results were interpreted based on the 

dependence of future over past phenomena by using the DFA and H results and the current tendencies of the monthly time series that 

were revealed by MK test results. In addition, when only Hurst exponent results were considered, April, June and December 

precipitation amounts are also expected to decrease, and October precipitation is expected to increase while September is expected to 

show no significant increase or decrease.  

 

Furthermore, nonstationarity and trend characteristics show different properties according to ADF and MK test for each time series. 

MK test results show both increasing and decreasing trends yet none of these trends are significant at five percent significance level. 

Moreover, nonstationary characteristics also show variations among the months and half of the precipitation series show nonstationary 

signals according to ADF test results. Performing the ADF test showed that two of the three time series that exhibit no clear evidence 

of long-term dependence also show significant stationary characteristics. On the other hand, it is not possible to make a concrete 

conclusion regarding relation between nonstationary properties, trend tendencies and Hurst exponent of the precipitation series.  
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Table 4. ADF Test-MK Test-H Exponent-DFA Results of Annual and Seasonal Precipitation 
 

ADF 

p value 

MK 

z value 

MK 

p value 

Simple 

R/S H 

Corrected 

R/S H 

DFA1 DFA2 DFA3 DFA 

Avg. 

Annual 0.010 0.089 0.929 0.482 0.346 0.18 0.18 0.24 0.20 

Winter 0.032 -1.384 0.166 0.610 0.809 0.58 0.59 0.63 0.60 

Spring 0.129 -0.702 0.483 0.504 0.483 0.44 0.40 0.45 0.43 

Summer 0.022 0.351 0.726 0.492 0.574 0.31 0.28 0.33 0.31 

Autumn 0.310 1.435 0.151 0.609 0.818 0.76 0.73 0.67 0.72 

 

In addition to monthly precipitation, annual and seasonal precipitation were also investigated. Nonstationary and trend characteristics 

also show different properties according to ADF and MK test for each time series as they were in monthly analyses. MK test results 

show increasing trend for annual, Summer and Winter precipitation amounts and decreasing trend for winter and spring precipitation 

amounts but none of these trends are significant. Spring and autumn precipitation also show nonstationary behavior according to ADF 

test results. The H values ranges between 0.482 to 0.610 for simple R/S method and 0.346 to 0.818 for the corrected R/S method while 

DFA scaling exponent average values range from 0.20 to 0.72. Considering the DFA results with Hurst exponent for annual and 

seasonal precipitation series, winter and Autumn seasons indicate persistence. While there is no significant relation between 

nonsationarity and trend of the time series, Hurst coefficient and DFA scaling exponent show increasing persistence with increasing 

trend magnitude that is independent from the direction of the trend such as Autumn MK test z-value of 1.435 and DFA scaling exponent 

value of 0.72, Winter MK test z-value of -1.384 and DFA scaling exponent value of 0.60 or Spring MK test z-value of -0.702 and DFA 

scaling exponent value of 0.43.  On the other hand, this is not valid for monthly precipitation series.  

 

Both H and DFA methods show similar results for annual and seasonal series however, the results were different for the monthly 

precipitation series. Nevertheless, there are precipitation series such as January, February, August and November that H exponent and 

DFA results agree on a nonrandom process as Koutsoyiannis, (2020) indicated the enhanced pattern with the H approaching 1. Between 

0.5-1.0, precipitation series of the study area can said to be trend reinforcing which means increases (decreases) in the series of January, 

February August, November months and Winter and Autumn seasons will probably be followed by increase (decrease). Conversely, 

for the rest of the precipitation series up values are more likely followed by down values and vice versa because of the expected mean 

reverting behavior according to combined H and DFA results. Despite the lack in identifying significant trends in the series, the 

persistency features evidenced by the Hurst exponent and DFA scaling exponent can be extended to address the precipitation 

intensification for the trend positive and desertification for the trend negative periods and notices for the further studies. 

 

Chandrasekaran et al. (2019) also found that the predictability of time series in their study is higher with corresponded overall H 

exponent >0.5.  It can be said that higher persistence and correlation will probably affect the predictability of precipitation series in a 

positive way. Tatli (2015) indicated that the term “persistence” may also be considered as a criterion to be applied as a predictability 

measure while Onyutha (2020) and Koutsoyiannis (2020) also links the persistence and temporal change for the hydrological processes. 

Considering the above-mentioned studies precipitation series with H exponent and/or DFA scaling exponent > 0.5 in this study can 

also be considered more predictable and present status can be considered more comprehensively while making future predictions. 

Kantelhardt (2015) stated that it is vital to compare DFA results with other methods such as spectral or wavelet analyses that is one of 

the reasons in this study why results of the H exponent and DFA analyses combined for deriving conclusions. 

 

On the other hand, data length in this study is 60 years and to draw a more precise conclusion it should be vital to use longer time series 

for such analyses. Kantelhardt (2015) indicated the variations of the degree persistence with different time scales. Lopez-Lambrano et 

al. 2018 stated the effect of climate, temperature, altitude, and the precipitation regime of the area of interest over H exponent and 

indicated the varied tendency of H value with different time scales. The detrended fluctuation analysis (DFA) is also said to be less 

affected by the extreme values than R/S analyses (Hacınlıyan and Kandıran, 2015). One reason of the difference between H and DFA 

results can be for this. Barbulescu et al. (2010) also mentioned the method dependency of the results of R/S method and discordance 

with the statistical tests. Results of this study also revealed no significant relation between the results of statistical tests for trend or 

nonstationarity, and the persistence/correlation behavior of the time series that can be generalized. 

 

5. Conclusions 

 

In this article the results of persistence and long-term correlation analysis for monthly, seasonal and annual precipitation time series of 

1960-2019 were analyzed and also were compared to the results of nonstationarity and trend detecting statistic tests. Long-term 

persistence and correlation did not exhibit remarkable concordance. However, within various precipitation series, evidence of 

persistence and long-term correlation was identified. According to H exponent values of simple R/S and corrected R/S methods, 10 out 

of 12 months and winter, spring (only simple R/S), summer (only corrected R/S) and autumn season and according to DFA scaling 

exponent values 4 out of 12 months and winter and autumn seasons exhibit long term correlation. On the other hand, when the H 

exponent and DFA scaling exponent values compared only four monthly and two seasonal precipitation series concluded to be 

consistent with both H exponent and DFA scaling exponent results. This can be interpreted that to gather reliable predictions these 
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results must be properly considered. Long-term memory and correlation are accepted the sign of predictability. Further studies are 

needed to investigate the possible relationship, to compare with traditional approaches and to figure out the importance of long-term 

memory and correlation when predicting future for the hydrological variables. There is also need of quantification the long-term 

memory and incorporating them to predictive models which only few studies interested best of the author’s knowledge. 
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