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INTRODUCTION 
Disease modeling via animal and cell culture 
techniques have been providing great contribution in 
explaining the mechanism of diseases and identifying 
potential curative approaches. However, there is still 
a significant lack of models that could show more 
physiologically and predictive relevant results. Two-
dimensions (2D) cell cultures have been routinely and 
ardently used worldwide for the past decades. 
However, the 2D cell cultures are tenable ancient and 
do not reflect the physiology or anatomy of the 
regarding tissues for enlightening studies (1). 
Moreover, in vivo cancer models have some 
limitations such as consumption in time and 
resources, expensiveness, and interspecies 
differentiation (2). 
These limitations have prompted scientists to search 
for new models that better mimic the parental tissue.  
 

 
Designing a three-dimension (3D) cell culture model 
requires multidisciplinary expertise and approach (3).  
Several 3D cell culture models have been studied up 
to now such as the spheroid, ex-vivo, and organoid. 
Organoids, as a novel and promising in vitro culture 
model, were generated via the self-organizing 
capacity of stem cells that could recapitulate the 
function, architecture, genetic signatures of the 
parental tissue (4). Despite the organoid technology 
has numerous advantages, the technology has 
several limitations. Development of vascularization, 
as one of the obstacles, is crucial for cell-cell and 
stromal-cell interactions did not occur except several 
studies in the xenograft model generation process 
(5). Other limitations of the technology are the lack of 
microbiota, for the gut model, and the immune system 
that has slightly solved via co-culture systems (6,7). 
Another obvious drawback of the technology is the  
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absence of interorgan communication since they 
mimic a specific part of the human body, not the 
entire. Thus, they could not recapitulate the micro-
physiology of specific tissue or organ. Several studies 
have been already focused on the limitation. In a 
study, various organoids have been connected to 
investigate the interaction between the pancreas, 
liver, and gastrointestinal tract (8).  
 
Organoids have been used to search for cancer, 
genetic disorders, and infectious diseases via directly 
patient-derived or gene editing of human stem cells. 
(9) Recently, human patient-derived organoids have 
been generated that provide a more accurate disease 
model. A large body of studies shows the great 
potential of organoid technology in drug screening, 
drug optimization, regenerative medicine, and 
personalized medicine (10).  
 
Taken together these pieces of information, in this 
study, we reviewed the applications and 
advantages/disadvantages of organoids in several 
disease models. 
 

 
 

Figure 1. The figure summarizes the application areas of organoid 
technology and created by using BioRender 
(https://biorender.com/). 
 
Organoid Modeling for Cancer 
Up to now, vigorous efforts have been done in the 
cancer research area and important development has 
been reached in the treatment and diagnosis (11,12). 
Still, cancer indicates a major health concern globally 
due to the low life quality and survival of patients with 
cancer. Since poor mimicking of the parental tumor 
by traditional cancer models, the progress of efficient 

therapy is one of the major obstacles which are 
working on these cancer models lastly fails in clinical 
practices. The lacks of conventional cancer models 
are microenvironment, stromal compartments, organ-
specific function, immune system, genetic 
heterogeneity (2,13,14). The promising organoid 
technology bridges the gap between traditional in 
vitro and in vivo cancer models (15). Tumoroids have 
been generated from tissue biopsies, surgical 
resections, ascitic fluid, and circulating tumor cells 
(16–19). Tumoroids could be used for various 
downstream implementations since they could be 
propagated and passaged indefinitely (20). 
Tumoroids could be an important branch of organoid 
technology, such as genetic carcinoma, infection-
cancer development, and mutation-tumorigenesis 
processes (21-25). Tumoroids have been generated 
and bio-banked from various types of primary and 
metastatic cancers as colorectal, pancreatic, 
prostate, lung, liver, ovaries, kidney, bladder, brain, 
cancers, etc. (26). 
 
Nowadays, drug response analysis of patients and 
their matched tumoroids showed that drug responses 
are very parallel. In case of drugs did not affect the 
tumoroids, the matched patient was not affected, and 
drugs that displayed efficiency in tumoroids were 
matched by the patient response with 90% of cases. 
In several studies, this initial study has been found 
corroborated (27,28). An accelerated number of 
studies on patient-derived tumoroids, their molecular 
profiling, and usage in xenograft formation, may 
provide more reliable in vitro screening platforms for 
personalized medicine (29). Analyzed cancer types 
and sample sizes are limited. Thus, more stringent 
researches are necessary for routinely adopting 
patient-derived tumoroids as in vitro patients 
'avatars'.   
 
Organoid Models for Neurodegenerative 
Diseases 
Recently, human brain organoids, generally 
generated from PSCs, have been used in 
neuroscience to evaluate mainly neurodevelopmental 
processes and related disorders. In a study, PSCs-
derived brain organoids have been utilized to 
illustrate transcriptional dysregulation and 
developmental malformations which take place in 
schizophrenia. Since the organoid technology has 3D 
brain conformations, the research group could have 
evaluated the disruptive organoid region of  
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schizophrenic patients. The study suggests that 
organoid technology could be used for such disease   
models (30). The prenatal hypoxic injury cause early 
life neurological defects. Since the human  
corticogenesis evaluation model is lack, all 
consequences of hypoxia are still not known. The 
prenatal hypoxic injury cause early life neurological 
defects. Since the human corticogenesis evaluation 
model is lack, all consequences of hypoxia are still 
not known. Daviaud et al. reported the brain organoid 
model as a starting point to analyze new approaches 
in therapeutic to regenerate and protect affected cell 
populations in the neurodevelopmental process (31).  
Neurodegenerative disease modeling is also 
applicable as, Parkinson's disease, Fronto-Temporal  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dementia, Alzheimer's disease and Amyotrophic 
Lateral Sclerosis (32).  On the other hand, brain 
organoids could reflect various sites of the brain such  
as the midbrain and neocortex. In order to evaluate 
more complex biological mechanisms in the human 
brain, Chen et al. generate an organoid model so-
called assemboloid which pre-patterned into a 
specific cite of the brain (33). As a result, brain 
organoids supply an interesting overview of various 
ways that could be utilized for neuroscience. 
 
Organoid Models for Genetic Diseases 
Recently revealed CRISPR−Cas9 endonuclease 
technology provides a genetic engineering method, 
that readily available to researchers (34). A large 

Table.1 Applications of organoid technology in disease modeling. The table includes studies about organoid modeling of cancer 
and genetic, neurodegenerative, and infectious diseases. 

Disease Model Organ References 

 
 
 
 
 
 

     Cancer 

Bladder Mullenders et al., 2019(49) 

Colorectal Yao et al., 2020(50); Schnalzger et al., 2020(51); 
Fujii et al., 2016(20); Drost et al., 2015(52)  

Breast Yang et al., 2020(53); Griscelli et al., 2017(54); 
Sachs et al.,2018(55) 

Kidney Hwang et al., 2019(56); Wang et al., 2017(57); 
Batchelder et al., 2015(58) 

Ovary Nanki et al., 2020(59); Kopper et al., 2019(60); Hill 
et al., 2018(19) 

Lung Shi et al., 2020(61); Kim et al., 2019(62); Dijkstra 
et al., 2018(63) 

Liver Broutier et al., 2017(64) 

Brain Bhaduri et al., 2020(65); Ballabio et al., 2020(66); 
Jacob et al., 2020(67) 

Prostate Beshiri et al., 2018(68); Gao et al.,2014(18) 

 
 
 
Neuroscience 

Malformation Dunnack et al., 2017(69) 

Microencephaly Gabriel et al., 2020(70); Kelava et al., 2016(71) 

Autism/macrocephaly Chan et al., 2020(72); Hohmann et al,. 2020(73); 
Mariani et al., 2015(74) 

Alzheimer’s disease Papaspyropoulos et al., 2020(75) 

Parkinson’s disease Kim et al., 2021(76); Monzel et al., 2017(77) 

 
 
 
 
 

Genetic 
Diseases 

Familial adenomatous polyposis Sommer et al., 2018(78); Crespo et al., 2017(79) 

Cystic fibrosis Berkers et al., 2019(80); Dekkers et al., 2013(81) 

Alagille syndrome Guan et al.,2017(82) 

Polycystic kidney disease Freedman et al., 2015(83) 

Miller–Dieker lissencephaly syndrome  Bershteyn et al., 2017(84); Iefremova et al., 
2017(85) 

Rett syndrome Gomes et al., 2020(86); Feldman et al., 2016(87);  

Timothy syndrome Sloan et al., 2018(88) 

Hereditary multiple intestinal atresia Bigorgne et al., 2014(89) 

 
Infectious 
Diseases 

Brain Watanabe et al., 2017(90); Gabriel et al., 2017(28) 

Intestinal Lamers et al., 2020(91) 

Stomach Bartfeld et al., 2015(92) 
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body of studies performed the gene-editing system on 
human pluripotent stem cells (hPSCs) in order to  
generate specific mutated isogenic cell lines. Since 
different cell lines have strong phenotypical 
variations, these cell lines have been served as a 
crucial control for genetic analysis (35). CRISPR-
Cas9 genome editing combined organoid technology 
enlarges the organoid applications in various ways.  
Genetic diseases modeled with organoid technology 
are cystic fibrosis, hereditary multiple intestinal 
atresias for intestine, familial adenomatous polyposis 
for colon, alagille syndrome for liver, polycystic kidney 
disease for kidney, microlissencephaly, miller–dieker 
lissencephaly syndrome, rett syndrome, timothy 
syndrome for the brain, enhanced s-cone syndrome, 
retinitis pigmentosa for the retina, and leber 
congenital amaurosis (36). As an example, in the 
Caucasian population, the leading lethal genetic 
disorder is cystic fibrosis (CF) that is a multiorgan 
disease including, pancreas, lung, reproductive tract, 
intestine, and liver (37). In a study of cystic fibrosis, 
the F508del in cystic fibrosis transmembrane 
conductance regulator (CFTR) gene that encodes 
CFTR protein, leading to misfolded CFTR channel 
protein, mutant human intestinal organoids that cause 
to fast degradation were corrected via CRISPR–
Cas9. The edited CFTR amino acid sequence 
displayed a normal channel activity in vitro (38). The 
study clearly showed that targeted gene therapy 
could be another application of the organoid 
technology that has the potential for more accurate 
targeted gene therapy approaches. Taken together, 
organoids could be combined with other technologies 
to create better disease models. 
 
Organoid Models for Infectious Diseases 
The organoid has been accepted as a promising 
technology for disease modeling that fulfills this 
expectation more day by day. One of the most 
important advantages of organoid technology is 
eliminating the interspecies differences when applied 
for disease modeling. Additionally, organoids include 
various cell types present in the parental tissue that 
could be altered by changing the medium 
compositions to have interested cell lineages (39). 
These advantages make the organoid technology 
amenable to study infectious diseases. Brain 
organoids are derived from human pluripotent stem 
cells that self-organize and recapitulate the in vivo 
fetal brain tissue better than 2D cell cultures in terms 

of architecture and composition such as progenitor, 
glial, and neuronal cell types (40,41). 
 
A myriad study has been focused on the Zika virus 
(ZIKV), a member of the Flaviviridae family, that 
transmit to the human being from mosquitos. It has 
been associated with microcephaly in newborns and 
possessed a crucial risk for pregnancy (42). The 
organoid technology has been applied to reveal the 
mechanism of the infectious since it can reflect the 
malformation of the brain driven by the ZIKV. In a 
study, ZIKV-exposed brain organoids show that 
favored infection of neuronal progenitor cells, which 
inhibits the proliferation and induces a decrease of 
cell viability that leads to reduced organoid size (43). 
Recent studies have been used brain organoid 
technology in drug screening to preventing and curing 
ZIKV infection (44,45). 
 
Nowadays the coronavirus disease 2019 (COVID-19) 
has been affecting a vigorous number of humans. 
Despite COVID-19 mostly affects the lung, clinical 
data indicate a growth in both chronic and acute 
neurological symptoms such as 
meningitis/encephalitis and persistent fatigue (46,47). 
In a recent study, COVID-19 infected brain organoids 
illustrate that the virus damages the choroid plexus 
epithelium leads to leakage in the blood-brain barrier 
that prevents immune cells, pathogens, and cytokines 
into the brain and cerebrospinal fluid (48). Thus, 
organoid technology is crucial to study host-pathogen 
interactions via modeling infectious diseases. 
 
CONCLUSION 
Already myriad studies have been declared highly 
efficient generation of various human diseases 
modeled with organoid technology. Despite several 
limitations of this promising and novel 3D technology, 
the application of the model for understanding the 
mechanism of diseases and evaluation of more 
precise therapy options are possible. In order to bring 
cumulative information produced in the lab to clinical 
practice fast, the technology is pointed out as a 
milestone. Still vigorous developmental progress is 
necessary for the model. 
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