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Abstract

The focus of this paper is to introduce a four step iterative algorithm, called A* iterative method, for
approximating the fixed points of Suzuki generalized nonexpansive mappings. We prove analytically and
numerically that our new iterative algorithm converges faster than some leading iterative algorithms in the
literature for almost contraction mappings and Suzuki generalized nonexapansive mapping. Furthermore, we
prove weak and strong convergence theorems of our new iterative method for Suzuki generalized nonexpansive
mappings in uniformly convex Banach spaces. Again, we show analytically and numerically that our new
iterative algorithm is G-stable and data dependent. Finally, to illustrate the applicability of our iterative
method, we will find the solution of a functional Volterra—Fredholm integral equation with a deviating
argument via our new iterative method. Hence, our results generalize and improve several well known results
in the existing literature.
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1. Introduction

Let Q2 be a real Banach space and A be a nonempty closed convex subset of Q2. Let N denote the set of
natural numbers and R be the set of real numbers. By a fixed point of a mapping G : A — A, we mean an
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element ¢ € A satisfying Gy = 1. We denote the set of all fixed point of G by F(G). A mapping G is said
to be a contraction if there exists a constant v € (0, 1) such that |Gy — Gn|| < v||¢» —n||. The mapping G is
said to be nonexpansive if |Gy — Gn|| < ||¢p —n]|| (i.e. every contraction mapping is a nonexpansive mapping
with v = 1).

Fixed point theory has received massive attention for some decades now. This is as a result of its
application to certain areas in applied science and engineering such as: Optimization theory, Game theory,
Approximation theory, Dynamic theory, Fractals and many other subjects.

One of the first fixed point theorems is the Banach fixed point theorem. This theorem is also known as
the Banach contraction principle. Banach contraction principle is important as a source of existence and
uniqueness theorem in diverse branches of sciences. This theorem gives a demonstration of the unifying
power of functional analytic methods and usefulness of fixed point theory.

The Banach contraction principle uses the Picard iterative method which is defined as follows:

1/]5-"-1 :Gwsa VSENv (].)

for contraction mappings in a complete metric space. It is well known that this principle does not hold for
nonexpanive mappings since Picard iteration method fails to converge to the fixed point of nonexpansive
mappings even when the existence of fixed point is guaranteed in a complete metric space.

So many authors have constructed several iterative methods for approximating the fixed points of nonex-
pansive mappings and other wider classes of mappings. An efficient iterative method is one which; converges
to the fixed point of an operator, has a better rate of convergence, gives data dependent result and guarantees
stability with respect to G.

Some notable iterative schemes in the existing literature includes: Mann iteration [I7], Ishikawa iteration
[14], Noor iteration [20], Argawal et al. iteration [2], Abbas and Nazir iteration [I], SP iteration [23], S*
iteration [13], CR iteration [§], Normal-S iteration [24], Picard-S iteration [1I], Thakur iteration [30], M
iteration [32], M* iteration [3I], Garodia and Uddin iteration [9], Two-Step Mann iteration [29] and many
others.

Let {rs} and {ps} be two nonnegative real sequences in [0,1]. The following iteration processes are known
as S iteration process [2], Picard-S iteration process [11], Thakur iteration process [30] and K* iteration
process [33], respectively:

wo € A,
Hs = (1 _ps)ws + psGws, Vs > 1. (2)
Ws41 = (1 - Ts)Gws +7sGus,

ug € A,
Ps = (1 _ps)us + psGus,
> 1.
Os = (1 - TS)GUS + TSG‘P& vez 1 (3)
Us+1 = GQsa
wo € A,
Ps = (1 - ps)ws +psGw87
> 1.
Vs = G((l - Ts)ws + rsps)a Vez 1 (4)
| Wet1 = G,
( by € A,
ms = (1 _ps)gs +P3G557
> 1.
s = G((1 —rs)ms + rsGmg), vs 21 (5)
€s+1 = GT/s’
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In 2014, Gursoy and Karakaya [1I] introduced the Picard-S iteration process (3), the authors showed
analytically and with the aid of a numerical example that Picard-S iteration process converges at a rate
faster than all of Picard, Mann, Ishikawa, Noor, SP, CR, S, S*, Abbas and Nazir, Normal-S and Two-Step
Mann iteration processes for contraction mappings.

In 2016, Thakur et al. [30] introduced the iteration process ({]). The authors used a numerical example
to show that converges faster than Picard, Mann, [shikawa, Agarwal, Noor and Abbas iteration process
for Suzuki generalized nonexpansive mappings.

Very recently, Ullah and Arshad [33] introduced the K* iteration process (5). The authors proved
both analytically and numerically that K* iteration process converges faster than S iteration process ,
Thakur iteration process and Picard-S iteration process for Suzuki generalized nonexpansive mapping.
Also, they noted that the speed of convergence of Picard-S iteration process and Thakur iteration (4)
are almost same.

On the other hand, several problems which arise in mathematical physics, engineering, biology, economics
and etc., lead to mathematical models described by nonlinear integral equations (see [18] and the references
therein). In particular, Volterra-Fredholm integral equations arise from parabolic boundary value problems,
from the mathematical modeling of the spatio-temporal development of an epidemic, and from various
physical and biological models (see [19, B34]). Recently, some iterative approaches for solution of nonlinear
integral equations have been studied by several authors (see for example [10, 3] 16} 21] 22] and the references
therein).

Motivated and inspired by the ongoing research in this direction, we introduce the following four steps
iteration process, called A* iteration process, to obtain better rate of convergence for almost contraction
mappings and Suzuki generalized nonexpansive mappings:

Yo € A,

gs = G((l - ps)ws +psG¢s),

ks = G((l - Ts)gs + rngs)y Vs > 1. (6)
Ns = Gk’s,

Ysy1 = Gns,

where {rs} and {ps} are sequences in [0,1].

The aim of this paper is to prove analytically that A* iteration process @ converges at rate faster
than K™ iteration process for almost contraction mappings. Also, we provide numerical examples to
show that @ converges faster than the iteration processes f for almost contraction mappings and
Suzuki generalized nonexpansive mappings. Furthermore, we prove weak and strong convergence theorems
for A* iteration process @ in uniformly convex Banach spaces. Again, we show analytically and numerically
that our new iterative algorithm is G-stable. Furthermore, we prove that our new iterative method @ is
data dependent. Finally, to illustrate the applicability of our iterative method, we will find the solution
of a functional Volterra—Fredholm integral equation with a deviating argument by using our new iterative
method @

2. Preliminaries
The following definitions, propositions and lemmas will be useful in proving our main results.

Definition 2.1. A mapping G : A — A is said to be a Suzuki generalized nonexpansive mapping if for all
w,m € A, we have

1
S =Gl < ¢ —nll = lIGY = Gnl| < [l¥ = n]. (7)
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Suzuki generalized nonexpansive mapping is also known as mapping satisfying condition (C). In [2§],
Suzuki showed that the class of mapping satisfying condition (C) is more general than the class of nonex-
pansive mapping and obtained some fixed points and convergence theorems.

In 2003, Berinde [5] introduced the concept of weak contraction mapping which is also known as almost
contraction mapping. He showed that the class of almost contraction mapping is more general than the
class of Zamfirescu mapping [36] which includes contraction mapping, Kannan mapping [I5] and Chatterjea

mapping [7].

Definition 2.2. A mapping G : A — A is called almost contraction mapping if there exists a constant
~v € (0,1) and some constant L > 0, such that

1GY = Gnll <yl —nll + Ll = G, Vib,n e A (8)
Definition 2.3. A Banach space Q) is said to be uniformly convex if for each e € (0,2], there exists 6 > 0
such that for ¢,n € Q satisfying ||¢] <1, |n]| <1 and || —n|| > €, we have H#H <1-9.

Definition 2.4. A Banach space §) is said to satisfy Opial’s condition if for any sequence {15} in Q which
converges weakly to 1 € 2 implies

limsup |95 — || < limsup ||¢s — |, Vi € 2 with n # 1.
S—00

§—00

Definition 2.5. Let {15} be a bounded sequence in Q. For ¢y € A C Q, we put

(1, {¢s}) = limsup [|os — |].

§—00

The asymptotic radius of {15} relative to A is defined by

r(A{s}) = inf{r (¥, {¢s}) - ¢ € A}

The asymptotic center of {15} relative to A is given as:

A(A’ {¢s}) = {¢ eA: 7“(7/)7 {1!15}) = T(Av {ws})}

In a uniformly convex Banach space, it is well known that A(A, {t¢s}) consist of exactly one point.
Definition 2.6. [Jl/ Let {as} and {bs} be two sequences of real numbers that converge to a and b respectively,
and assume that there exists

(= lim lo2 =0l

500 lbs = bl|”
Then,
(R1) if £ =0, we say that {as} converges faster to a than {bs} does to b.

(R2) If 0 < £ < o0, we say that {as} and {bs} have the same rate of convergence.

Definition 2.7. [§] Let {O;} and {Es} be two fized point iteration processes that converge to the same point
z, the error estimates

19s —z|| < as Vs>1
IZs —z|| < b, Vs>1

are available where {as} and {bs} are two sequences of positive numbers converging to zero. Then we say
that {Os} converges faster to z than {Zs} does if {as} converges faster than {bs}.
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Definition 2.8. [/ Let G, G : A — A be two operators. We say that G is an approzimate operator for G if
for some € > 0, we have

IGy — G|l <€, Vi € A.

Definition 2.9. [72] Let {(s} be any sequence in A. Then, an iteration process Vsi1 = f(G,1)s), which
converges to fized point z, is said to be G-stable, if for e = ||(s+1 — f(G, ()|, Vs € N, we have

lim e =0« lim (s = z.
S$—00 S5—00

Definition 2.10. [26] A mapping G : A — A is said to satisfy condition (I) if a nondecreasing function
f:1]0,00) = [0,00) exists with f(0) = 0 and for all r > 0 then f(r) > 0 such that ||y —Gv|| > f(d(¢, F(Q))))
for all 4 € A, where d(¢, F(G)) = inf,cp) ¥ — 2|

Proposition 2.11. [28] Suppose G : A — A is any mapping. Then
(i) If G is nonexpansive, it follows that G is a Suzuki generalized nonexpansive mapping.
(1) Every Suzuki generalized nonexpansive mapping with a nonempty fized point set is quasi-nonerpansive.

(1i) If G is a Suzuki generalized nonexpansive mapping, then the following inequality holds:
[ = Gnll <3Gy =Pl + ([ —nll, Vo, n € A

Lemma 2.12. [28] Let G be a self mapping on a subset A of a Banach space Q0 which satisfies Opial’s
condition. Suppose G is a Suzuki generalized nonexpansive mapping. If {15} converges weakly to z and
lim ||Gys — ¢s|| =0, then Gz = z. That is, I — G is demiclosed at zero.

5$—00

Lemma 2.13. [28] Let G be a self mapping on a weakly compact convex subset A of a Banach space Q with
the Opial’s property. If G is a Suzuki generalized nonexpansive mapping, then G has a fized point.

Lemma 2.14. [35] Let {6} and {\s} be nonnegative real sequences satisfying the following inequalities:

95—1—1 < (1 - Us)es + As,
o0
where s € (0,1) for all s € N, >~ 0, = 00 and lim % =0, then lim 6, = 0.
s=0 s—00 78 5—00

Lemma 2.15. [27] Let {65} and {\s} be nonnegative real sequences satisfying the following inequalities:

95—1—1 < (1 - 05)05 + O-S)\S7
where s € (0,1) for all s € N, > 05 =00 and \s > 0 for all s € N, then
s=0

0 < limsupfs < limsup ;.

§—00 §—00

Lemma 2.16. [25] Suppose Q is a uniformly convexr Banach space and {is} is any sequence satisfying
0<p<i1s<q<1foralls>1. Suppose {1ps} and {ns} are any sequences of Q such that limsup ||| < «,
S5—00

limsup ||7s]| < a and limsup [|esy)s + (1 — vs)ns|| = a hold for some o > 0. Then lim ||¢s — ns|| = 0.
S5—00 $§—00 S§—00
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3. Rate of Convergence

In this section, we will prove that A* iteration process @ converges faster than the iteration process
for almost contraction mappings.

Theorem 3.1. Let Q be a Banach space and let A be closed convexr subset of Q. Let G : A — A be a
mapping satisfying with F(G) # 0. Let {14} be the iterative algorithm defined by @ with sequences
o0

{rs}, {ps} € 10,1] such that > rs = oo, then {15} converges strongly to a unique fized point of G.

s=0
Proof. Let z € F(G). Then from (), we have get
lgs =2l = IG((1 = ps)ibs + psGes) — 2]

= [|Gz = G((1 = ps)vbs + psGYs )|

< Az = (1= ps)tbs + psGs) || + Ll|z — Tz
= A = ps)hs +psGips — 2|

< (1 =ps)llvbs — 2l + ps[| G — =[))

< (A = ps)llvbs — 2l + psllos — 2|)

= (1 =1 =v)ps)llvos — 2|. (9)
Using @ and @, we have
[ks =z = [IG((1 = 7s)gs +15Ggs) — |
< AN =rs)gs +rsGgs) — 2|l
< U@ =75)llgs — 2l +75Ggs — =)
< (@ =ro)llgs — 2l +rsvllgs — =)
= Y1 =T =7)rs)llgs — 2|l
< PP = (1= )rs) (1= (1= 7)p)lvos — 2] (10)
From (b)) and (10), we obtain
Ins =zl = [Gks — |
< ks — 2]
< L= (=)L = (1= 7)ps) s — 2] (11)
Using @ and , we have
[Ys41 — 2l = [|Gns — 2]
< 7lins = =
< A= (1= )r) (1= (1= 7)p)|vs — 2] (12)
Since v € (0,1) and p; € [0,1], for all s € N, it follows that (1 — (1 —v)ps) < 1. Then from (12), we obtain
[orr =2l < M1 = (1= y)rs) s — 2. (13)

From , we have the following inequalities:

IWoser =2l < AL = (L= y)rs)les — 2]
< A= A= y)rsmn)ls—1 — 2]
1 =2l < A1 = (1= y)ro)llvbo — =] (14)
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From , we get
S
lsrr 2l < llbo — =l O I = (1= ). (15)
t=0

Since v € (0,1), ry € [0,1] for all t € N, it follows that (1 — (1 —~)r;) € (0,1). Since from classical analysis
we know that 1 — ¢ < e~ for all ¢ € [0,1]. Thus from (I5), we have

S ZH
(1 ) Z Tt

[s+1 — 2] < (16)

If we take the limits of both sides of (L6]), we get lims—,o |15 — 2]| = 0.
Next, we show that z is unique. Let z, 21 € F(G), such that z # z1, using the definition of G, we get

Iz =zl = [[Gz—Gal
< 9z =zl + Lz = T
= 7z =zl (17)
Obviously, from we have that ||z — z1|| = ||z — z1]|, if not we have a contradiction ||z — z1|| < ||z — z1]|.

Hence, we have that z = 2.

O

Theorem 3.2. Let Q) be a Banach space and let A be closed convex subset of Q. Let G : A — A be a mapping
satisfying with F(G) # 0. Let {15} be iterative algorithm defined by (6)) with sequences {rs}, {ps} € [0,1]
such that r < rg <1, for some r > 0 and for all s € N. Then {15} converges faster to z than the iteration
process ({5)).

Proof. From in Theorem 3.1 and the assumption r < ry < 1, for some r > 0 and for all s € N, we have
S
losr =2l < o — 2l O (1 = (1 = 7))
t=0

= o — 27T = (1= y)r)*t (18)

Similarly, in (Ullah and Arshad [33], Theorem 3.2), the authors showed that the iteration process takes
the form

srr =z < o —2l*CI T = (1 =), (19)
t=0

Since r < rg < 1, for some r > 0 and for all s € N, then from , we have

o1 — 2 < [l — 2?1 = (1= y)re)
t=0
= o — 2|¥*T (A = (1 = y)r)*th (20)
Set
= |loo — 2|y (1 — (1 — 4)r)* T, (21)
and

= [lto = 2"+ (L = (1 = 9)r)** (22)
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Define
Qg
9, = 2
bs
o = 2 - (1))t
o — =l 2eT (1~ (1 7))
PP, (23)
Since v € (0,1), we have hﬁm ¥s = 0, which implies that {15} converges faster than {/;} to z. O

To show the validity of the analytical prove in Theorem 3.2, we give the following numerical example.

Example 3.3. Let Q =R and A = [0,50]. Let G: A — A be a mapping defined by G(vp) =/1? — 9 + 54.
Obuviously, 6 is the fized point of G. Take rs = ps = %, with an initial value of Yo = 11. Then we obtain the
following table and graph for comparison of various iterative method.

By writing all the codes in MATLAB (R2015a) and running them on PC with Intel(R) Core(TM)2 Duo
CPU @ 2.26GHz 2.27 GHz, we obtain the comparison Table 1 and Figure 1 below.

We observe here that Thakur and Picard-S iterative schemes converge at almost the rate.

Table 1: Comparison of speed of convergence of A* iterative scheme with S, Thakur and K* iterative schemes.

Step S Thakur K* A*
11.0000000000  11.0000000000 11.0000000000 11.0000000000
7.8258228926  6.6850984699  6.23580353950  6.0169328397

e Tl = S = S STy Y
e oo b > © 0~ U W

6.4101626968
6.0664027976
6.0097817373
6.0014177612
6.0002049947
6.0000296299
6.0000042825
6.0000006190
6.0000000895
6.0000000129
6.0000000019
6.0000000003
6.0000000000

6.0303937423
6.0011083301
6.0000400605
6.0000014475
6.0000000523
6.0000000019
6.0000000001
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000

6.00300497860
6.00003597710
6.00000043040
6.00000000510
6.00000000010
6.0000000000
6.00000000000
6.00000000000
6.00000000000
6.00000000000
6.00000000000
6.00000000000
6.00000000000

6.0000127259
6.0000000095
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000
6.0000000000
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114 T T T T T T T

A* iteration
+ K* iteration
10 Thakur iteration | ]
—— S iteration

©

Sequence values
o]

5 I I I I I I I
2 4 6 8 10 12 14 16

Iteration number s

Figure 1: Graph corresponding to Table 1.

4. Convergence Results

In this section, we will prove the weak and strong convergence of A* iteration algorithm @ for Suzuki
generalized nonexpansive mappings in the framework of uniformly convex Banach spaces.
Firstly, we will state and prove the following lemmas which will be useful in obtaining our main results.

Lemma 4.1. Let Q) be a Banach space and A be a closed convexr subset of Q. Let G : A — A be a Suzuki
generalized nonezpansive mapping with F(G) # 0. If {ts} is the iterative sequence defined by (€], then
li)m s — z|| exists for all z € F(G).

S oo

Proof. Let z € F(G) and ¢ € A. By Proposition 2.11(ii), we know that every Suzuki generalized nonexpansive
mapping with F(G) # () is quasi-nonexpansive mapping, so

1
in — Gz|| =0 < ||z — || implies that |Gz — Gs]|| < ||z —g]|. (24)
Now, from @, we have

[G((1 = ps)bs + psGis) — 2|
(1 = ps)tps + psGeos — 2||
(L = ps)l[vos — 2] + ps|| Geos — 2|
(1= ps)l[vos — 2]l + psllvhs — 2]
s — 2||- (25)
Using @ and , we obtain
lks — 2|| IG((1 —7s)gs +75Gs) — 2]
(1 —rs)gs +75Ggs — 2|
(1 =rs)llgs — 2l + 7sl|Ggs — =||
(L =r9)llgs — zll + 7sllgs — =l
llgs — 2l < llvs — = (26)

lgs — =l

IN A IA

ININ AN
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Again, using (6)) and (26, we get

Ins — 2|l = [IGgs — 2|
< lgs — ||
< s — 2. (27)

Lastly, from @ and , we have

o1 — 2l = [|Gns — 2]
< ns — 2|l
< s — 2|l (28)

This implies that {[[)s — 2| } is bounded and nondecreasing for all z € F'(G). Hence, lim |[t)s—z|| exists. [
5—00

Lemma 4.2. Let Q be a uniformly conver Banach space and A be a nonempty closed convex subset of €.
Let G : A — A be a Suzuki generalized nonezpansive mapping. Suppose {1} is the iterative sequence defined

by (6). Then, F(G) # 0 if and only if {15} is bounded and lgn |Gvs — 1s|| = 0.

Proof. Suppose F(G) # 0 and let z € F(G). Then, by Lemma 4.1, lgn ||ts — z|| exists and {15} is bounded.
Put

lim ||¢s — z|| = a. (29)
S§—00
From and , we obtain
limsup ||gs — z|| < limsup ||1)s — z|| = a. (30)
S§—00 S5—00

From Proposition 2.11(ii), we know that every Suzuki generalized nonexpansive mapping with F(G) # () is
quasi-nonexpansive mapping. So that we have

limsup |Gys — z|| < limsup ||[¢s — z|| = a. (31)
S—00 5—00
Again, using () and (25]), we get
[$s41 =2l = [[Gns — 2]
< lins = 2|l
= [Gks — 2|
< ks — 2]l

|G((1 —rs)gs +7r:sGgs) — 2|

< H(l - Ts)gs +rsGgs — ZH
< (L=ro)llgs — zll + 75l Ggs — 2|l
< (L=ry)llvhs — 2] +rsllGgs — 2|
< s = 2l = rsllvs — 2 + 7sllgs — 2] (32)
From , we have
Yst1 — 2| — [[s — 2
W =2 20 =20 g, o~ - 2. (33)
S
Since 7, € [0,1], then from (33), we have
lsss — 2l = s — 2l

151 = 2l = llvbs = 2]l < < llgs = zll = l[9s — =ll;

Ts
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which implies that

[Yst1 = 2] < llgs — 2.
Therefore, from , we obtain

a < liminf ||g; — z]|. (34)
S§— 00
From and we obtain
a = lim |gs— z||
Eavdee]

= Slgglo G((1 = ps)s + psGips) — 2|
< sllglo [(1 = ps)ths + psGps — 2|
= lim [[(1 = ps) (s — 2) +ps(Ggs — 2)]

= slggo Ips(Ggs — 2) + (1 — ps) (Y5 — 2)||- (35)
From , , and Lemma 2.16, we obtain
sli{go HGU}S - @Z)SH =0. (36)

Conversely, assume that {5} is bounded and le |Gs — s|| = 0. Let z € A(A,{vs}), by definition 2.5

and Proposition 2.11(iii), we have
(Gz,{vs}) = limsup||vps — Gz||
S5—00
limsup(3[|Gvos — sl + [l4bs — z]])
S$—00
= limsup [[¢s — 2|
S5—00

= (= {w)). 7

This implies that z € A(A,{t¢s}). Since € is uniformly convex, A(A,{1s}) is singleton, thus we have
Gz = z. O

IN

Theorem 4.3. Let Q, A, G be as in Lemma 4.2. Suppose that Q satisfies Opial’s condition and F(G) # (.
Then, the sequence {15} defined by @ converges weakly to a fived point of G.

Proof. Let z € F(G), then by Lemma 4.1, we have lim |[¢s — 2| exists. Now we show that {¢s} has
5§—00

weak sequential limit in F'(G). Let ¢ and n be weak limits of the subsequences {5, } and {1, } of {s}
respectively. By Lemma 4.2, we have lim ||GYs — ¥s|| = 0 and from Lemma 2.12, I — G is demiclosed at
5—00

zero. It follows that (I — G)vY = 0 implies ¥ = G, similarly Gn = .
Next we show uniqueness. Suppose ¥ # 7, then by Opial’s property, we obtain

lim (g, — 9l = lm g, — 9|
S§— 00 S] oo

< S]h_f}looH?/’sj—WH

= lim || — 1]

S |

= lim [[gs — ¥, (33)

which is a contradiction, so ¥ = 7. Hence, {¢s} converges weakly to a fixed point of G. OJ

= il —
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Theorem 4.4. Let Q be a uniformly convexr Banach space and A be o nonemply compact convex subset of
Q. Let G: A — A be a Suzuki generalized nonexpansive mapping. Suppose {15} is the iterative sequence
defined by (6). Then {15} converges strongly to a fized point of G.

Proof. From Lemma 2.13, we have F(G) # () and from Lemma 4.2, we have 513101O |Gs — 1s]| = 0. Since
A is compact, so a subsequence {1, } of {15} exists such that ¢s, — 2z for some z € A. From Proposition
2.11(iii), we obtain

[, — Gzl < 31Gubn, — | + 5, — 2l for all s 2 1. (39)
Letting k — oo, we have Gz = z, i.e., z € F(G). Again, from Lemma 4.1, sli)IgOHT#s — z|| exists for all
z € F(G), thus ¢ — z strongly. O

Theorem 4.5. Let Q, A, G be as in Lemma 4.2. Then, the {15} defined by @ converges strongly to a point
of F(G) if and only if lirginf d(vs, F(G)) = 0, where d(v, F(G)) = inf{||¢ — 2| : z € F(G)}.

Proof. Necessity is obvious. Assume that liminf d(¢s, F(G)) = 0. From Lemma 4.1, we have lim ||¢s — z||
$—00 §—r00
exists for all z € F(G), it follows that lin_1>inf d(vs, F(Q)) exists. But by hypothesis, lirginf d(vs, F(G)) =0,
S o S o
thus lgrn d(¢s, F(G)) = 0. Next we prove that {1} is a Cauchy sequence in A. Since lirginf d(vs, F(G)) =0,
S o S o

then given € > 0, there exists sg € N such that, for all s,n > sg, we have

A F(@) < 3.
AW F(G) < 3.
Thus, we have
[9s =9l < lltbs = 2l + [[9on — ]|
< d(@s, F(G)) +d(¢n, F(G))
< % + % — €.

Hence {15} is a Cauchy sequence in A. Since A is closed, therefore there exists a point ¢ € A such that
llm s = 1. Since le d(¢s, F(G)) = 0, it implies that ILm d(¢1, F(G)) = 0. Hence, 1 € F(G) since
F(G) closed. O

Theorem 4.6. Let 2, A, G be as in Lemma 4.2. If G satisfies condition (I), then the sequence {15} defined
by @ converges strongly to a fized point of G.

Proof. We have shown in Lemma 4.2 that

Slgrolo ||G¢s - ¢s|| =0. (40)
Using condition (I) in Definition 2.10 and ({0, we get
Tim f(de, F(G) < Tim [[Gui — ]| =0, (41)

ie., hﬁm f(d(Ws, F(G))) = 0. Since f : [0,00) — [0,00) is a nondecreasing function satisfying f(0) = 0,
f(r) > 0 for all r € (0,00), we have
lim d(w, F(G)) = 0. (42)

From Theorem 4.5, then sequence {15} converges strongly to a point of F(G). O
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5. Numerical Illustration

In this section, we provide an example of a mapping which satisfies condition (C'), but not nonexpansive.
With the aid of the numerical example, we will prove that A* iterative algorithm @ outperform some leading
iterative algorithms in the existing literature in terms of speed of convergence.

Example 5.1. Let the mapping G : [0,1] — [0,1] be defined by

1_1/} Zf¢€[ 711)
(43)
{ 1/)—1&-110 if Y€ [11’ 1].
We now show that G 1s a Suzuki generalized nonexpansive mapping, but not nonexpansive. If we take i = 100
and n = 11, then
n+ 10
6o -Gl = (60 -Gil=1-u- (1H)
B 111 89
B 100 121| ~ 12100
And
1
[ =nll=1Y—nl=|7r—

100 11|~ 1100

This implies that |Gy — Gn|| > ||[v» —n||. Hence, G is not a nonerpansive mapping.
Next we show that G is a Suzuki generalized nonexpansive mapping by considering the following cases:
Case I: Let v € [0, 1), then 3¢ — Gyl = 3|20 — 1| = 5% € (g5,3) - For 5l — Gyl < [l — ],

we must have 1_221/’ 1§2\L¢ nll, ie., ! 2% < | —n|. The case n < 1 is not possible. Thus, we are left with
2

n > 1, which gives <n—1 , which implies n > % and hence n € [%, 1]. Now,

e m10 10y -1 1
And
1 9 1
o=l =1 =l = |5 = 5| = 35 > -
Hence, 5|v — Gyl < |l — nll = |Gy = Gl < [l — .
Case IT: Let € [,1], then §|v—Gul| = § 50 — o = 1053% € [0, 3], For Jllv—Go < |l

we have % < |p — |, which gives two possibilities:
(a) For ¢ < n, we have w <n—1/1:>77> M =nc Big,l} [ﬁ,l], So
(0 + 10 n+ 1()‘

1GY — G| = 1 -l =1 —nl
Hence, 3¢ — G| < II@ZJ — 1l = [GY — G| < [|v —7]|.
(b) F07"22¢+>1077; we have 107110[;[’ <yYp-—n=—=n< 3%2’;10 =1 E [%, 1]. Since n € [0,1] and n < 32‘/2’7;10,
we get =L < =1 € [39,1].
Notice that for ¢ € Bg, 1] and n € [i, 1] have been considered in case (a). So, we now consider when

11
NS [ég,l] and n € [0, 11) Then
+ 10
S

+11ln—1 1
|G — Gl ]: 'M\ <

11’
and

1 78 1

[ —nll =1 —n|> *—ﬁ =32 011

Thus, || — G|l < || —nl| = |Gy — G| < ||v — n||. Hence, G is a generalized nonexpansive mapping.
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By using the above example, we will show that A* iteration process @ converges faster than .S, Tharkur
and K* iteration processes. With the aid of MATLAB (R2015a), we observe that Picard-S and Thakur
iteration have almost the same speed of convergence and we obtain the comparison Table 2 and Figure 2 for
various iterative schemes with control sequences ry = p; = Si—l and initial guess ¥y = 0.9.

Table 2: Comparison of speed of convergence of A* iterative scheme with S, Thakur and K* iterative schemes.

Step S Thakur K* A*

1

© 00 ~1I O U = W N

—
= O

0.0200000000
0.9115784441
0.9920220698
0.9992801827
0.9999350537
0.9999941402
0.9999994713
0.9999999523
0.9999999957
0.9999999996
1.0000000000

0.0200000000
0.9919616767
0.9999340667
0.9999994592
0.9999999956
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000

0.0200000000
0.9931842144
0.9999525970
0.9999996703
0.9999999977
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000

0.0200000000
0.9999436712
0.9999999968
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
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1 Thakur iteration
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Iteration number s

Figure 2: Graph corresponding to Table 2.

6. Stability result
Our aim in this section is to show that our new iterative method @ is G-Stable.

Theorem 6.1. Let Q) be a Banach space and A be a closed conver subset of Q. Let G be a mapping satisfy
(8). Let {15} be the iterative method defined by (6) with sequences rs and ps € [0, 1] such that Y oo g5 = 00.
Then the iterative method @ is G-stable.

Proof. Let {(s} C € be an arbitrary sequence in A and suppose that the sequence iteratively generated by
(6) is ¢s41 = f(G,9s) converging to a unique point z and that e5 = ||(s41 — f(G, (s)||. To prove that G is
stable, we have to show that hm es=0< l1m (s = 2.

Let l1m €s = 0. Then from @ and (13, we obtam
[Csr1 =2l = |I¢ss1 — f(G,Cs) + f(G, () — 2|

< Csr1 = F(G )l + (G, Gs) — =
= e+ £(G.¢) — 2]
= &+ [|G(G(G((1 — ) G((1 = ps)Cs + psGCs)
+75G(G((1 = ps)Cs + psGG)))) — 2]
= Y= (1 =)rollGs — 2| + & (44)
For all s > 1, put
0, = [I¢—=ll,
os = (L=7)rs€(0,1),

As = Es.

Since l1m es = 0, this implies that == v)r — 0 as s — o0o. Apparently, all the conditions of Lemma

2.14 are fulﬁlled Hence, from Lemma 2.14 we have lim (s = z.
$—00
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Conversely, let lim (s = z. The we have
5§—00

es = [[G+1 = (GGl

[¢sr1 — 2+ 2= f(G, Gl

1Cs1 — 2l + /(G Gs) — 2]l

I€sr = 2l + 441 = (L= 2)rs)lIgs — ]I- (45)
From (45)), it follows that Slggo es = 0. Hence, our new iterative scheme (f]) is stable with respect to G. [

VARRVANNVAN

We now provide the following numerical example to support of analytic prove in Theorem 6.1.

Example 6.2. Let A = [0,1] and Gy = % Obuviously, the fized point of G is 0. Firstly, we have to show
that G satisfies (8). To do this, with v = % and for L > 0, we have

1 1 (G
2=l =gl —nl=Lly - |

o) <o

Now, we show that A* iteralive method @ 18 G—stable with respect with G.

|Gy — Gnll =l —nll — LIy —n|

Let rg = ps = H% and g € [0, 1], then we have

1 1 1 3
Js = 4(1_s+2+4(5+2)>¢82 <1_4(s+2)>¢8

1 6 1
ks = 16(1_4(s+2)+42(s+2)2)¢5
1 6 9
s = 64<1_4(3+2)+42(s+2)2>1’bS
1 6 9
Vsr1 = %(1_4(s+2)+42(3+2)2>¢5
(B )
256 43(s+2) 42(s+2)2 B

(o]
Let (s = % + 43(§+2) — 42(3'12)2' Obviously, (s € (0,1) for all s € N and SZ_:OCS = 00. By Lemma 2.14, we

obtain lim s = 0. Let ys = (9—1%3’ we have
S5—00

es = |ys+1— f(G,ys)

1 6 9
Yot = <256 T P12 a5 +2)2> Ys
1 1 6 9
s+4 (44(s+3) T BG4 46(s+2)2(5+3)>"

Obviously, lim €5 = 0.
5—00

Hence, our iterative algorithm @ is stable with respect to G.
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7. Data Dependence result

In this section, we obtain data dependence result for the mapping G satisfying using our new iterative

algorithm ().

Theorem 7.1. Let G be an approzimate operator of a mapping G satisfying . Let {15} be an iterative
sequence generated by @ for G and define an iterative sequence as follows:

1;061\,

gs = C:;((l - ps)i’s +ps§;7;s)a
ks = qg(l —14)0s + rsGgs), Vs > 1.

775 = Gks:

qzs+l = Gﬁ&

where {rs} and {ps} are sequences in [0,1] salisfying the following conditions:

(1) %STS,VSEN,

(i1) i rs = 00.
s=0

If Tz =z and TZ = % such that lim ¢, = 2, we have

11e
1—

Iz =2l <

5§—00

’)/’

where € > 0 4s a fired number.

Proof. Using (0)), and (46]), we have

lgs — gsll =

IN

IN

IN

IN

IN

IG((1 = ps)s + psGrbs) — G((1 — ps)tbs + psGs) |

IG((1 = ps)s + psGrbs) — G((1 — ps)tbs + PG5 |
HIG((1 = ps)ths + psGihs) — G((1 = ps)ihs + psGibs) |
V(1 = p)lltbs — sl + psl| Gros — G|

+L[| (1 = ps)os + psGibs — G((1 — ps)hs + psGips) || + €
V(1 = po)llos — Vsl + ps(|Gos — Gbs || + [|Gebs — G5 )))
FL[|(1 = ps)ths + psGrbs — G((1 — ps)ths + psGas)|| + €
V(1 = ps)[ths — Vsl +v0s |05 — Us|| + PsLl|tos — Gabs|| + pse)
+LII(1 = ps)ts + psGps — G((1 — ps)ths + psGs)|| + €
V(1 = (1= Y)po)lltbs — hall + vpsLlltps — Gas|| + ypse
+L[[(1 = ps)s + psGos) — G((1 — ps)bs + psGibs) || + €.

(46)
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Similarly, using @, and , we have
ks — ksl = |G((1 = rs)gs + rsGgs) — G((1 = 75)gs + rsGs )|
< G((1 = 75)gs + 75Ggs) — G((1 = 75)gs + sG5|
HIG((1 = 75)ds + 15Ggs) — G((1 = 75)gs + 75GGs )|
< (1 =7)llgs — Gsll + rsl|Ggs — Ggall)
+L[[(1 = 75)gs + psGgs — G((1 = 1s)bs + 15Ggs)|| + €
< AW =7r9)lgs = gsll + rs(1Ggs — Ggsl + 1Ggs — Gasl)))
+L|[(L = 1s)gs + 1sGgs — G((1 —15)gs +15Ggs)|| + €
< A =75)llgs — sl + yrsllgs — gsll + 75 Lllgs — Ggs|l + 7€)
+L[[(L = r5)gs + 15Ggs) — G((1 = 75)1bs + 15Gygs)|| + €
< (1= (1 =)rs)llgs — gsll +vrsLllgs — Ggs|l +yrse
+L[[(1 = rs)tbs + 1sGgs — G((1 — 15)gs + rsGys)|| + €. (49)
Putting in , we have
k= Fall < A= (1= )1 = (1= 7o)y — sl + 7pa Ll — G|
+7ps€ + LI(1 = ps)hs + psGbs) — G((1 = ps)os + psGibs ) || + €}
+y7sLllgs — Ggs|| + yrse
+L[[(1 = rs)vs + rsGgs) — G((1 —rs)gs +7:Ggs)|| + €
= 72(1 — (1 =)rs)(L = (1 = )ps)llths — &s”
+72(1 = (1 = Y)ro)psLllths — Gs|| +¥*pse — Yrspse + 7°rspse
+Y(1 = (1 = 9)rs) LI[(1 = ps)os + psGbs) — G((1 = ps)ibs + psGabs) |
+ye — rse + 77 rse + 75 Ll gs — G| +rse
+LI[(1 = rs)Ys + 15Ggs) — G((1 = rs)gs +1:Gygs)|| + €
= 1= (1= (1= (1 =)ps) 95 — sl
+77(1 = (1 = y)re)psLlltbs — Gubs|| + yrsLllgs — Gys||
(1= (1= 9)rs) LI[(1 = ps)tos + psGbs) — G((1 — ps)ibs + psGabs) |
+LI[(L = 75)s +15Ggs) — G((1 — rs)gs +75Gys)||
Y2 pse + 72 rps (v — 1) + ye + orse +e. (50)
From @, , and we obtain
o=l = NGk~ GR
= ||Gks — Gks + Gks — Gks|
< |Gks — G|l + [|GEs — Gks|
< ks — ksl + Ll[ks — G| + ¢
< 73(1 = (1 =)rs)(L = (1 = )ps)llths — 1;8”
+73(1 — (L =)rs)psLl[vhs — Gis|| + ’)”27“sLH9s — Gyl
72 (1= (1 = Nr) L1 = po)tos + psGips) — G((1 = ps)tbs + psGbs) |
FYLI[(1 = 75)s + 75Ggs) — G((1 = rs)gs + 7:Gygs) ||
+7°pse +7°rsps(v — 1) +72e + 7 rse + ve + Ll ks — Gks|| + €. (51)
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From @, , and , we have

[thsr1 — Pspall = Gns — G|

= ||Gns — Gijs + Gijs — G|

1Gns — Gl || + || Gl — G|
FYHT]S - ﬁs” + LH% - GnsH +€
YL = (1= )ro) (L= (1= 7)ps)[[tos — ]|
+74 (1 = (1= y)rs)psLilths — Gusl| + 77 Ll gs — Gy
+93 (1 — (1 = Y)r)LI|(1 — ps)tbs + psGebs) — G((1 — ps)hs + psGs) |
V2L (1 = 75) s + 15Ggs) — G((1 = 75)gs + 5G|
+v1pse + 7 reps (v — 1) + Y3 + yirse + v + YL ks — G|
+ve+ Llns — Gns|| + €.

ININ A

Since 7y, pn € [0,1] and «y € (0, 1), it implies that

(1 - (1 - 7)745) < 1>

(1 - (1 - 7)175) < 17

v—1<0,

7%yt <,

'74ps <1

From and , we obtain
[hsi1 = dssrll < (1= (1 =)rs)llvos — &

+L|[Ys — Gs|| + 5Ll gs — Gosl|
+LH(1 - ps)¢s + psGps — G((l _ps)ws +psG¢s)”
+LI[(1 = 7r5)tps + 15Ggs — G((1 —75)gs + r5Ggs) ||
+L|| ks — Gks|| + L||ns — Gns]|| + rse + 5e.

By our assumption (i) that § < ry, we have

l—rs<rg=1=1—-rs+rs <rs+rs=2r;.

”werl - @ZJSJrlH < (1 - (1 - FY)TS)HQJZ}S - 723”
+2rsL||¢s — Gs|| + 5Ll gs — Gysl|
+2rsL||(1 — ps)tbs + psGrbs — G((1 — ps) s + psGibs) ||
+2rsL||(1 — 7rs)s +15Ggs — G((1 —75)gs + r:sGygs)||
+2rsL||ks — Gks|| + 2rsL||ns — Gns|| 4 rse + 10r,e
= (1-(1- '7)7,5)”1#5 - TZJSH

2L s G S L s G S
(1 =) x { K% 1?1”_:) g 9s|l
+2LH(1 — ps)ws +psGps — G((l - ps)l/)s +psG'¢s)H
(1—7)
_|_2LH(1 — rs)ws + rngs - G((l — rs)gs + Tngs)H
(1=1)

+2LHks — Gks|| + 2L||ns — Gnsl| + 11e€
(L—=7) '

(52)

(55)
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Set

‘95 = st_d;su
os = (L—9)rs €(0,1)

A = {QLWS—G%H +L||gs _GQSH
’ (1—7)

+2L||(1 —Ps)% +P3G¢s - G((l - ps)¢s +psG1/Js)H
(1—7)

+2L||(1 —75)Ys +15Ggs — G((1 —1s)gs +15Ggs) ||
(1—7)

2L||k5 - Gks” + 2L||775 - G773|| + 116}
+ .
(1—7)

From Theorem 3.1, we know that lim s = z and since Gz = z, it follows that
S o
Jim [9s = G|l = lim [lgs = Ggsl| = lim [k — Ghs|| = lim_ s — G|
= slirgo ”(1 - ps)ws + psGYs — G((l - ps)% +psG¢s)H

= 1im [[(1 = 7e)ths + 7Ggs — G((1 — 74)gs + 75Ggs) |

§—00

= 0.

Using Lemma 2.15, we get

~ 11
0 < limsup 45, — ]| < limsup — (56)

§—00 5—00 ( - )

Since by Theorem 3.1, we have that lim ¥, = 2z and using our that hypothesis lim s = Z, then from
S5—00 S§—00

we have
o2l < 20
z—Z|| < .
(I—=7)
This completes the proof. O

8. Application

In this section, we will use our new iterative method @ to solve the following Volterra-Fredholm integral
equation which have been considered by Lungu and Rus [16]:

P
w(th,m) = g1, hu(,n))) + /0 /0 " K(,7,m, n,u(m, n))dmdn, (57)

for all ¥,n € R4. Let Let (2,] - |) be a Banach space. Let 7 > 0 and
X, ={uec CRE, Q)[3M(u) > 0: u(x,n)]e ™ < M(u)}.
We now consider BieleckiaAZs norm on X, as follows:
luly = sup (Ju(w, e @)
hneER4

Obviously, (X, || - ||+) is a Banach space (see [0]).
The following result which was given by Lungu and Rus [16] will be useful in proving our main result.
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Theorem 8.1. [16] Suppose the following conditions are fulfilled:
(V1) g€ C(R2 x Q,9Q), K € C(RL x Q,9);
(Va) h: X; — X, is such that

Sl > 0 ¢ [h(u(ee, ) — h(o(bm)| < Byl — o] - 7@+,

for all ,n € Ry and u,v € X;;
(V3)

Ellg >0: |g(¢)777€1) _9(¢)U7€2)| < lg’€1 — €2},

for all ,m € Ry and e1,eq € Q;
(Va)

HZK(ZZJ?namvn) : ‘K(w7777m7n7 61) - K(w7n7m7n7 61)‘ S lK(¢ﬂ77m7n)‘€1 — €2},

for all ,m,m,n € Ny and ey, ez € ();

(Vs) Il € C(RL,Ry) and

Yo
/ / ZK(¢’ n,m, n)GT(m+n)dmdn < leT(d)"'n)’
0 0

for all Y,m € RNy ;
(Vﬁ) lglh—i-l < 1.

Then, the equation has a unique solution z € X, and the sequence of successive approzimations

Yoorn
wear (9,7) = gab 7, h(uts (9, 7))) + /O /0 K (6, m,m,n, us(m, n))dmdn, (58)

for all s € N converges uniformly to z .
We now give our main result in this section.

Theorem 8.2. Let {5} be A* iterative method defined by (6) with sequences {rs} and {ps} in [0,1] such
that Y o2 rs = 0o. If all the conditions (V1) — (Vi) in theorem 8.1 are satisfied, then the equation has
a unique solution z in X, and the A* iterative sequence @ converges strongly to z.

Proof. Let {1} be an iterative sequence generated by A* iterative method @ for the operator A : X; — X,
defined by

¥ rn
Atuln)) = g(wn. b)) + [ [ K. wom. ) dmn. (59)
We will prove that s — 0 as s — oo. Using @, we obtain
s = 2ll- = sup (|A(ns(eh,m)) — A(2(h, n))[e” T HD).

hneERL
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Now,
|A(ns(¥,m))) —  A(z(¥, )|
< g(¥.n, h(ns(¥,m))) — g(¥,m, h(2(¥,m)))|
v orn
+’/ / K (1, n,m,n,ns(m,n))dmdn
o Jo
voorn
_/ / K(d},n,m,n,z(m,n))dmdn
o Jo
< lglh(ns(,m)) — h(2(¥,m))|
Y oorn
[0 1 mm)
—K (3, n,m,n,z(m,n))|dmdn
< lglp|Ins — z[|-e”@F)
+/ / I (¥, n,m,n)|ns(m,n) — z(m,n)|dmds
< thns — z||-€” W+ +1ns — z|l-€” W+m)
= (glp + D)lIns — 2|l 7”@,
Hence,
[thst1 = 2ll7 < (gln + Dlns — 2|+ (60)
Similarly,
s — 2|l < (lglh+l)|’ks — 2|7 (61)
Putting into , we get
st—i-l -zl < (lglh + Z)QHks - ZHT (62)

Again,

ke —zllr = sup (JAC(L = ra)gs + reGaa) (b, m) — A(=(h,m))|e 7).
PYneER4

and

JA((1 —r5)gs + 75Ags)(¥,m) — A(z(v,n))|
< g, m, h(((1 = 7r6)gs +1sAgs) (¥,m))) — g(tb,n, h(z(h, )|

‘/ / K(p,n,m,n, (1 —rs)gs +rsAgs)(m, n))dmdn

/ / K(¢,n,m,n, z(m,n))dmdn
0 0
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< lglh(((1 = 76)gs + 1sAgs) (¥, m)) — h(z(¥, )| (63)
v o
[0 IR G (1 = g+ g o)
—K((,n,m,n, z(m,n))|dnmdn
< Lglnll((1 = 75)gs + 75 Ags) — z||re”@FM
/ [ (0= g+ A ) — ) dds
< lglh”(( —75)gs +1sAgs) — z||re” (W)
HLI|[((1 = 75)gs + 15 Ags) — 2™ T
= (lglh +DII((1 - 7“8)98 +7sAgs) — ZHTeT(w—H])
< (lglh +DI[((1 =7rs)gs +rsAgs) — 2|+ (64)
So
(1 =7rs)gs +7r5sAgs) — 2ll= = (1 =7rs)(gs — 2) +7s(Ags — 2) |-
< (A =79)llgs — 2l +rsl|Ags — 2| (65)
Now
|Ags — Azl = sup (JA(gs(¥,m)) — A(z(,m))]e”7@TM),
Y mERL
and
|A(gs(,m))) — A(z(¥,m)| < g, m, h(gs(,m))) — (b, m, h(2(1, 1))l
voorn
{7 [ K mon, g, n))dmn
o Jo
voorn
_/ / K(Tl)ﬂ?a m,n,z(m,n))dmdn
o Jo
< glh(gs(sm)) — h(z(¥,n))]
voorn
[ I @ m.n. gy
—K(,n,m,n,z(m,n))|dmdn
< lylyllgs — 2|7
+ / [ et mlg.mn) = 2m, ) dms
o Jo
< lylpllgs — 2l 4+ 1||g, — 2T
= (glp +D)lgs — 2l 7”@,
Thus,
[Ags — Az|lr < (lgln +1)[|gs — 2|+ (66)
From and , we obtain
(1 =rs)gs +7rsAgs) — 2| < (1 —ry)llgs — 2] + rS(lglh +Dllgs — 2|l
[1—r{l = (gln + D}llgs — [~ (67)
Using and , we have
[ks — 2[l7 < (gl + D[ = re{1 = (lgln + D} gs — 2|+ (68)
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Putting into , we obtain

o1 — 2llr < (ndn + D1 = 71 = Ul + DY)llgs — 2lr- (69)
Similarly, using @, we have that
lgs = 2|z < (gln + D1 = ps{1 — (lgln + D H[¢hs — 2|+ (70)

From and , we get
lssr— 2l < (gl + DL = rof1 = (gl + Y]
X[1 = ps{1 = (lgln + D)}]llvhs — 2|l (71)

Recalling from assumption (Cg) that 4,41 < 1 and since ps € [0, 1], then it follows that 1—ps{1—(l4lp+1)} <
1. Thus, from , we obtain

P41 =2l < [1=7re{l = (lgln + D}[I¢bs — 2]l
Inductively, from , we have

s

51 —2llr < llvo = 2ll- TTI = radt = (gln + D)} (72)

k
Since 1, € [0, 1] for all £ € N and assumption (Cg) gives

I—re{l = (gl + 1)} < 1.
From classical analysis, we know that 1 — ¢ < e™¥ for all ¢ € [0, 1]. Thus, becomes
Iers = 2llr < o — 2llre == ol Sicor

which yields lim |[¢)s — z||; = 0. This completes the proof. O
5—00
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