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1. INTRODUCTION

With machine learning methods algorithms developed for 

complicated and large data can perform classifications with a 

high degree of accuracy [1]. In procedures for processing and 

assessing data at increasing scales, machine learning methods 

provide a transition from parametric methods to 

nonparametric methods. Due to machine learning, computers 

may be programmed to optimize a process based on previous 

experience or datasets. Thus, dataset classifications can be 

performed effectively in a short time, a model may be created 

at the end of this process and this model may be used for 

estimations about the future and auditing purposes [2]. 

Machine learning algorithms require adjustment before 

operation and include ‘hyperparameters’ with no clear 

defaults acceptable across a wide range of applications. 

Examples of these hyperparameters that require determination 

for these algorithms are the depth of a decision tree, number 

of trees in the forest and number of neurons in each layer of 

an artificial neural network. These parameters have critical 

importance for machine learning because different 

hyperparameters generally result in performances with a 

significant degree of difference [3]. The ideal settings for 

hyperparameters do not just determine the performance in the 

training process, but more importantly, determines the quality 

of the prediction models which emerge [4,5]. Currently, 

though there are many studies about the importance of 

hyperparameters in the machine learning field [6-8], studies 

about the variability displayed in the effect of 

hyperparameters linked to factors like the structure and 

dimension of the dataset are limited [9]. In addition, it has 

been stated in many studies [10-13] on machine learning that 

artificial neural networks and support vector machines are 

very successful methods for classification and estimation, as 

well as the presence of more than one hyperparameter in 

methods has been effective in the preference of methods in the 
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In this study, the aim was to assess the effect and significance of hyperparameters in four 
different datasets containing different values for observation numbers and variable counts 
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study. In this context, this study aimed to assess the effect of 

hyperparameters in datasets in four different situations where 

observation numbers and variable numbers have different 

values. 

 

2. MATERIAL AND METHOD 
 

The ‘mice protein expression’ dataset used in the study was 

obtained from the UCI machine learning data repository [14]. 

This dataset created by Higuera et al. [15] contains 15 

repeated measurements for 77 protein levels in 38 healthy and 

34 Down syndrome mice. The dataset is divided into 8 classes 

according to the genotype of the mice (control (c), trisomy (t)), 

behavior (context-shock (CS), shock-context (SC)) and 

treatment (memantine (m), saline (s)). In total, there are 1080 

observations for each protein. This dataset was chosen for the 

study due to its containing several features together like 

sufficient observations (1080), high numbers of variables 

(77), repeated measures (15) and sufficient class numbers (8). 

 

2.1. Data analysis scenario 
Four different datasets were created (Table 1), with different 

combinations of hyperparameters (Table 2) used (with grid 

search) and 138 different models were generated. 

Additionally, 10-fold cross-validation was used against 

overfitting situations that may occur in the models. In 

addition, the percentage of correct classification, kappa 

statistic, mean absolute error and root mean square error 

performance criteria were obtained (Table 3). Analyses were 

performed in the Weka (Waikato Environment for Knowledge 

Analysis, Version 3.8.1) program [16]. 

 
TABLE 1  

DATA SETS USED IN THE STUDY 

Data set 
Number of 

Observations 

Variable 

Number 
Explanation 

Data set 

I 
1080 77 Original data set 

Data set 

II 
1080 9 

By applying principal 

component analysis to the 

first data set, 

Data set 

III 
72 77 

Deleting 14 repeated 

measurements of each 

individual in the first data set, 

Data set 

IV 
72 9 

By applying principal 

component analysis to the 

third data set, 

 
 

 
Figure 1.  Multilayer perceptron 

 

 
 

TABLE 2 

HYPERPARAMETERS USED IN THE STUDY 

Algorithm Hyper Parameters* 

Support Vector 

Machines 

Linear Kernel C 

Polynomial Kernel C and D 

Radial Basis Function Kernel C and 𝛾 

Artificial Neural 

Networks 

Hidden layers 

The number of neurons in each layer 

* C: Editing parameter (1, 10, 100), d: Polynomial degree (2, 3, 5), 𝛾: Kernel size 

(0.01, 0.1, 1, 10). 

 

TABLE 3 

PERFORMANCE METRICS [17] 

Performance Metrics Notation * 

Correct classification percentage 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑝 + 𝑇𝑛)

(𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛 + 𝑇𝑛)
 

Kappa statistics 𝒦 =
(𝑃𝑜 − 𝑃𝑐)

(1 − 𝑃𝑐)
 

Average absolute error 𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑡 − 𝑥𝑡̂|

𝑛

𝑡=1

 

Square root mean square error 𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑡 − 𝑥𝑡̂)2𝑛

𝑖=1

𝑛
 

*:𝑇𝑝 + 𝑇𝑛: Number of correctly classified data, 𝐹𝑝 + 𝐹𝑛:Number of incorrectly 

classified data, 𝑃𝑜: Accepted rate, 𝑃𝑐 :   Expected rate 

 

2.2. Methods used in the study 
Machine learning is an artificial intelligence application 

completing learning and development operations from 

available data without openly programming the computer. 

Machine learning searches for patterns in data based on data 

provided for training and applies these patterns to test data in 

order to make better decisions in the future. The purpose of 

these methods is to ensure computers learn automatically 

without human intervention. Artificial neural networks 

consider calculation units in a learning model as resembling 

human neural cells, mimicking human neural systems for 

machine learning tasks [18]. The greatest task of artificial 

neural networks is to create machines with artificial 

intelligence mimicking the architecture of the human neural 

system for calculations. The currently-used multilayer 

perceptron (Figure 1) comprises an input, hidden layers and 

output layer, different from a single-layer perceptron. Linked 

to the complexity of the problem to be solved, the number of 

hidden layers and the number of neurons in these layers may 

vary [19]. In a multilayer perceptron, information in the 

dataset is sent to the input layer, here some analyses are 

performed and then data is transferred to the next layer and 

here the number of layers changes according to the complexity 

(data dimensions, number of variables, relationships between 

variables, etc.) and dimensions of the dataset to be studied, 

with the condition that the number of layers is at least one. As 

the layers are interconnected, the output value obtained from 

one layer is organized as the input for another layer. The 

neurons in the layer act in connection with each other. The 

number of neurons is determined linked to the complex 

structure of the dataset. The final layer comprises an output 

layer where information or data from the input and hidden 

layers are operated. Figure 1 shows a multilayer perceptron 

model. The oval shapes in Figure 1 represent neurons, 

organized into output layers and hidden layers. Signals 
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(values) from the input are subjected to a weighted total 

activation function (transfer function). In the figure, the curve 

shows the activation function (sigmoid) for each neuron. 

Support vector machines (SVM) are controlled machine 

learning algorithms that can be used for both classification and 

regression problems [20]. The basic function of this algorithm 

is to draw margins between two or more groups found on a 

plane and separate the groups from each other. This algorithm 

works with the logic that the drawn margin should be at the 

most distant point from the group members [21]. Currently, 

SVMs are used successfully for many real-world problems 

like classification of text and images, bioinformatic 

classification and detecting characters in handwriting [22]. 

SVM finds the data points in different classes and attempts to 

draw lines between them. The chosen data points are called 

support vectors, while the boundaries are called hyperplanes. 

The algorithm pays attention to each data pair until the closest 

pair in each class is found and a straight line (or plane) is 

drawn between them. In situations where input data can be 

linearly separated creating a hyperplane is simpler. However, 

generally, the classification regions overlap and it appears that 

no single hyperplane can complete the boundary function. In 

this situation, support vector machines create kernel functions 

to reflect the data at higher dimensions and complete the 

classification process [22]. 

The decision function for a two-class problem that can be 

linearly separated can be written by Equation 1 [21]. 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖(𝑥. 𝑥𝑖) + 𝑏𝑛
𝑖=1 )         (1) 

 

In situations where two classes cannot be clearly divided 

along a broad margin, the 𝜉𝑖   parameter symbolizing crossed 

margins enters the target function and the aim is to minimize 

this parameter. In this situation when classes cannot be 

divided in a linear way, Equation 2 minimizes this. This 

equation is called the soft margin. Additionally, the C 

parameter in the equation is an equilibrium parameter 

balancing margin and misclassification rates. The larger the C 

value, the larger the importance given to the error; in other 

words, the method is more sensitive to variations in data 

compared to the available data [23].   

  

𝑃 =  
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖 

𝑛
𝑖=1 , (𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 −

𝜉𝑖    𝑣𝑒    𝜉𝑖 ≥ 0)                                    
  (2) 

   

In nonlinear support vector machines, in situations where it is 

not possible to perform linear classification, data is converted 

to a higher dimension based on the principle of dividing two 

classes with a hyperplane. The conversion to higher 

dimensions uses functions with various features. These 

functions are called kernel functions [23, 24]. 

The inner product is used for linear classifiers (𝐾(𝑥𝑖 , 𝑥𝑗) =

𝑥𝑖
𝑇𝑥𝑗). If each data point is mapped to the higher-dimensional 

attribute space by some transformations (Φ: 𝑥 → 𝜑(𝑥)), then 

the inner product can be shown by Equation 3. 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗)                                         (3) 

 

In Equation 3, 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function and in low-

dimensional input space, it is sufficient to calculate this 

function instead of the high dimensional inner product [25]. 

The kernel functions used in the study are given in Table 

4.  

 
TABLE 4  

KERNEL FUNCTIONS USED IN THE STUDY 

Kernel Notation 

Linear 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

Polynomial 𝑘(𝑥𝑖 , 𝑥𝑗) = (1 + 𝑥𝑖
𝑇𝑥𝑗)𝑑 

Radial Basis 

Function 
𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖

2

,    𝛾 > 0,       𝛾 = 1/(2𝜎2) 

 

 

3. RESULT AND DISCUSSION 
 

The study examined 138 different models created from four 

different datasets with combinations of hyperparameters in 

machine learning methods. The results for the most 

successful, least successful and default models for the datasets 

and algorithms related to these models are given in Tables 5, 

6, 7, and 8.  

According to Table 5, the model obtained by changing the 

parameters of the default parameter model for the linear kernel 

function was not observed to cause a large change. 

Additionally, in terms of the use of the C parameter in the 

linear kernel, increasing the value of this parameter did not 

contribute to improving the model performance; in fact, it 

lowered model performance in some datasets (II and IV). This 

situation may be expected considering the low number of 

variables in these datasets. The C parameter is an equilibrium 

parameter balancing margin and misclassification rates, so 

considering large C values are more sensitive to variation in 

data [23], the use of small C values is required for lower 

variations. Additionally, more complicated decision curves 

may be obtained attempting to comply with all points in the 

data with large C values, so it should be considered that 

generalizing these decision curves to test data may be difficult 

[26]. Additionally, when the confusion matrix for model 1.1 

is investigated, it appears 1045 mice were accurately 

classified (97% accuracy rate). However, it was determined 

that this model classified 8 mice in the memantine treatment 

group (c-CS-m) as the saline treatment group (c-CS-s) and 7 

mice inversely as memantine group in spite of being in the 

saline treatment group. 
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TABLE 5  

LINEAR KERNEL FUNCTION RESULTS FOR SUPPORT VECTOR MACHINES 

Data 
Set 

C1 Model 
No 

Correctly 

Classified 

Instances 

Accuracy 
(%) 

Kappa 
Statistic 

Mean 

Absolute 

Error 

Root 

Mean 
Squared 

Error 

Confusion Matrix2 

I 

1 1.1* 1045 96.76 0.963 0.008 0.09 

 

10 1.2 1056 97.78 0.975 0.006 0.07  

II 

1 2.1* 730 67.59 0.629 0.081 0.285 

 

100 2.3 691 63.98 0.588 0.09 0.300  

III 

1 3.1* 42 58.33 0.523 0.104 0.323 

 

10 3.2 43 59.72 0.539 0.100 0.317  

IV 

1 4.1* 39 54.17 0.475 0.115 0.339 

 

10 4.2 38 52.78 0.460 0.118 0.344  

1C: Editing parameter, 2 a=c-CS-m, b=c-SC-m, c=c-CS-s, d=c-SC-s, e=t-CS-m, f=t-SC-m, g=t-CS-s, h=t-SC-s, *: Default model. 

 

 

 

According to Table 6, the model appeared to provide 71% 

success for classification with the default settings for dataset 

I, but changing the parameters increased the model 

performance to 99%. Additionally, changing the 

hyperparameter values for all datasets, especially dataset II, 

obtained very successful models, showing the effect of the 

hyperparameters is very significant. Additionally, when the 

confusion matrix for model 2.5 which accurately classified 

616 mice is investigated, several of the most pronounced 

errors in the model were classifying 85 mice from the saline 

treatment group (c-CS-s) as in the memantine treatment group 

(c-CS-m) and classifying 16 mice with context-shock 

behavior features as shock-context. Additionally, considering 

the use of the C parameter in the polynomial kernel in all 

datasets, the best performance was obtained when the C value 

was 100; additionally, the best performance was generally 

obtained when the polynomial degree was 3 (2nd degree in 

dataset III). 
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TABLE 6 
POLYNOMIAL KERNEL FUNCTION RESULTS FOR SUPPORT VECTOR MACHINES 

Data 
Set 

C1 D2 Model 
No 

Correctly 

Classified 

Instances 

Accuracy 
(%) 

Kappa 
Statistic 

Mean 

Absolute 

Error 

Root 

Mean 
Squared 

Error 

Confusion Matrix3 

I 

1 

2 1.4 745 68.98 0.64 0.08 0.28  

3 1.5* 770 71.30 0.67 0.07 0.27  

100 3 1.11 1074 99.44 0.99 0.001 0.04 

 

II 

1 

3 2.5* 616 57.04 0.506 0.107 0.328 

 

5 2.6 487 45.09 0.365 0.137 0.370  

100 3 2.11 1024 94.81 0.941 0.013 0.114  

III 

1 

2 3.4 22 30.56 0.198 0.174 0.417  

3 3.5* 30 41.67 0.328 0.146 0.382  

100 2 3.10 43 59.72 0.538 0.107 0.317 

 

IV 

1 

3 4.5* 14 19.44 0.078 0.201 0.449  

5 4.6 10 13.89 0.011 0.215 0.464  

100 3 4.11 38 52.78 0.458 0.118 0.344 

 
1C: Editing parameter, 2D: Polynomial degree, *: Default model, 3a=c-CS-m, b=c-SC-m, c=c-CS-s, d=c-SC-s, e=t-CS-m, f=t-SC-m, g=t-CS-s, h=t-SC-s 

 

 

When the confusion matrix data for model number 3.21 given 

in Table 7 is investigated, it was determined that this dataset 

comprised 77 protein level measurements from 72 mice after 

removing repeated measures from the original dataset and that 

the model accurately classified 44 mice. However, it was 

determined that this model classified 3 mice with trisomy 

genotype (t-SC-m) as control genotype (c-SC-m). 

Additionally, the model classified 2 mice in the trisomy 

genotype and memantine treatment group (t-SC-m) as control 

genotype and saline treatment group (c-SC-s). 
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TABLE 7 

RBF KERNEL FUNCTION RESULTS FOR SUPPORT VECTOR MACHINES 

Data 
Set 

C1 Gamma2 Model 
No 

Correctly 

Classified 

Instances 

Accuracy 
(%) 

Kappa 
Statistic 

Mean 

Absolute 

Error 

Root 

Mean 
Squared 

Error 

Confusion Matrix3 

I 

1 0.01 1.13* 713 66.02 0.61 0.085 0.292  

10 0.1 1.18 1080 100.0 1.0 0.0 0.0 

 

II 

1 0.01 2.13* 638 59.07 0.53 0.102 0.319  

100 0.1 2.22 1064 98.52 0.983 0.003 0.061 

 

III 

1 

0.01 3.13* 18 25 0.131 0.188 0.433  

10 3.16 12 16.67 0.036 0.208 0.456  

100 0.01 3.21 44 61.11 0.555 0.097 0.312 

 

IV 

1 0.01 4.13* 18 25 0.131 0.188 0.433  

100 

0.1 4.22 43 59.72 0.539 0.101 0.317 

 

10 4.24 9 12.5 -0.013 0.219 0.468  

1C: Editing parameter, 2Gamma (𝛾): Kernel size, *: Default model. 3a=c-CS-m, b=c-SC-m, c=c-CS-s, d=c-SC-s, e=t-CS-m, f=t-SC-m, g=t-CS-s, h=t-SC-s 

 

 

According to Table 7, the success rate for the default 

model for dataset I was 66%, and changing the parameters 

increased this rate to 100%. Additionally, all kernel functions 

used for dataset I displayed good performance, with the most 

successful model determined to the RBF (Tables 5, 6, 7). 

When the results for the support vector machines for the first 

dataset are assessed, especially adjusting the polynomial and 

RBF kernel parameter values according to the dataset was 

determined to significantly increase model performance. 

Additionally, changing the hyperparameter values in the RBF 

kernel function obtained very successful models among kernel 

functions used for dataset II; in this context, the most 

successful kernel was determined to be RBF (Model no: 2.22, 

accurate classification rate 99%, Table 7). When the results 

for the C parameter in the RBF kernel are investigated, the C 

value was 100 in the most successful models; additionally, 

when the gamma value was 0.1 (gamma 0.1, dataset III) the 

most successful models were obtained in general. Based on 

these results, it was determined that the hyperparameter 

dataset was very important especially for polynomial and RBF 

kernel functions in support vector machines. Parallel to our 

study results, Van Rijn and Hutter [27] compared the 

performance of a variety of algorithms on several datasets and 

stated that the same hyperparameters were typically important 

for several datasets in these studies and that gamma and C 

parameters were very important for SVM. Additionally, when 

results for other datasets apart from the original dataset are 

investigated, it appears that the classification performance for 

models created with these datasets were lower compared to 

the default models. Machine learning algorithms require many 

data in order to learn the basic structure of data during the 

training process. The low dimensions of the dataset affect the 
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model performance and lower the chance of performing good 

generalization of the model. For this reason, higher amounts 

of training data in machine learning ensure higher 

performance [28, 29]. Therefore, this issue may be shown as 

the cause of the low default model performance in these data 

sets. Additionally, it was determined that the most successful 

models created with support vector machines were created 

with the RBF kernel. Additionally, the results obtained from 

the linear kernel for dataset I and II were determined to be very 

close to the RBF kernel results. This situation may be assessed 

as due to the excess number of variables in these two models 

because the study by Hsu et al. [9] reported that in situations 

with high variable (feature) numbers, it is necessary to use the 

linear kernel. In their study, they stated that a large number of 

features also may not require data to be matched to a higher 

dimensional space and may improve non-linear mapping 

performance. They stated that RBF was as good as the linear 

kernel in this dataset; however, this function contains two 

parameters (C, gamma) and this increases operation load, 

while the use of the linear kernel containing only the C 

parameter is appropriate. 

 

 
TABLE 8 

RESULTS OBTAINED FROM ARTIFICIAL NEURAL NETWORKS 

Data 

Set 

Hidden 

Layer 

Neuron 

Number 

Model 

No 

Correctly 

Classified 
Instances 

Accuracy 

(%) 

Kappa 

Statistic 

Mean 

Absolute 
Error 

Root 
Mean 

Squared 

Error 

Confusion Matrix1 

I 

1 42 1.30* 1074 99.44 0.99 0.005 0.033 

 
2 2 1.31 567 52.5 0.45 0.139 0.266  

II 

1 8 2.28* 918 85 0.828 0.049 0.179 

 

2 

10 2.34 977 90.46 0.891 0.031 0.139  

2 2.30 544 50.37 0.430 0.145 0.270  

III 

1 

10 3.29 50 69.44 0.650 0.102 0.242 

 
42 3.30* 48 66.67 0.618 0.095 0.244  

2 2 3.31 25 34.72 0.248 0.188 0.301  

IV 

1 

4 4.26 35 48.61 0.411 0.151 0.309 

 

8 4.28* 31 43.06 0.347 0.150 0.322  

2 2 4.30 10 13.89 0.001 0.219 0.331  

1a=c-CS-m, b=c-SC-m, c=c-CS-s, d=c-SC-s, e=t-CS-m, f=t-SC-m, g=t-CS-s, h=t-SC-s, *: Default model. 
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Table 8 presents the results obtained from the artificial neural 

network. Accordingly, the classification performance for 

dataset IV was low, which again is assessed as linked to the 

low observation numbers and variable numbers in the dataset 

[28,29]. Additionally, the most successful model in this 

dataset was a single hidden layer and 4 neuron model number 

4.26 (49% accuracy). When the confusion matrix for this 

model is investigated, 35 mice were accurately classified in 

the model; however, 5 mice with control genotype (c-SC-m) 

were classified as trisomy genotype (t-SC-m). Additionally, 

the most successful model for dataset I was model number 

1.30 with 99% accurate classification rate. This model 

comprises a single hidden layer and there were 42 neurons in 

the hidden layer. This model is also the default model and the 

total number of neurons in the hidden layer is equal to the 

mean of the sum of the number of independent variables and 

the number of classes. This situation shows the importance of 

the appropriate setting of hyperparameters to the dataset in 

terms of model performance. An advantage of the Weka 

program used in the study is that the number of neurons in the 

hidden layer is automatically adjusted according to the dataset 

by taking as the default value [16]. The adjustment process 

generally causes better hyperparameter settings compared to 

the default values. Studies by Koch et al. [4] reported that even 

in situations where default settings provide good results, the 

hyperparameter adjustment process performs intuitive 

verification of these settings and has significant value in 

ensuring the construction of a model with higher accuracy. 
 

4. CONCLUSION 
 

According to the results obtained in our study; 

- For all datasets, especially in polynomial and RBF kernel 

function support vector machines and artificial neural 

networks, the arrangement of hyperparameters 

according to the dataset is very important for 

classification performance,  

- In situations with low numbers of variables and 

observations, machine learning methods displayed lower 

performance, 

- In situations with a low number of variables, the effect 

of hyperparameters can be said to gain greater 

importance. 

Generally, we recommend the following strategies for training 

of new networks due to these results; 

Observation number > variable number 

- Performance of all kernels used in support vector 

machines are close to each other, 

- The effect of hyperparameters in polynomial and RBF 

kernels are more important, 

- Support vector machines are more successful than 

artificial neural networks. 

Observation number >> variable number 

- RBF and polynomial kernels are more successful than 

the linear kernel, 

- The effect of hyperparameters in all kernels is much 

more important, 

- Support vector machines are more successful than 

artificial neural networks. 

Observation number < variable number 

- All kernel performances used in support vector machines 

are close to each other, 

- The effect of hyperparameters in polynomial and RBF 

kernels are much more important, 

- Artificial neural networks are more successful than 

support vector machines. 

When researchers apply machine learning methods, they need 

to focus on the most important hyperparameters for the dataset 

in different situations, determine situations where 

hyperparameters are more important and significant, and 

decide on methods accordingly. 
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