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 Abstract 

In computer networks, diverse applications generate network traffic with different characteristics. 

Network traffic classification is significant to manage networks better, improve service quality 

and ensure security. Software-Defined Networks (SDN) provides flexible and adaptable 

techniques for traffic classification with its programmable structure. SDN flows naturally exhibit 

particular characteristics of network applications and protocols. Therefore, it can be said that SDN 

can present significant opportunities in traffic classification using machine learning. This study 

proposes a traffic classification approach using machine learning models in SDN. In this study, 

DNS, Telnet, Ping and Voice traffic flows were created on the SDN using the Distributed Internet 

Traffic Generator (D-ITG) tool. Twelve-features representing these traffic flows (the number of 

packets transmitted, average transmission time, the number of instantly transmitted packets, etc.) 

were determined, and over the SDN controller in the physical network, a real-time dataset was 

created by collecting data depending on the features. Later, the performance of k Nearest 

Neighbor (k-NN), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Decision 

Tree (DT) and Naive Bayes (NB) machine learning models were tested for traffic classification 

on this dataset. When the k-NN model was tested on this real-time dataset, its classification 

accuracy was obtained as the maximum with 99.4%. Therefore, this model has been determined 

as a machine learning giving the highest classification performance with the lowest cost flow 

features in traffic classification in SDN.  

Yazılım Tanımlı Ağlarda Makine Öğrenme Algoritmaları ile Trafik 

Sınıflandırma ve Karşılaştırmalı Analiz 

Öz 

Bilgisayar ağlarında, farklı uygulamalar farklı özelliklere sahip ağ trafiği üretirler. Ağları daha 

iyi yönetmek, hizmet kalitesini artırmak ve güvenliği sağlamak için ağ trafiğinin sınıflandırılması 

önemlidir. Yazılım Tanımlı Ağlar (YTA) programlanabilir yapısı ile trafik sınıflandırması için 

esnek ve uyarlanabilir teknikler sağlar. YTA akışları doğal olarak ağ uygulamaları ve 

protokollerinin belirli özelliklerini sergiler. Dolaysıyla, YTA’ nın makine öğrenmesi kullanarak 

trafik sınıflandırmada önemli fırsatlar sunduğu söylenebilir. Bu çalışmada, YTA’ da makine 

öğrenme modellerini kullanarak bir trafik sınıflandırma yaklaşımı öneriyoruz. Dağıtık İnternet 

Trafik Oluşturucu (D-ITG) aracı kullanılarak YTA üzerinde DNS, Telnet, Ping ve Ses trafik 

akışları oluşturulmuştur. Bu trafik akışlarını temsil eden on iki öznitelik (iletilen paket sayısı, 

ortalalama iletim süresi, anlık iletilen paket sayısı vb.) belirlendi ve fiziksel ağdaki YTA 

kontrolcüsü üzerinden gerçek zamanlı olarak özniteliklere ait veriler toplanarak bir veri seti 

oluşturuldu. Daha sonra da bu veri seti üzerinde trafik sınıflandırması için k En Yakın Komşu (k-

EYK), Destek Vektör Makinesi (DVM), Çok Katmanlı Algılayıcı (ÇKA), Karar Ağacı (KA) ve 

Naive Bayes (NB) makine öğrenme modellerinin başarımı test edildi. Gerçek zamanlı olarak 

oluşturulan bu veri seti üzerinde k En Yakın Komşu modeli kullanıldığında %99.4 doğruluk oranı 

ile en yüksek sınıflandırma doğruluğu elde edilmiştir. Dolayısıyla, YTA’da trafik 

sınıflandırmasında, en düşük maliyetli akış öznitelikleri ile en yüksek sınıflandırma performansı 

veren makine öğrenme modeli olduğu tespit edilmiştir. 
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1. INTRODUCTION 

The increases in internet data traffic and diversity have made network traffic classification a critical issue 

for computer science. Classification methods are utilized to increase network service quality, to use network 

resources efficiently, and to detect attacks and anomalies on the network using traffic analysis [1].  

In traditional networks, various methods, such as rule-based, load-based, and correlation-based are used for 

network traffic classification. However, these methods also have different problems of their own [2].  

Rule-based methods are widely used in network traffic classification. Predefined rules are used to classify 

packets in the network. Network packet header information and port information are the properties on which 

the classification is based. Although this method provides very high performance for the known 

applications, it has not been successful for applications using dynamic port numbers. Therefore, network 

operators wanted to use different classification solutions [3].  

The classification performance decrease due to the dynamic ports' use in rule-based methods has led 

researchers to classify using the load-information carried by the packets flowing over the network. This 

method, also known as the deep packet analysis, removed connection number and IP address information 

dependency. Even though the protocol header information in use changes, the classification performance 

will be high because of the matching process of characteristic signatures or patterns in the packet loads. 

However, the high costs of hardware used for deep packet analysis and the problem of not detecting the 

encrypted packet contents, which have been increasing recently, have created the limitations of these 

methods [4]. 

To eliminate the limitations and difficulties encountered in rule-based and load-based classification 

methods, researchers have used correlation-based network classification methods. The statistical properties 

of the flows making up the network traffic are used, such as packet size, arrival rates and flow time. 

Classification is performed by including different machine learning techniques such as DT, SVM, k-NN 

into the classification process. Classification accuracy is relatively higher for packs containing encrypted 

traffic since the packet content is not handled specially. However, since the correlation analysis carried out 

in each flow requires additional calculations, it creates an extra consumption when creating classified 

dataset. Also, traditional networks consist of many routers and switches managed by many different 

protocols. Because of this distributed structure, the application of machine learning methods on traditional 

networks poses a significant challenge [5].  

Unlike traditional network architecture, SDN separates the control plane from the data plane, allowing the 

network to be programmed directly over a central controller [6]. The control plane is transported to a high-

performance server, and the management of the network is performed through central controller software. 

The data plane is left on routers or switches supported by OpenFlow protocol and is only responsible for 

the packs' transmission. Although many protocols can be used in SDN architecture, the OpenFlow protocol 

is the most successful [7]. SDN provides data flow through the OpenFlow protocol. The controller collects 

network flow information through the OpenFlow protocol and can direct it to switches by writing dedicated 

rules. SDN allows network administrators to analyze traffic in software without the need for any physical 

hardware.  

Machine learning-based methods use statistical properties learned from data for traffic classification. Since 

package contents are not utilized for classification, they can be classified as encrypted data. Machine 

learning methods reach the necessary information for the traffic classification via OpenFlow protocol in 

SDN, and the classification can be performed with a low calculation cost. 

For traffic classification using machine learning, various approaches have been carried out. Wang et al. [8] 

proposed a Quality of Service (QoS) conscious traffic classification system, using a semi-controlled 

learning algorithm and Deep Packet Inspection (DPI). Traffic flows of both known and unknown 

applications are divided into different QoS classes with the method proposed. D. Rossi and S. Valenti [9] 

focused on the classification of applications running over the User Datagram Protocol (UDP) in their work. 

The UDP network traffic obtained with the Netflow network monitoring tool is classified with the SVM 

algorithm. He et al. [10] proposed a software-defined virtual traffic classification model called vTC, which 
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dynamically determines the most suitable flow properties and the most effective machine learning classifier. 

They identified basic and advanced flow properties and used six different classification algorithms, k-NN, 

SVM, MLP, DT, NB and AdaBoost. Amaral et al. [11] proposed an SDN-based traffic classification 

architecture in their study. In their study, 500 samples from each of Youtube, Vimeo, Facebook, Linkedin, 

Skype, BitTorrent, Web Browsing (HTTP) and Dropbox applications were collected, and then these traffic 

samples were classified with the specified machine learning algorithms (Random Forest (RF), Stochastic 

Gradient Boosting (SGB) and Extreme Gradient Boosting (EGB)). Wang et al. [12] have proposed the 

Software-Defined Network Home Gateway model (SDN-HGW) to manage better smart home networks. 

In the study, an encrypted data packet classifier was developed using three deep learning-based approaches: 

MLP, Stacked Autoencoder (SAE) and Convolutional Neural Network (CNN). For the developments of 

these classifiers called DataNets, a dataset including more than 20,000 encrypted packages from 15 

applications was used. The results obtained have shown that the developed DataNets can be applied to the 

SDN-HGW model for the real-time processing in the smart home network with accurate packet 

classification and high computation efficiency. Lim et al. [13] proposed an SDN architecture that could 

classify traffic using deep learning methods. In their study, Deep learning models, including the Multi-

Layer Long Short Term Memory (LSTM) model and the combination of CNN and single-layer LSTM 

models, were used to classify dataset consisting of Remote Desktop Connection (RDP), Skype, Secure 

Shell (SSH), BitTorrent and Hyper-Text Transfer Protocol (HTTP) traffics. Meenaxi M Raikar et al. [14] 

have stated in their study that traditional traffic classification approaches have limitations due to heavy data 

traffic. To overcome these limitations, they proposed a model in which SDN architecture and machine 

learning methods are used together. HTTP, E-mail and Video-Audio (streaming) traffic data are classified 

with SVM, NB and the Nearest Centroid Classifier (NCC).  

When the studies are examined, it is seen that machine learning methods give outstanding results in traffic 

classification. The datasets and the traffic flow characteristics selected have been determinant in the 

accuracy rates obtained in traffic classification using machine learning. The approach proposed is aimed to 

contribute to the studies in this field.  

This study proposes an architectural approach classifying the traffic flow in SDN using machine learning 

methods. The traffic flows of DNS, Telnet, Ping and Voice were created in the network environment created 

using SDN architecture. These traffic flows were collected in real-time and classified using machine 

learning methods. The number of features to use for machine learning methods was determined based on 

maintaining compatibility with the application (SDN controller), and the study refrained from excessive 

and complicated calculations. Although the network traffic class is predetermined, it can be adapted to suit 

the destination. The system presented offers network operators a solution to classify the network traffic to 

increase network efficiency and service quality. 

 

 2. MATERIAL AND METHOD 

This study proposes an architectural approach classifying the traffic flow in SDN using machine learning 

methods. The proposed approach consists of two stages. In the first stage, real-time traffic flows of DNS, 

Telnet, Ping and Voice were formed in the SDN simulation environment, and these traffic data were 

cumulated with the Collector module on the controller. The features of the traffic flows to be used in 

classification were determined and the model was trained by using k-NN, SVM, MLP, DT and NB machine 

learning models. In the second stage, again using trained models via the Classifier module on the controller, 

a real-time traffic classification was carried out. Figure 1 shows the architectural structure of the proposed 

approach. 
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Figure 1. The Proposed System Architecture 

2.1. Software-Defined Network Environment and Dataset Generation 

As shown in Figure 2, a basic network topology has been created by using a virtualization environment 

(VirtualBox-VM). The topology has consisted of one controller, one Layer-2 switch, and three client 

computers (their system features are shown in Table 1) installed on five virtual machines. Nodes in the 

network were modeled as VM, and therefore some delay has been experienced in network traffic. Another 

option was to use the Mininet simulation environment commonly used in researches. However, a single 

VM simulation environment was not preferred to create a simulation close to the real environment. 

Table 1. System Features 

Operating System Ubuntu 14.04_64 bit Core i7 16 GB RAM 

SDN Controller RYU(4.30)_ 2 GB RAM 

Switch Open vSwitch (2.0.2) 2 GB RAM 

Hosts Ubuntu 14_04_64_bit 2 GB RAM 

Network Simulation Environment VirtualBox-VM 

 

An overlay network was created to allow the traffic, which had been generated by the client computers, to 

pass through the switch virtual machine to establish communication instead of using the internal switching 

mechanism of the virtual machines making up the SDN environment.  Here, the study aims to create a 

network environment that is as realistic as possible and prevent delays. For client computers in the network, 

two interfaces were identified. The first interface was connected to the internal network, and the second 

interface to the switch (OVS) using the VXLAN tunnel. The switch was connected to both the client 

computers via the VXLAN interface and directly to the controller by the internal network. The RYU 

controller was placed in the Controller VM. 
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Figure 2. Simulation Network Topology 

Once the SDN is configured, the controller needs to be aware of the packets flowing through the switch 

between client computers. For this, the controller can view the flow information shown in Table 2 at every 

second, using the Python script coded. 

Table 2. Flow Data Features-1 

Flow Description 

time UTC value at the time of flow information 

datapath Key ID in RYU 

in-port incoming traffic port 

eth_src source MAC address of the flow 

eth_dst destination MAC address of the flow 

out-port outbound traffic port 

total_packets total flow packets 

total_bytes the total size of flow packets (in Bytes) 

 

The flow data shown in Table 2 were used as input data to a script named "traffic_classifier.py" The script 

created a Flow object with the features shown in Table 3, using the flow data shown in Table 2. By using 

the features in the flow data, the number of distinguishing features to be used in traffic classification was 

increased. 

Table 3. Flow Data Features-2 

 

                   Feature                Description 

Forward_delta_packets The number of packets seen since the last forward 

stream detection 

Forward_delta_bytes Bytes seen since the last forward stream detection 

Forward Instantaneous Packets 

per Second 

Instantaneous packets per second in the forward 

direction (src-> dst) 

Forward Average Packets per 

second 

The average number of packets per second in the 

forward direction (src-> dst) 

Forward Instantaneous Bytes per 

Second 

Instantaneous number of bytes per second in the 

forward direction (src-> dst)) 

Forward Average Bytes per 

second 

Instantaneous number of bytes per second in the 

forward direction (src-> dst) 

Reverse _delta_packets The number of packets seen since the last reverse flow 

detection 

Reverse _delta_bytes Bytes seen since the last reverse flow detection 
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DeltaReverse Instantaneous 

Packets 

per Second 

instantaneous packets per second in reverse direction 

(dst-> src) 

Reverse _avg_pps The average number of packets per second in the 

reverse direction (dst-> src) 

Reverse _avg_bps average bytes per second (dst-> src) 

Reverse Instantaneous Bytes per 

Second 

instantaneous bytes per second in the reverse 

direction (dst-> src) 

Traffic Type traffic type (ping-telnet-voice-DNS) 

 

The Traffic_classifier.py script can perform the following tasks: 

Collection of the Training Data: For the traffics of DNS, Telnet, Ping, and Voice, training data are 

collected. The traffic must be flowing between the two client computers before the script file is 

operated.  

Classification Using Machine Learning: Classifying the type of traffic flow between client 

computers using classification algorithms. 

2.2. Dataset Generation 

The D-ITG application was utilized to generate traffic flow data for training Machine Learning models. D-

ITG is defined as a platform that can generate IPv4 and IPv6 traffic by accurately replicating the workload 

of existing Internet applications [15]. In this study, Ping, Telnet, DNS, Voice (G.711) traffics were created 

through the D-ITG application.  

First, a specific traffic flow between a particular pair of client computers was simulated using D-ITG or 

other tools. Second, the traffic_classifier.py script file was started with the appropriate options to train the 

traffic type. The script initiates the RYU controller and the simple_monitor_AK.py (a modified version of 

simple_monitor_13.py). Data generated from the simple monitor script is collected and transformed to 

update Flow object features. The Flow object features are then periodically exported to the Comma 

Separated Variables file (CSV). Once CSV files are generated for each traffic type, they are combined into 

a complete Pandas Dataframe object used for model training and testing. 

2.3. Data Preprocessing 

The collected data were subjected to several preprocessing stages before being used for machine learning 

model training. First, the rows containing missing data were identified and removed. The mean values of 

relevant features were replaced in place of the removed ones to avoid possible information loss. Repeated 

or linearly increasing data may cause false predictions in the process of training machine learning models. 

Therefore, the features of "the number of transmitted packets", "the number of returned packets", "the 

amount of transmitted data" and "the amount of returned data" were removed from the dataset. Table 3 

shows the features to use in the learning process. However, the high correlation level between the features 

determined during machine learning model training does not contribute to model training. The highly 

correlated features should be removed to increase the machine learning algorithms' efficiency. For this, the 

Principal Component Analysis (PCA) algorithm was used to determine the main components in the dataset 

and the non-parser features were removed from the dataset.  

At the end of the data collection and data preprocessing, a dataset consisting of 10145 rows and 13 columns 

(12 features and 1 class feature) was obtained. This dataset consists of 2692 Ping, 2438 Telnet, 2554 Voice 

and 2461 DNS packets evenly. 
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3. TRAFFIC CLASSIFICATION WITH MACHINE LEARNING ALGORITHMS 

AND A COMPARATIVE ANALYSIS 

Different classification algorithms are used to solve classification problems. Each classification algorithm 

has a unique mathematical model that it uses. Therefore, the results obtained show variations. It is only 

possible to determine which model is more successful by trying different classification models. This study 

tested the classification algorithms widely used today and compared their success rates. 

A python-based scikit-learn library was used to test the performance of classification algorithms. This 

library supports many machine learning models [16]. This study focused on k-NN, SVM, MLP, DT and 

NB machine learning classification algorithms frequently used in classification problems. The features of 

these classification algorithms can be summarized as follows. k-NN is an algorithm used in both 

classification and regression problems. In this algorithm, the distance of the new data to join in the dataset 

is calculated according to the existing data, and its closest neighbors in the k number are checked. [17]. 

Euclidean, Manhattan, and Minkowski distance functions are used for distance calculations generally. The 

SVM is used to separate data belonging to two classes in the most appropriate way [18]. For this, decision 

boundaries, or in other words, the hyperplanes, are determined. The Linear Support Vector Machine (L-

SVM) and the Radial Kernel Support Vector Machine (R-SVM) can be selected as the classifiers. DT is a 

decision support classifier that enables predictions using tree-like structures. Each node represents a stream 

tag, and root-to-leaf paths represent classification rules. Entropy is used for categorical variables, and the 

Least Squares method is used for Gini continuous variables. MLP is a type of feed-forward neural network 

working according to the supervised learning method. By giving the inputs and expected outputs to the 

network, the nodes' weights optimization is aimed. While feed-forward calculates the network output, back-

propagation ensures the errors detected to be reduced by updating the weights in the net. This process 

repeats until faults in the network are minimized, or training is terminated. NB is a classifier based on Bayes 

decision theory using probability calculations. It aims to select the decision with the highest probability. It 

has different algorithms such as Gauss (G-NB), Multinomial (M-GB), and Bernoulli (BNB) distribution. 

Training and testing of machine learning models were carried out using the python_3 core structure in the 

Jupyter Notebook experiment environment with 16-GB RAM, 64-bit operating system, and 7-core 2.60-

GHz processor.  

Hyperparameter-adjustments were made on the models used to obtain optimum efficiency. Table 4 shows 

the algorithms and hyperparameter values used. During the models' training and testing processes, 

deviations (bias) and errors can occur due to the data distribution. The k-fold Cross-Validation Method 

(k=10) was used to prevent this situation. The k-Fold Cross Validation method divides the dataset into 

equal parts according to a specified number of k, allows each section to be used for both training and testing. 

Thus, possible problems of the model, such as overfitting and selection bias, are eliminated. The training 

and testing procedures were repeated ten times for each classification model, and so average values were 

calculated. 

Table 4. Hyper Parameters Used in Algorithms 

Algorithms Hyperparameters 

k-NN metric=’minkowski’, n_neighbors=2, p=2, weights=’uniform’ 

SVM C=2.0, kernel=’rbf’ 

MLP activation=’logistic’, solver=’lbfgs’,alpha=0.1, hidden_layer_sizes= 

(100, 100), dropout value=0.1 

DT criterion=’gini ‘, max_depth=10 

NB estimator=GaussianNB, iid=’deprecated’ 
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3.1. Performance Metrics 

This study used the confusion matrix to compare the performance of the classification models used. The 

confusion matrix is a table summarizing how successful the classification model has been (Table 5). It 

contains as many rows and columns as the number of classes the model has. 

Table 5. Binary Classification Confusion Matrix 

 

 
Predicted Class 

0 1 
A

ct
u

a
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ss
 

 

0 
True Negative 

(TN) 

False Negative 

(FN) 

1 
False Positive 

(FP) 

True Positive 

(TP) 

 

While the samples of a particular class correctly defined by the classifier are placed in the True Positive 

(TP) indices, the samples of other accurately identified classes are placed in the True Negative (TN) indices. 

Similarly, specimens incorrectly predicted by the classifier are placed in the False Positive (FP) and False 

Negative (FN) indices in the confusion matrix. Accuracy, Precision, Sensitivity, F1 criterion (F-Score), 

Specificity, and ROC curves criteria are calculated using the values obtained in the complexity matrix 

(Equations 1-7). These criteria will be used to compare classification models. 

 Accuracy: It is the criterion that gives the ratio of correctly classified samples to all samples 

(Equation 1). 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                                        1 

 Precision: It is the ratio of correctly classified samples to total positive values (Equation 2). 

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                2 

 

 Sensitivity: The ratio of correctly classified samples to true positive values (Equation 3). 

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                              3 

 Specificity: It is the ratio of the correct negative number to the sum of the correct negative and false 

positive numbers (Equation 4). 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                               4 

 (F-Score): It is the harmonic mean of the Precision and Sensitivity values (Equation 5).  

 
2∗𝐾∗𝐺

𝐾+𝐺
                                                                                5 

 ROC AUC: ROC (Receiver Operator Characteristic) is the probability curve used for different 

classes. It is often used to compare the ML algorithms' performances when unbalanced datasets are 

used. In the ROC curve, there are False Positive Ratio values (Equation 6) on the X-axis and True 

Positive Ratio values (Equation 7) on the Y-axis. AUC (Area Under the Curve) refers to the area 

under the ROC curve. The area under the ROC curve shows the performance of the classifier. 

 
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                                               6 

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                7 
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3.1. Comparative Analysis 

The complexity matrices of the different classification models used are shown in Figure 3.  

 

 
 

a) b) 

 

 

 
c) d) 

 

 

e)  

Figure 3.Complexity Matrices of the models used; a) k-NN, b) MLP, c) DT, d) SVM,e) NB 

Comparison of classification models according to the criteria obtained by using confusion matrices is shown 

in Table 6.  
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Table 6. Comparison of Models (average of 10 runs). 

 

As shown in Table 6, although the MLP and the k-NN models gave outstanding results, the k-NN 

classification model gave better results than other models in all criteria. When the models' working times 

were compared, it was observed that while the k-NN was the fastest trained method, the decision tree was 

the fastest estimation method (Table 7). Although the MLPs' test performance was high, their training time 

was longer than other networks. 

Table 7. Comparison of Models Run Times (average of 10 runs). 

 

Model Training Time (sec) Test Time (sec) 

k-NN 0.2104 0.1783 

SVM 21.812 0.8334 

MLP 1401.3 0.1053 

DT 0.73381 0.06723 

NB 0.7492 0.11 

 

In Figure 4, a graphic was created using the AUC and F criteria of the models. According to this graph, the 

k-Nearest Neighbor model gave better results than other models. The ROC diagrams of the classification 

models used are given in Figure 5. ROC diagrams show the rate which the classifier estimates correctly. 

When this diagram is examined, the performance of the k-NN model is seen.  

 

 

Figure 4. Graph created with AUC and F1 values obtained as a result of running the models 
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Model Accuracy Sensitivity Specificity Precision F1 Score AUC 

k-NN 0.9935 0.9935 0.9978 0.9935 0.9935 0.99895 

SVM 0.8814 0.8774 0.9604 0.9122 0.8792 0.998625 

MLP 0.9879 0.9879 0.9959 0.9880 0.9879 0.998875 

DT 0.89798 0.89845 0.96572 0.91024 0.89429 0.967725 

NB 0.5675 0.5716 0.8551 0.6775 0.5361 0.791825 
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e)  

Figure 5.ROC diagrams of the models used, a) k-NN, b) MLP, c) DT, d) SVM, e) NB 

The results of similar traffic classification studies using machine learning methods in SDN, whose reviews 

are in the introduction, are given in Table 8 comparatively. It is seen that the results obtained with the 

proposed traffic classification approach (k-NN and MLP) are more successful than the results obtained in 

other studies [8, 9, 11]. Comparison results are difficult to justify, as similar studies in the literature have 

been carried out using different models on different datasets. 
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Table 8. Comparison of the results with similar studies in the literature. 

Dataset 

Feature 

Selection 

Method 

Machine Learning 

Algorithm 
     Accuracy (%) Ref. 

Real internet 

traffic data 

Forward 

Selection 

Algorithm 

K-Means 

Laplacian SVM 
     Average 90.0 [8]                       

Their own 

dataset 
- SVM      Average 90.0 [9]                         

KDD (2009) - 
k-NN, SVM, MLP, DT, NB, 

AdaBoost 
     Average 95.6 

                   

[10] 

Their own 

dataset 
PCA 

RF 

SGM 

EGM 

86.4 

85.5 

87,2 

                        

[11] 

Their own 

dataset 
- 

MLP 

SAE 

CNN 

96.0 

98.0 

98.0 

                        

[12] 

PCAP - 
LSTM 

CNN+LSTM 
Average 95.0 [13]                       

Their own 

dataset 
- 

SVM 

NB 

NCC 

92.3 

96.8 

  91.02 

                      

[14] 

Our Dataset PCA 

k-NN 

SVM 

MLP 

Decision Tree 

NB 

99.4 

88.14 

98.8 

89.8 

56.8 

 

 

4. CONCLUSION 

Classification of traffic flows in today's IP networks has become a significant research area with the 

adoption of Machine Learning methods and Software Defined Network principles. Due to the dynamic and 

encrypted nature of the existing traffic, traditional traffic classification methods that involve the 

identification of traffic based on port number and load can be inadequate.  

In this study, traffic classification was made using different machine learning models on SDN architecture. 

The real-time network packets were captured on the SDN architecture created closely similar to the real 

environment. Network traffic was classified using five different Machine Learning models (k-NN, SVM, 

MLP, DT and NB) used for classification problems today. The working time and classification performance 

of the models were compared. k-NN has been the most successful model with an accuracy of 99.4%. The 

MLP model has come next with a 98.8% performance rate. The results obtained have been promising for 

future studies on traffic prioritization and QoS.  

Various issues need to be considered for further studies. The network environment used should be at the 

most similar confusion level to real environments, and also the factors affecting the network service quality, 

such as scalability and availability, should also be taken into account. Besides, since most of today's internet 

traffic consists of video and game applications, the application is planned to be developed to include high-

density traffic packages. Models such as Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) or CNN are also aimed to be used in future studies. 
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