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Abstract

We introduce and investigate the notion of weak projection invariant semisimple modules.
We deal with the structural properties of this new class of modules. In this trend we have
indecomposable decompositions of the special class of the former class of modules via
some module theoretical properties. As a consequence, we obtain when the finite exchange
property implies full exchange property for the latter class of modules.

1. Introduction

All rings are associative with unity and modules are unital right modules. Let R be a ring and M a right R-module. Recall that
M is called CS (or, extending) if every submodule of M is essentially contained in a direct summand of M. This kind of modules
are important generalizations of injective, semisimple and uniform modules. There have been several generalizations of
CS modules as well as some classes of modules which are related to the direct summands of the module in literature (see [1]-[4]).

A submodule N of M is called projection invariant, if f (N)⊆ N for all f 2 = f ∈ End(MR) (see [3, 5, 6]). Note that torsion
subgroup of a group, socle of a module and the radical of a ring are all projection invariant submodules of the corresponding
modules, respectively. Recall from [6], a module M is called π-extending if every projection invariant submodule of M is
essential in a direct summand of M. It is well-known that a CS-module is π-extending [3].

In this paper, we introduce and investigate the notion of weak projection invariant semisimple modules which is a generalization
of semisimple and projection invariant semisimple modules [7]. We call a module M is weak projection invariant semisimple,
denoted by wπ-semisimple, provided that each semisimple projection invariant submodule of M is a direct summand of M. It
is clear that the class of the wπ-semisimple modules is contained in the class of π-extending modules. We deal with structural
module properties of wπ-semisimple modules. Moreover, we define special class of wπ-semisimple modules and obtain inde-
composable decomposition for the aforementioned modules via Abelian endomorphism rings over rings with ascending chain
condition on the right annihilators. As a consequence, we obtain that the finite exchange property implies full exchange property.

Let X ⊆M, then X ≤M, SocM and End(MR) denote X is a submodule of M, the socle of M and the endomorphism ring of
MR, respectively. Recall that a module M over a ring R is said to have (finite) exchange property if for any (finite) index set I,
whenever M⊕Y = ⊕

i∈I
Ai for modules Y and Ai, then M⊕Y = M⊕ (⊕

i∈I
Bi) for submodules Bi of Ai [8]. A family {Ni : i ∈ I} of

independent submodules of a module M is said to be a local summand if for any finite subset F of I, ⊕
i∈F

Ni is a direct summand

of M [3, 9]. Recall further that a ring R is called Abelian if every idempotent of R is central [3, 10].
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Since wπ-semisimple modules are based on semisimple projection invariant submodules, we start with the following basic
result.

Lemma 1.1. (i) If A is projection invariant in B and B is projection invariant in M then A is projection invariant in M.
(ii) If M = ⊕

i∈I
Mi, and X is a semisimple projection invariant submodule of M, then X = ⊕

i∈I
(X ∩Mi) and X ∩Mi is semisimple

projection invariant submodule of Mi for all i ∈ I.

Proof. Immediate by definitions (see [11, p.50]).

In [7, Lemma 1.2], the author attempts to obtain the following statement: Let MR be a module and N ≤ K ≤MR. If N is
projection invariant in M and K/N is projection invariant in M/N, then K is projection invariant in M. However, the proof
therein is inconsistent. Since f (N) would be nonzero, the function θ : M/N →M, θ(m+N) = f (m) for all m ∈M is not
well-defined. Let us make it clear by the following example.

Example 1.2. Let M = (Z/4Z)⊕ (Z/4Z) be the Z-module, and N = (2Z/4Z)⊕0 be the submodule of MZ. Now, it is easy to

see that End(MZ)∼=
[
Z/4Z Z/4Z
Z/4Z Z/4Z

]
. Let f 2 = f =

[
1̄ 1̄
0̄ 0̄

]
∈End(MZ). So, let us consider θ : M/N→M, θ(m+N) = f (m)

for all m ∈M. Since (1̄+ 3̄)− (3̄+ 3̄) ∈ N, (1̄+ 3̄)+N = (3̄+ 3̄)+N. But θ((1̄+ 3̄)+N) = f (1̄+ 3̄) =
[

1̄ 1̄
0̄ 0̄

][
1̄
3̄

]
=

[
0̄
0̄

]
,

and θ((3̄+ 3̄)+N) = f (3̄+ 3̄) =
[

1̄ 1̄
0̄ 0̄

][
3̄
3̄

]
=

[
2̄
0̄

]
. Hence θ((1̄+ 3̄)+N) 6= θ((3̄+ 3̄)+N).

Notice that Proposition 2.3 (ii), Corollaries 2.4, 2.5 and one part of the proof of Theorem 2.6 in [7] use [7, Lemma 1.2]. By the
previous example, the aforementioned results are also invalid.

2. Main results

In this section, we introduce and investigate the class of weak projection invariant semisimple modules. We focus on some
structural properties of weak projection invariant semisimple modules as well as indecomposable decompositions for the
special class of the weak projection invariant semisimple modules via some module theoretical conditions.

Definition 2.1. We call an R-module M weak projection invariant semisimple, denoted by wπ-semisimple, if each semisimple
projection invariant submodule of M is a direct summand of M.

Observe that any semisimple module and π-semisimple module is wπ-semisimple. Moreover, any module which has zero socle
(for example, a polynomial ring R[x] over any ring R) is clearly a wπ-semisimple module. Next, we provide wπ-semisimple
modules which are not π-semisimple.

Example 2.2. (i) Let M be the Z-module Z. Obviously, MZ is wπ-semisimple. However, MZ is not π-semisimple. For example,
N = 2Z is a projection invariant in MZ which is not a direct summand of MZ.
(ii) Let M be the Z[x]-module Z[x]. Then SocM = 0. Hence M is a wπ-semisimple module. Since M is uniform, it is not
π-semisimple.

(iii) [4, Example 2.4(ii)]. Let D be a simple domain which is not a division ring. Take R =

[
D D⊕D
0 D

]
then I =

[
0 0⊕D
0 0

]
is an ideal of R. Thus, I is a projection invariant submodule of RR which is not a direct summand of RR. It follows that RR is
not π-semisimple. However, Soc(RR) = 0, and hence RR is wπ-semisimple.

Example 2.2 sheds light on the natural question, namely, when a wπ-semisimple module is a π-semisimple. The second part of
the following result provides an answer.

Proposition 2.3. (i) Assume that MR is an indecomposable module. Then MR is semisimple if and only if MR is wπ-semisimple
and SocM is essential in M.
(ii) If MR is a wπ-semisimple module with essential socle then MR is π-semisimple.

Proof. (i) (⇒) This implication is clear.
(⇐) Let X ≤M. Since M is indecomposable, X is projection invariant in M. It follows that SocX is projection invariant in M,
by Lemma 1.1 (i). By hypothesis, SocX is a direct summand of M. Hence SocX = 0 or SocX = M. Therefore X = 0 or M.
Thus, X is a direct summand of M. So, M is semisimple.
(ii) Let X be any projection invariant submodule of MR. Then SocX is projection invariant in M, by Lemma 1.1 (i). It follows
that SocX is a direct summand of M. On the other hand,

SocX = X ∩SocM ≤ X ∩M = X

gives that SocX is essential in X . Thus SocX = X i.e., X is a direct summand of M. So, MR is π-semisimple.



Fundamental Journal of Mathematics and Applications 85

Corollary 2.4. If MR is a wπ-semisimple module with essential socle then MR is π-extending.

Proof. Let X be a projection invariant submodule of M. By Proposition 2.3, X is a direct summand of M. Since X is essential
in itself, MR is a π-extending module.

Lemma 2.5. Let MR be wπ-semisimple and N a projection invariant submodule of M. Then N is wπ-semisimple.

Proof. Let X be any semisimple projection invariant submodule of N. By Lemma 1.1 (i), X is projection invariant in M.
Therefore M = X⊕X ′ for some X ′ submodule of M. Now, by Lemma 1.1 (ii), N = (N∩X)⊕ (N∩X ′) = X⊕ (N∩X ′). Thus
X is a direct summand of N which yields that N is wπ-semisimple.

Lemma 2.6. Let MR be a wπ-semisimple module. Then the following statements hold:

(i) Every fully invariant submodule of MR is wπ-semisimple.
(ii) If End(MR) is Abelian then every direct summand of MR is wπ-semisimple.

Proof. (i) Since every fully invariant submodule is projection invariant, the proof follows from Lemma 2.5.
(ii) Let MR be a wπ-semisimple module with an Abelian endomorphism ring. Let K = eM for some e2 = e ∈ End(MR).
Thus g(eM)⊆ eM for all g2 = g ∈ End(MR). Hence KR is a projection invariant submodule of MR. By Lemma 2.5, KR is a
wπ-semisimple module.

Proposition 2.7. Let M = M1⊕M2 such that M2 is semisimple fully invariant submodule of M. If MR is wπ-semisimple, then
both M1 and M2 are wπ-semisimple.

Proof. It is clear that M2 is wπ-semisimple. Let X be a semisimple projection invariant submodule of M1. Then X⊕M2 is a
semisimple projection invariant submodule of M (see [6, Lemma 4.13]). By hypothesis, X ⊕M2 is a direct summand of M.
Hence M = X⊕M2⊕L for some submodule L of M. Now, the modular law gives that

M1 = M1∩ (X⊕M2⊕L) = X⊕ (M1∩ (M2⊕L)).

Hence X is a direct summand of M1 which yields that M1 is wπ-semisimple.

Theorem 2.8. Let M = ⊕
i∈I

Mi where Mi’s are fully invariant submodules of M for i ∈ I. If Mi is wπ-semisimple for all i ∈ I,

then M is wπ-semisimple.

Proof. Assume each Mi is wπ-semisimple for all i ∈ I and M = ⊕
i∈I

Mi. Let N be a semisimple projection invariant submodule

of M. Then N = ⊕
i∈I
(N ∩Mi) where N ∩Mi is a semisimple projection invariant submodule of Mi for all i ∈ I, from Lemma

1.1(ii). By assumption, Mi is wπ-semisimple which gives that N∩Mi is a direct summand of Mi for all i ∈ I. It follows that N
is a direct summand of M. Thus, M is wπ-semisimple.

Observe that if M is a wπ-semisimple module in the previous result then by Lemma 2.5, each Mi is also wπ-semisimple for all
i ∈ I. Our next aim is to obtain an indecomposable decomposition for special wπ-semisimple modules. To do this, let us give
the following definition.

Definition 2.9. We call an R-module M wπ∗-semisimple provided that whenever any semisimple projection invariant submodule
is contained as projection invariant in a projection invariant submodule of M then the larger submodule is a direct summand
of M.

It can be seen easily that any wπ∗-semisimple module is wπ-semisimple (any projection invariant submodule has a semisimple
projection invariant submodule, namely, its socle). However, there are several wπ-semisimple modules which are not
wπ∗-semisimple. For example, let M be the Z-module Z (see, Example 2.2 (i)).

Lemma 2.10. Let R be a ring and M an R-module such that R satisfies ascending chain condition on right annihilators
of the form r(m) (m ∈ M). If M is wπ∗-semisimple with an Abelian endomorphism ring then M has an indecomposable
decomposition.

Proof. Let {Xλ : λ ∈ I} be an independent family of submodules of M and X = ⊕
λ∈I

Xλ be a local summand of M. Now, let

us define the canonical projection πk : X → ⊕
k∈I,k 6=λ

Xk. Then f (X) = f ( ⊕
λ∈I

Xλ ) = ⊕
λ∈I

f (Xλ ) = ⊕
λ∈I

f (kerπλ ) where f 2 = f ∈

End(MR). By the assumption that End(MR) is Abelian, f (kerπλ )⊆ kerπλ . Thus f (X)⊆ X . It follows that X is projection
invariant in MR. Since SocX is projection invariant in X , by wπ∗-semisimple, X is a direct summand of M. Hence [9, Theorem
2.17] yields that M has an indecomposable decomposition.

Next, we have the following result.
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Theorem 2.11. Let R be a ring and M an R-module such that R satisfies ascending chain condition on right annihilators
of the form r(m) (m ∈M). If M is wπ∗-semisimple with an Abelian endomorphism ring then M is a direct sum of uniform
submodules.

Proof. Observe that being wπ∗-semisimple implies π-extending, and an indecomposable module is uniform by [6, Proposition
3.8]. Now, we conclude the proof by Lemma 2.10 and Lemma 2.6 (ii).

It would be worthy construct an example which shows that being Abelian endomorphism ring in the previous theorem is not
superfluous. Incidentally, let us give the example.

Example 2.12. Let R be the real field and n be any odd integer with n ≥ 1. Let S be the polynomial ring R[x1, . . . ,xn]

indeterminates x1,x2, . . . ,xn over R. Let R be the ring S/Ss, where s = x2
1 +x2

2 + · · ·+x2
n−1. Then the free R-module M =

n
⊕

i=1
R

contains a submodule KR which is indecomposable and has uniform dimension n−1 (see [12, Corollary 16]).

Note that KR is not uniform. Since SocM = 0, then Soc(KR) = 0. Now, let Y =

[
S K
0 R

]
be the split null extension ring

where S = End(KR). Observe that SK is faithful. Therefore Soc(YY ) = 0. Hence Y is a wπ∗-semisimple module. Moreover,

Y =

[
S K
0 0

]
⊕
[

0 0
0 R

]
and

[
S K
0 0

]
is indecomposable with uniform dimension n−1. It follows that Y has no decomposition

into uniform submodules. It can be seen that YY is Noetherian. However, End(YY )∼= Y is not Abelian. For, let a =

[
f x
0 0

]
,

and b =

[
0 0
0 1

]
be two elements of End(YY ) where f ∈ S and 0 6= x ∈ KR. Then ab =

[
f x
0 0

][
0 0
0 1

]
=

[
0 x
0 0

]
and

ba =

[
0 0
0 1

][
f x
0 0

]
=

[
0 0
0 0

]
.

Now, we have the following consequences of the Theorem 2.11. The first one is the result on exchange property of modules
which was pointed out in the introduction and the last is based on locally Noetherian modules. Recall that a module is called
locally Noetherian provided that every finitely generated submodule is Noetherian (see [3]).

Corollary 2.13. Let R be a right Noetherian ring and M an R-module with an Abelian endomorphism ring. If M is wπ∗-
semisimple then the finite exchange property implies full exchange property.

Proof. By Theorem 2.11 and [8, Corollary 6].

Corollary 2.14. Let M be a locally Noetherian module with an Abelian endomorphism ring. If M is wπ∗-semisimple then the
finite exchange property implies full exchange property.

Proof. Let m ∈M. Then R/r(m)∼= mR is right Noetherian module. It follows that R satisfies ascending chain condition on
right annihilators of the form r(m) (m ∈M). Thus Theorem 2.11 gives the result.

Finally, we have the next result on endomorphism ring of a wπ∗-semisimple module. First, recall that a ring R is π-Baer if the
right annihilator of a projection invariant left ideal of R is of the form eR for some e2 = e ∈ R (see [5, 13]).

Theorem 2.15. Assume that M is a wπ∗-semisimple module. Then the endomorphism ring of M is a π-Baer ring.

Proof. Let S = End(MR) and I be a projection invariant left ideal of S. We want to show that rS(I) = eS for some e2 = e ∈ S.
It can be seen that rM(I) is a projection invariant submodule of MR. Hence Soc(rM(I)) is a projection invariant submodule
of rM(I). By hypothesis, rM(I) = eM for some e2 = e ∈ S. Thus IeM = 0, so Ie = 0, as SM faithful. Therefore eS ⊆ rS(I).
Now, let a ∈ rS(I). Hence Ia = 0 which gives that l(aM) = 0. It follows that aM ⊆ rM(I) = eM. Thus a ∈ eS, so rS(I)⊂ eS.
Therefore, S is a π-Baer ring.

Corollary 2.16. If M is a π-semisimple module then the endomorphism ring of M is a π-Baer ring.

Proof. Since π-semisimple implies wπ∗-semisimple the result follows from Theorem 2.15.
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