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Abstract

In this work, we introduce the idea and concept of p–harmonic exponential type convex
functions. We elaborate on the newly introduced idea by examples and some interesting
algebraic properties. In addition, we attain the novel version of Hermite–Hadamard type
inequality in the mode of the newly introduced definition and on the basis of lemmas, some
refinements of the Hermite–Hadamard type inequalities in the support of the newly intro-
duced idea are established. Finally, we investigate and explore some integral inequalities in
the form of applications for the arithmetic, geometric, harmonic and logarithmic means. The
amazing tools and interesting ideas of this work may inspire and motivate further research
in this direction furthermore.

1. Introduction

Theory of convexity present an active and attractive field of research. Many researchers endeavor, attempt and maintain his work on the
concept of convexity, extend and generalize its variant forms in different ways using innovative ideas and fruitful techniques. This theory
provides us with unified and unique framework to develop and organize highly efficient numerical tools to tackle and solve a wide class of
problems that arise in pure and applied mathematics. In recent years, the concept of convexity has been improved, generalized, and extended
in many directions. A number of studies have shown that the theory of convex functions has a close relationship with the theory of inequalities.

The integral inequalities are useful and have remarkable importance in optimization theory, functional analysis, physics and statistical theory.
In the research area, inequalities have a lot of applications in probability, statistical problems and numerical quadrature formulas [10, 19, 20].
Due to many generalizations and extensions convex analysis and inequalities have become an attractive, interesting and absorbing field for
the researchers and for attention reader can refer to [7, 17, 18, 21, 29].

It is well known that the harmonic mean is the special case of power mean. This mean has a lot of applications in different field of sciences
which are computer science, geometry, probability, finance, trigonometry, statistics and electric circuit theory. Harmonic mean is the most
appropriate measure for rates and ratios because it equalizes the weights of each data point. Harmonic mean is used to define the harmonic
convex set. In 2003, first time harmonic convex set was introduced by Shi [27]. Harmonic and p–harmonic convex function was first time
introduced and discussed by Anderson et al. [2] and Noor et al. [22] respectively. Nowadays a lot of people are working on exponential type
convexity [5, 6]. Dragomir [9] introduced the class of exponential type convexity. After Dragomir, Awan [3] studied and investigated a new
class of exponentially convex functions. Kadakal introduced a new definition of exponential type convexity in [16]. The amazing importance
and applications of exponential type convexity is used to manipulate for statistical learning, information sciences, data mining, stochastic
optimization and sequential prediction [1, 26, 28] and the references therein.
The principal focus and main aim of this note is to explore and define the idea of p–harmonic exponential type convex functions and in the
support of these newly introduced functions, we attain its algebraic properties. Some interesting examples with logic are given as well. In
addition, we attain the novel version of Hermite–Hadamard inequality in the mode of the newly discussed idea. Furthermore, we explore
a new lemma and in order to this lemma, we attain some refinements of Hermite–Hadamard-type inequality in the manner of this newly
explored definition. Finally, as applications, some new inequalities for the arithmetic, geometric and harmonic means are established. The
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awe-inspiring concepts and formidable tools of this paper may invigorate and revitalize for additional research in this worthy and absorbing
field. Before we start, we need the following necessary known definitions and literature.

2. Preliminaries

In this section we recall some known concepts.

Definition 2.1. [21] Let ψ : I→ R be a real valued function. A function ψ is said to be convex, if

ψ (κσ1 +(1−κ)σ2)≤ κψ (σ1)+(1−κ)ψ (σ2) ,

holds for all σ1,σ2 ∈ I and κ ∈ [0,1].

Definition 2.2. [15] A function ψ : I ⊆ (0,∞)→ R is said to be harmonic convex, if

ψ

(
σ1σ2

κσ2 +(1−κ)σ1

)
≤ κψ(σ1)+(1−κ)ψ(σ2),

holds for all σ1,σ2 ∈ I and κ ∈ [0,1].

For the harmonic convex function, İşcan [15] provided the Hermite–Hadamard type inequality.

Definition 2.3. [23] A function ψ : I→ R is said to be p–harmonic convex, if

ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
≤ κψ(σ1)+(1−κ)ψ(σ2),

holds for all σ1,σ2 ∈ I and κ ∈ [0,1].

Note that κ = 1
2 in the above Definition 2.3, we get the following inequality

ψ

([
2σ

p
1 σ

p
2

σ
p
1 +σ

p
2

] 1
p
)
≤ ψ(σ1)+ψ(σ2)

2
,

holds for all σ1,σ2 ∈ I.
The function ψ is called Jensen p–harmonic convex function.
If we put p =−1 and p = 1, then p–harmonic convex sets and p–harmonic convex functions collapses to classical convex sets, harmonic
convex sets and harmonic convex functions respectively.
We organise the paper in following way. Firstly, we will give the idea and its algebraic properties of p–harmonic exponential type convex
functions. Secondly, we will derive the new sort of Hermite–Hadamard type and refinements of Hermite–Hadamard type inequalities by
using the newly introduced idea. Finally, we will give some applications for means and conclusion.

3. p–harmonic Exponential Type Convex Functions and its Properties

We are going to introduce a new definition called p–harmonic exponential type convex function and will study some of their algebraic
properties. Throughout the paper, one thing get in mind p–harmonic exp convex function represents p–harmonic exponential type convex
function.

Definition 3.1. A function ψ : I ⊆ (0,+∞)→ [0,+∞) is called p–harmonic exp convex, if

ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
≤
(
eκ −1

)
ψ (σ1)+

(
e1−κ −1

)
ψ (σ2) ,

holds for every σ1,σ2 ∈ I, and κ ∈ [0,1].

Remark 3.2. (i) Taking p = 1 in Definition 3.1, we obtain the following new definition about harmonically exp type convex function:

ψ

(
σ1σ2

κσ2 +(1−κ)σ1

)
≤
(
eκ −1

)
ψ (σ1)+

(
e1−κ −1

)
ψ (σ2) .

(ii) Taking p =−1 in Definition 3.1, then we get a definition namely exponential type convex function which is defined by Kadakal et al. [16].

That is the beauty of this newly introduce definition if we put the different values of p, then we obtain new inequalities and also found some
results which connect with previous results.

Lemma 3.3. The following inequalities eκ −1≥ κ and e1−κ −1≥ 1−κ are hold. If for all κ ∈ [0,1].

Proof. The rest of the proof is clearly seen.

Proposition 3.4. Every p–harmonic convex function is p–harmonic exp convex function.
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Proof. Using the definition of p–harmonic convex function and from the lemma 3.3 , since κ ≤ eκ−1 and 1−κ ≤ e1−κ−1 for all κ ∈ [0,1],
we have

ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
≤ κψ (σ1)+(1−κ)ψ (σ2)≤

(
eκ −1

)
ψ (σ1)+

(
e1−κ −1

)
ψ (σ2) .

Proposition 3.5. Every p–harmonic exp convex function is p–harmonic h–convex function with h(κ) = (eκ −1).

Proof.

ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
≤
(
eκ −1

)
ψ (σ1)+

(
e1−κ −1

)
ψ (σ2)≤ h(κ)ψ(σ1)+h(1−κ)ψ(σ2).

Remark 3.6. (i) If p = 1 in Proposition 3.5, then as a result we get harmonically convex function, which is introduced by Noor et al. in [25].
(ii) If p =−1 in Proposition 3.5, then as a result we get h–convex function, which is defined by Varos̆anec et al. [29].

Now we make and investigate some examples by way of newly introduced definition.

Example 3.7. If ψ(σ) = σ p+1, ∀σ ∈ (0,∞) is p–harmonic convex function, then according to Proposition 3.4, it is a p–harmonic exp
convex function.

Example 3.8. If ψ(σ) = 1
σ 2p , ∀σ ∈ R \ {0} is p–harmonic convex function, then according to Proposition 3.4, it is a p–harmonic exp

convex function.

Now, we will discuss and investigate some of its algebraic properties.

Theorem 3.9. Let ψ,ϕ : [σ1,σ2]→ R. If ψ and ϕ are two p–harmonic exp convex functions, then
(i) ψ +ϕ is a p–harmonic exp convex function.
(ii) For c ∈ R(c≥ 0), cψ is a p–harmonic exp convex function.

Proof. (i) Let ψ and ϕ be a p–harmonic exp convex, then

(ψ +ϕ)

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
= ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
+ϕ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)

≤
(
eκ −1

)
ψ (σ1)+

(
e1−κ −1

)
ψ (σ2)+

(
eκ −1

)
ϕ (σ1)+

(
e1−κ −1

)
ϕ (σ2)

=
(
eκ −1

)
[ψ (σ1)+ϕ (σ1)]+

(
e1−κ −1

)
[ψ (σ2)+ϕ (σ2)]

=
(
eκ −1

)
(ψ +ϕ)(σ1)+

(
e1−κ −1

)
(ψ +ϕ)(σ2) .

(ii) Let ψ be a p–harmonic exp convex, then

(cψ)

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
≤ c
[(

eκ −1
)

ψ (σ1)+
(

e1−κ −1
)

ψ (σ2)

]
=
(
eκ −1

)
cψ (σ1)+

(
e1−κ −1

)
cψ (σ2)

=
(
eκ −1

)
(cψ)(σ1)+

(
e1−κ −1

)
(cψ)(σ2) ,

which completes the proof.

Remark 3.10. (i) If p = 1 in Theorem 3.9, then as a result we get the ψ +ϕ and cψ are harmonic exp convex functions.
(ii) If p =−1 in Theorem 3.9, then as a result we get Theorem 2.1 in [16].

Theorem 3.11. Let ψ : I = [σ1,σ2]→ J be p–harmonic convex function and ϕ : J→ R is non-decreasing and exp convex function. Then
the function ϕ ◦ψ : I = [σ1,σ2]→ R is a p–harmonic exp convex function.

Proof. ∀ σ1,σ2 ∈ I, and κ ∈ [0,1], we have

(ϕ ◦ψ)

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
= ϕ

(
ψ

[
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)

≤ ϕ (κψ (σ1)+(1−κ)ψ (σ2))

≤
(
eκ −1

)
ϕ (ψ (σ1))+

(
e1−κ −1

)
ϕ (ψ (σ2))

=
(
eκ −1

)
(ϕ ◦ψ)(σ1)+

(
e1−κ −1

)
(ϕ ◦ψ)(σ2) .
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Remark 3.12. (i) In case of being p = 1, as a result we attain the following new inequality

(ϕ ◦ψ)

[
σ1σ2

κσ2 +(1−κ)σ1

]
≤
(
eκ −1

)
(ϕ ◦ψ)(σ1)+

(
e1−κ −1

)
(ϕ ◦ψ)(σ2) .

(ii) In case of being p =−1, then as a result the above Theorem collapses to the Theorem 2.2 in [16].

Theorem 3.13. Let 0 < σ1 < σ2, ψ j : [σ1,σ2]→ [0,+∞) be a class of p–harmonic exp convex functions and ψ(u) = sup j ψ j(u). Then ψ is
a p–harmonic exp convex function and U = {u ∈ [σ1,σ2] : ψ(u)<+∞} is an interval.

Proof. Let σ1,σ2 ∈U and κ ∈ [0,1], then

ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
= sup

j
ψ j

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)

≤
(
eκ −1

)
sup

j
ψ j (σ1)+

(
e1−κ −1

)
sup

j
ψ j (σ2)

=
(
eκ −1

)
ψ (σ1)+

(
e1−κ −1

)
ψ (σ2)<+∞,

which completes the proof.

Remark 3.14. In case of being p =−1 in Theorem 3.13, as a result we get Theorem 2.3 in [16].

Theorem 3.15. If ψ : [σ1,σ2]→ R is a p–harmonic exp convex then ψ is bounded on [σ1,σ2].

Proof. Let x ∈ [σ1,σ2] and L = max
{

ψ(σ1),ψ(σ2)
}

, then there ∃ κ ∈ [0,1] such that x =

[
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ p

1

] 1
p

. Thus, since eκ ≤ e and

e1−κ ≤ e, we have

ψ(x) = ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)
≤
(
eκ −1

)
ψ (σ1)+

(
e1−κ −1

)
ψ (σ2)

≤
(

eκ + e1−κ −2
)
·L

≤ 2L[e−1] = M,

The above proof clearly shows that ψ is bounded above from M. For bounded below, the readers using the identical concept as in Theorem
(2.4) in [16].

Remark 3.16. In case of being p =−1, we obtain Theorem 2.4 in [16].

4. Hermite–Hadamard type inequality via p–harmonic exponential type convexity

The main object of this section is to investigate and prove a new version of Hermite–Hadamard type inequality using p–harmonic exp
convexity.

Theorem 4.1. Let ψ : [σ1,σ2]→ [0,+∞) be a p–harmonic exp convex function. If ψ ∈ L[σ1,σ2], then

1
2(
√

e−1)
ψ

([
2σ

p
1 σ

p
2

σ
p
1 +σ

p
2

] 1
p
)
≤

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(ν)

ν p+1 dν ≤
[
ψ (σ1)+ψ (σ2)

]
(e−2).

Proof. Since ψ is a p–harmonic exp convex function, we have

ψ

([
xpyp

κyp +(1−κ)xp

] 1
p
)
≤
(
eκ −1

)
ψ (x)+

(
e1−κ −1

)
ψ (y) ,

which lead to

ψ

([
2xpyp

xp + yp

] 1
p
)
≤
(√

e−1
)

ψ (x)+
(√

e−1
)

ψ (y) .

Using the change of variables, we get

ψ

([
2σ

p
1 σ

p
2

σ
p
1 +σ

p
2

] 1
p
)
≤
(√

e−1
)
×
{

ψ

([
σ

p
1 σ

p
2(

κσ
p
2 +(1−κ)σ

p
1
)] 1

p
)
+ψ

([
σ

p
1 σ

p
2(

κσ
p
1 +(1−κ)σ

p
2
)] 1

p
)}

.

Integrating the above inequality with respect to κ on [0,1], we obtain

1
2(
√

e−1)
ψ

([
2σ

p
1 σ

p
2

σ
p
1 +σ

p
2

] 1
p
)
≤

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(ν)

ν p+1 dν ,
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which completes the left side inequality.

For the right side inequality, first of all we change the variable of integration by ν =

[
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ p

1

] 1
p

and using Definition 3.1 for the

function ψ , we have

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(ν)

ν p+1 dν =
∫ 1

0
ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)

dκ

≤
∫ 1

0

[(
eκ −1

)
ψ (σ1)+

(
e1−κ −1

)
ψ (σ2)

]
dκ

= ψ (σ1)
∫ 1

0

(
et −1

)
dκ +ψ (σ2)

∫ 1

0

(
e1−κ −1

)
dκ

=

[
ψ (σ1)+ψ (σ2)

]
(e−2),

which completes the proof.

Remark 4.2. (i) In case of being p =−1, then as a result we obtain Theorem 3.1 in [16].
(ii) In case of being p = 1, then as a result we obtain Corollary 1 in [11].

5. Refinements of Hermite–Hadamard type inequality via p–harmonic exponential type convexity

In this section, in order to prove our main results regarding on some Hermite–Hadamard type inequalities for p–harmonic exp convex
function, we need the following lemmas:

Lemma 5.1. . Let ψ : I = [σ1,σ2]⊆ R\{0}→ R be differentiable function on the I◦ of I. If ψ ′ ∈ L[σ1,σ2], then

ψ(σ1)+ψ(σ2)

2
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(x)
x1+p dx =

σ1σ2(σ
p
2 −σ

p
1 )

2p

∫ 1

0

µ(κ)

Ap+1
κ

ψ
′
(

σ1σ2

Aκ

)
dκ,

where Aκ =

[
κσ

p
2 +(1−κ)σ

p
1

] 1
p

and µ(κ) = (1−2κ).

Proof. Let

I =
σ

p
2 −σ

p
1

2pσ
p
1 σ

p
2

∫ 1

0
(1−2κ)

[
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

]1+ 1
p

ψ
′
([

σ
p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)

Using integration by parts

I =
σ

p
2 −σ

p
1

2pσ
p
1 σ

p
2

{∣∣∣∣−pσ
p
1 σ

p
2

σ
p
2 −σ

p
1
(1−2κ)ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)∣∣∣∣1

0
−

2pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫ 1

0
ψ

([
σ

p
1 σ

p
2

κσ
p
2 +(1−κ)σ

p
1

] 1
p
)

dκ

}

=
ψ(σ1)+ψ(σ2)

2
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(x)
x1+p dx.

Lemma 5.2. [24]. Let ψ : I = [σ1,σ2]⊆ R\{0}→ R be differentiable function on the I◦ of I. If ψ ′ ∈ L[σ1,σ2], then

1
8

[
ψ(σ1)+3ψ

([
3σ

p
1 σ

p
2

σ
p
1 +2σ

p
2

] 1
p
)
+3ψ

([
3σ

p
1 σ

p
2

2σ
p
1 +σ

p
2

] 1
p
)
+ψ(σ2)

]
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(x)
x1+p dx =

σ1σ2(σ
p
2 −σ

p
1 )

p

∫ 1

0

µ(κ)

Ap+1
κ

ψ
′
(

σ1σ2

Aκ

)
dκ,

where Aκ =

[
κσ

p
2 +(1−κ)σ

p
1

] 1
p

and

µ(κ) =



κ− 1
8
, if κ ∈ [0, 1

3 )

κ− 1
2
, if κ ∈ [ 1

3 ,
2
3 )

κ− 7
8
, if κ ∈ [ 2

3 ,1].
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Theorem 5.3. Let ψ : I = [σ1,σ2]⊆ R\{0}→ R be differentiable function on the I◦ of I. If ψ ′ ∈ L[σ1,σ2] and |ψ ′|q is a p–harmonic exp
convex function on I, q≥ 1, then∣∣∣∣ψ(σ1)+ψ(σ2)

2
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(x)
x1+p dx

∣∣∣∣≤ σ1σ2(σ
p
2 −σ

p
1 )

2p

{
G

1− 1
q

1

[
G2|ψ ′(σ1)|q +G3|ψ ′(σ2)|q

] 1
q
}
,

where

G1 =
∫ 1

0

|1−2κ|
Ap+1

κ

dκ, G2 =
∫ 1

0

|1−2κ|(eκ −1)

A1+p
κ

dκ,

G3 =
∫ 1

0

|1−2κ|(e1−κ −1)

A1+p
κ

dκ.

Proof. Using Lemma 5.1, properties of modulus, power mean inequality and p–harmonic exp convexity of the |ψ ′|q, we have∣∣∣∣ψ(σ1)+ψ(σ2)

2
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(x)
x1+p dx

∣∣∣∣≤ σ1σ2(σ
p
2 −σ

p
1 )

2p

∫ 1

0

|1−2κ|
Ap+1

κ

∣∣∣∣ψ ′(σ1σ2

Aκ

)∣∣∣∣dκ

≤
σ1σ2(σ

p
2 −σ

p
1 )

2p

(∫ 1

0

|1−2κ|
Ap+1

κ

dκ

)1− 1
q
(∫ 1

0

|1−2κ|
Ap+1

κ

∣∣∣∣ψ ′(σ1σ2

Aκ

)∣∣∣∣qdκ

) 1
q

≤
σ1σ2(σ

p
2 −σ

p
1 )

2p

(∫ 1

0

|1−2κ|
Ap+1

κ

dκ

)1− 1
q

×
(∫ 1

0

|1−2κ|
[
(eκ −1)|ψ ′(σ1)|q +(e1−κ −1)|ψ ′(σ2)|q

]
A1+p

κ

dκ

) 1
q

≤
σ1σ2(σ

p
2 −σ

p
1 )

2p

(∫ 1

0

|1−2κ|
Ap+1

κ

dκ

)1− 1
q

×
(∫ 1

0

|1−2κ|(eκ −1)

A1+p
κ

|ψ ′(σ1)|qdκ +
∫ 1

0

|1−2κ|(e1−κ −1)

A1+p
κ

|ψ ′(σ2)|qdκ

) 1
q

≤
σ1σ2(σ

p
2 −σ

p
1 )

2p

{
G

1− 1
q

1

[
G2|ψ ′(σ1)|q +G3|ψ ′(σ2)|q

] 1
q
}
,

which completes the proof.

Corollary 5.4. Under the assumptions of Theorem 5.3 with p =−1, we have the following new result∣∣∣∣ψ(σ1)+ψ(σ2)

2
− 1

σ2−σ1

∫
σ2

σ1

ψ(x)dx
∣∣∣∣

≤ (σ2−σ1)

2

(
1
2

)1− 1
q
(

8
√

e−2e−7
2

){[
|ψ ′(σ1)|q + |ψ ′(σ2)|q

] 1
q
}
.

Corollary 5.5. Under the assumptions of Theorem 5.3 with p = 1, we have the following new result∣∣∣∣ψ(σ1)+ψ(σ2)

2
− σ1σ2

σ2−σ1

∫
σ2

σ1

ψ(x)
x2 dx

∣∣∣∣≤ σ1σ2(σ2−σ1)

2

{
G
′1− 1

q
1

[
G
′

2|ψ ′(σ1)|q +G
′

3|ψ ′(σ2)|q
] 1

q
}
,

where

G
′

1 =
∫ 1

0

|1−2t|
A2

κ

dκ, G
′

2 =
∫ 1

0

|1−2κ|(eκ −1)
A2

κ

dκ,

G
′

3 =
∫ 1

0

|1−2κ|(e1−κ −1)
A2

κ

dκ.

Theorem 5.6. Let ψ : I = [σ1,σ2]⊆ R\{0}→ R be differentiable function on the I◦ of I. If ψ ′ ∈ L[σ1,σ2] and |ψ ′|q is a p–harmonic exp
convex function on I, r,q≥ 1, 1

r +
1
q ≥ 1 then∣∣∣∣ψ(σ1)+ψ(σ2)

2
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

a

ψ(x)
x1+p dx

∣∣∣∣≤ σ1σ2(σ
p
2 −σ

p
1 )

2p
×
{

G
1
r
4

[
G5|ψ ′(σ1)|q +G6|ψ ′(σ2)|q

] 1
q
}
,

where

G4 =
∫ 1

0
|1−2κ|rdκ, G5 =

∫ 1

0

(eκ −1)

A(1+p)q
κ

dκ,

G6 =
∫ 1

0

(e1−κ −1)

A(1+p)q
κ

dκ.
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Proof. Using Lemma 5.1, properties of modulus, Hölder’s inequality and p–harmonic exp convexity of the |ψ ′|q, we have∣∣∣∣ψ(σ1)+ψ(σ2)

2
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(x)
x1+p dx

∣∣∣∣≤ σ1σ2(σ
p
2 −σ

p
1 )

2p

∫ 1

0

|1−2κ|
Ap+1

κ

∣∣∣∣ψ ′(σ1σ2

Aκ

)∣∣∣∣dκ

≤
σ1σ2(σ

p
2 −σ

p
1 )

2p

(∫ 1

0
|1−2κ|rdκ

) 1
r
(∫ 1

0

1

A(1+p)q
κ

∣∣∣∣ψ ′(σ1σ2

Aκ

)∣∣∣∣qdκ

) 1
q

≤
σ1σ2(σ

p
2 −σ

p
1 )

2p

{(∫ 1

0
|1−2κ|rdκ

) 1
r

×
(∫ 1

0

1

A(1+p)q
κ

[
(eκ −1)|ψ ′(σ1)|q +(e1−κ −1)|ψ ′(σ2)|q

]
dκ

) 1
q
}

=
σ1σ2(σ

p
2 −σ

p
1 )

2p

{
G

1
r
4

[
G5|ψ ′(σ1)|q +G6|ψ ′(σ2)|q

] 1
q
}
,

which completes the proof.

Corollary 5.7. Under the assumptions of Theorem 5.6 with p =−1, we have the following new result∣∣∣∣ψ(σ1)+ψ(σ2)

2
− 1

σ2−σ1

∫
σ2

σ1

ψ(x)dx
∣∣∣∣≤ (σ2−σ1)

2

(∫ 1

0
|1−2κ|rdκ

) 1
r

(e−2)
(
|ψ ′(σ1)|q + |ψ ′(σ2)|q

) 1
q

.

Corollary 5.8. Under the assumptions of Theorem 5.6 with p = 1, we have the following new result∣∣∣∣ψ(σ1)+ψ(σ2)

2
− σ1σ2

σ2−σ1

∫
σ2

σ1

ψ(x)
x2 dx

∣∣∣∣≤ σ1σ2(σ2−σ1)

2

{
G
′ 1r
4

[
G
′

5|ψ
′(σ1)|q +G

′

6|ψ
′(σ2)|q

] 1
q
}
,

where

G
′

4 =
∫ 1

0
|1−2κ|rdκ, G

′

5 =
∫ 1

0

(eκ −1)

A2q
κ

dκ,

G
′

6 =
∫ 1

0

(e1−κ −1)

A2q
κ

dκ.

Theorem 5.9. Let ψ : I = [σ1,σ2]⊆ R\{0}→ R be differentiable function on the I◦ of I. If ψ ′ ∈ L[σ1,σ2] and |ψ ′|q is a p–harmonic exp
convex function on I, q≥ 1 then∣∣∣∣18

[
ψ(σ1)+3ψ

([
3σ

p
1 σ

p
2

σ
p
1 +2σ

p
2

] 1
p
)
+3ψ

([
3σ

p
1 σ

p
2

2σ
p
1 +σ

p
2

] 1
p
)
+ψ(σ2)

]
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ψ(x)
x1+p dx

∣∣∣∣
≤

σ1σ2(σ
p
2 −σ

p
1 )

p

{
B

1− 1
q

1 [B4|ψ ′(σ1)|q +B5|ψ ′(σ2)|q]
1
q

+B
1− 1

q
2 [B6|ψ ′(σ1)|q +B7|ψ ′(σ2)|q]

1
q +B

1− 1
q

3 [B8|ψ ′(σ1)|q +B9|ψ ′(σ2)|q]
1
q

}
,

where

B1 =
∫ 1

3

0

|κ− 1
8 |

Ap+1
κ

dκ, B2 =
∫ 2

3

1
3

|κ− 1
2 |

Ap+1
κ

dκ, B3 =
∫ 1

2
3

|κ− 7
8 |

Ap+1
κ

dκ,

B4 =
∫ 1

3

0

|κ− 1
8 |(e

κ −1)

Ap+1
κ

dκ, B5 =
∫ 1

3

0

|κ− 1
8 |(e

1−κ −1)

Ap+1
κ

dκ,

B6 =
∫ 2

3

1
3

|κ− 1
2 |(e

κ −1)

Ap+1
κ

dκ, B7 =
∫ 2

3

1
3

|κ− 1
2 |(e

1−κ −1)

Ap+1
κ

dκ,

B8 =
∫ 1

2
3

|κ− 7
8 |(e

κ −1)

Ap+1
κ

dκ, B9 =
∫ 1

2
3

|κ− 7
8 |(e

1−κ −1)

Ap+1
κ

dκ.

Proof. Using Lemma 5.2, properties of modulus, power mean inequality and p-harmonic exp convexity of the |ψ ′|q, we have∣∣∣∣18
[

ψ(σ1)+3ψ

([
3σ

p
1 σ

p
2

σ
p
1 +2σ

p
2

] 1
p
)
+3ψ

([
3σ

p
1 σ

p
2

2σ
p
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p
2

] 1
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)
+ψ(σ2)

]
−

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
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σ1

ψ(x)
x1+p dx
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p
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p
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p
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3

0

|κ− 1
8 |
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κ
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Aκ

)∣∣∣∣dκ +
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|κ− 1
2 |

A1+p
κ

∣∣∣∣ψ ′(σ1σ2
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2
3

|κ− 7
8 |
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κ

∣∣∣∣ψ ′(σ1σ2

Aκ

)∣∣∣∣dκ

]
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≤
σ1σ2(σ

p
2 −σ

p
1 )

p
×
[(∫ 1

3

0

|κ− 1
8 |

A1+p
κ

dκ

)1− 1
q
(∫ 1

3

0

|κ− 1
8 |

A1+p
κ

∣∣∣∣ψ ′(σ1σ2

Aκ

)∣∣∣∣qdκ

) 1
q

+
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3

1
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A1+p
κ

dκ
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q
(∫ 2

3

1
3
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A1+p
κ

∣∣∣∣ψ ′(σ1σ2

Aκ

)∣∣∣∣qdκ

) 1
q

+
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2
3

|κ− 7
8 |

A1+p
κ

dκ
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q
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2
3
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A1+p
κ

∣∣∣∣ψ ′(σ1σ2

Aκ

)∣∣∣∣qdκ

) 1
q
]
≤

σ1σ2(σ
p
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p
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p
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[(∫ 1

3

0

|κ− 1
8 |
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κ
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q

×
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3

0

|κ− 1
8 |
[
(eκ −1)|ψ ′(σ1)|q +(e1−κ −1)|ψ ′(σ2)|q
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κ
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+
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1
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A1+p
κ

dκ

)1− 1
q

×
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3

1
3
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2 |
[
(eκ −1)|ψ ′(σ1)|q +(e1−κ −1)|ψ ′(σ2)|q
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) 1
q

+
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dκ
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2
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8 |
[
(eκ −1)|ψ ′(σ1)|q +(e1−κ −1)|ψ ′(σ2)|q

]
A1+p

κ

dκ

) 1
q
]

≤
σ1σ2(σ

p
2 −σ

p
1 )

p
×
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3

0

|κ− 1
8 |

A1+p
κ

dκ
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q

×
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3

0
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κ

|ψ ′(σ1)|qdκ +
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0
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) 1
q

+

(∫ 2
3

1
3

|κ− 1
2 |
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×
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3
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κ
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×
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) 1
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]

=
σ1σ2(σ

p
2 −σ

p
1 )

p

{
B

1− 1
q

1 [B4|ψ ′(σ1)|q +B5|ψ ′(σ2)|q]
1
q

+B
1− 1

q
2 [B6|ψ ′(σ1)|q +B7|ψ ′(σ2)|q]

1
q +B

1− 1
q

3 [B8|ψ ′(σ1)|q +B9|ψ ′(σ2)|q]
1
q

}
.

This completes the proof.

Corollary 5.10. Under the assumptions of Theorem 5.9 with p =−1, we have the following new result∣∣∣∣18
[

ψ(σ1)+3ψ

(
2σ1 +σ2

3

)
+3ψ

(
σ1 +2σ2

3

)
+ψ(σ2)

]
− 1

σ2−σ1

∫
σ2

σ1

ψ(x)dx
∣∣∣∣

≤ (σ2−σ1)

{(
17

576

)[
0.0069|ψ ′(σ1)|q +0.036|ψ ′(σ2)|q

] 1
q

+

(
0.183
360

)[
|ψ ′(σ1)|q + |ψ ′(σ2)|q

] 1
q

+

(
17
576

)[
0.036|ψ ′(σ1)|q +0.0069|ψ ′(σ2)|q

] 1
q
}
.

Theorem 5.11. Let ψ : I = [σ1,σ2]⊆ R\{0} → R be differentiable function on the I◦ of I. If ψ ′ ∈ L[σ1,σ2] and |ψ ′|q is a p–harmonic
exp convex function on I,r,q≥ 1 and 1

r +
1
q ≥ 1 then

∣∣∣∣18
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−
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Proof. Using Lemma 5.2, properties of modulus, Hölder’s inequality and p–harmonic exponential convexity of the |ψ ′|q, we have∣∣∣∣18
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which completes the proof.

Corollary 5.12. Under the assumptions of Theorem 5.11 with p =−1, we have the following new result∣∣∣∣18
[
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)
+3ψ
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6. Applications

In this section, we recall the following special means of two positive numbers σ1,σ2 with σ1 < σ2:

(1) The arithmetic mean

A = A(σ1,σ2) =
σ1 +σ2

2
.

(2) The geometric mean

G = G(σ1,σ2) =
√

σ1σ2.

(3) The harmonic mean

H = H(σ1,σ2) =
2σ1σ2

σ1 +σ2
.
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(4) The logarithmic mean

L = L(σ1,σ2) =
σ2−σ1

lnσ2− lnσ1
.

These means have a lot of applications in areas and different type of numerical approximations. However, the following simple relationship
is known in the literature.

H(σ1,σ2)≤ G(σ1,σ2)≤ L(σ1,σ2)≤ A(σ1,σ2).

Proposition 6.1. Let 0 < σ1 < σ2 and p≥ 1. Then we get the following inequality
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(
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1− p

)
≤ A(σ1,σ2)[2e−4]. (6.1)

Proof. Taking ψ(σ) = σ for ν > 0 in Theorem 4.1, then inequality (6.1) is easily captured.

Proposition 6.2. Let 0 < σ1 < σ2 and p≥ 1. Then we get the following inequality

1
2(
√

e−1)
H−1

2p (σ
p
1 ,σ

p
2 )≤

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

(
σ

1
2−p

2 −σ
1
2−p

1
1
2 − p

)−1
≤ A−1(

√
σ1,
√
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Proof. Taking ψ(σ) = 1√
σ

for σ > 0 in Theorem 4.1, then inequality (6.2) is easily captured.

Proposition 6.3. Let 0 < σ1 < σ2 and p≥ 1. Then we get the following inequality

1
2(
√

e−1)
H(σ

p
1 ,σ

p
2 )≤

pσ
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1 σ
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σ
p
2 −σ

p
1

(
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L(σ1,σ2)

)
≤ A(σ p

1 ,σ
p
2 )[2e−4]. (6.3)

Proof. Taking ψ(σ) = σ p for σ > 0 in Theorem 4.1, then inequality (6.3) is easily captured.

Proposition 6.4. Let 0 < σ1 < σ2 and p≥ 1. Then we get the following inequality

1
2(
√

e−1)
H2

p(σ
p
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1 σ
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σ
p
2 −σ

p
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(
σ

2−p
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2−p
1

2− p

)
≤ A(σ2

1 ,σ
2
2 )[2e−4]. (6.4)

Proof. Taking ψ(σ) = σ2 for σ > 0 in Theorem 4.1, then inequality (6.4) is easily captured.

Proposition 6.5. Let 0 < σ1 < σ2 and p≥ 1. Then we get the following inequality

1
2(
√

e−1)
lnG(σ1,σ2)≤

pσ
p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

− lnx
xp+1 dx≤ lnHp(σ

p
1 ,σ

p
2 )[2e−4]. (6.5)

Proof. Taking ψ(σ) =− lnσ for σ > 0 in Theorem 4.1, then inequality (6.5) is easily captured.

Proposition 6.6. Let 0 < σ1 < σ2. Then we get the following inequality

1
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p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

ex

xp+1 dx≤ A(eσ1 ,eσ2)[2e−4]. (6.6)

Proof. Taking ψ(σ) = eσ for σ > 0 in Theorem 4.1, then inequality (6.6) is easily captured.

Proposition 6.7. Let 0 < σ1 < σ2. Then we get the following inequality

A(sinσ1,sinσ2)[2e−4]≤
pσ

p
1 σ

p
2

σ
p
2 −σ

p
1

∫
σ2

σ1

sinx
xp+1 dx≤ 1

2(
√

e−1)
sinHp(σ1,σ2). (6.7)

Proof. Taking ψ(ν) = sin(−ν) for ν ∈ (0, π

2 ) in Theorem 4.1, then inequality (6.7) is easily captured.

Remark 6.8. The above discussed means are well–known in literature because these means have fruitful importance and magnificent
applications in machine learning, probability, statistics and numerical approximation [4, 8]. But we believe that in the future we will try
to find the applications of He Chengtian mean (also called as He Chengtian average), which was introduced by the first time a famous
ancient Chinese mathematician He Chengtian [12]. This mean was extended to solve nonlinear oscillators and it is called as He’s max–min
approach (also called as He’s max–min method), which was further developed into a frequency–amplitude formulation for nonlinear
oscillators [13, 14].

7. Conclusion

We have introduced and investigated some algebraic properties of a new class of functions namely p–harmonic exp convex. We showed that
our new introduced class of function have some nice properties. New version of Hermite–Hadamard type inequality and an integral identity
for the differentiable function are obtained. It is the time to find the applications and importance of these inequalities along with efficient
numerical tools and methods. The interesting tools and fruitful ideas of this paper can be extended and generalized on the co-ordinates along
with fractional calculus. Further, this new concept will be opening new door of investigations toward fractal integration and differentiations
in convexity, preinvexity and fractal image processing. We hope the consequences and techniques of this article will energize and inspire the
researcher to explore a more interesting sequel in this area.
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[28] T. Toplu, M. Kadakal, İ. İşcan, On n–polynomial convexity and some related inequalities, AIMS Math., 5(2) (2020), 1304–1318.
[29] S. Varos̆anec, On h–convexity, J. Math. Anal. Appl., 326 (2007), 303—311.


	Introduction
	Preliminaries
	p–harmonic Exponential Type Convex Functions and its Properties
	Hermite–Hadamard type inequality via p–harmonic exponential type convexity
	Refinements of Hermite–Hadamard type inequality via p–harmonic exponential type convexity
	Applications
	Conclusion

