POLITEKNIK DERGISi

JOURNAL of POLYTECHNIC

Construction of surfaces with constant mean curvature along a timelike curve

Verilen bir timelike eğri boyunca sabit ortalama eğrilikli yüzeyler

Yazar(lar) (Author(s)): Ergin BAYRAM

ORCID: 0000-0003-2633-0991

To cite to this article: Bayram E., "Construction of surfaces with constant mean curvature along a timelike curve", Journal of Politechnic, 25(3): 1211-1215, (2022).

Construction of Surfaces With Constant Mean Curvature Along A Timelike Curve

Highlights

* Surfaces constructed using a given timelike curve
* Constraints for surfaces to have constant mean curvature along the given curve are obtained
* The method is illustrated with examples
*

Graphical Abstract

We construct surfaces with constant mean curvature through a given timelike curve.

Figure. A surface with constant mean curvature along a given timelike curve (red in colour)

Aim
 The aim of this paper is to construct surfaces with constant mean curvature through a given timelike curve
 Design \&Methodology
 We construct surfaces using the Frenet frame of the given timelike curve and obtain conditions.
 Originality
 The study is original.
 Findings
 We find constraints on surfaces to have a constant mean curvature along a given timelike curve.
 Conclusion
 It is possible to obtain surfaces with constant mean curvature along a given timelike curve.
 Declaration of Ethical Standards

The author of this article declares that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Construction of Surfaces with Constant Mean Curvature Along a Timelike Curve

Araştırma Makalesi / ResearchArticle
Ergin BAYRAM ${ }^{1^{*}}$
${ }^{1}$ Department of Mathematics, Arts and Sciences Faculty, Ondokuz Mayıs University, Turkey
(Geliş/Received : 29.01.2021; Kabul/Accepted : 18.05.2021; Erken Görünüm/Early View : 01.06.2021)

Abstract

We construct surfaces with constant mean curvature through a given timelike curve. We show that, it is possible to obtain such surfaces for any given timelike curve. The validity of the method supported with illustrative examples.

Keywords: Timelike curve, constant mean curvature surfaces, Minkowski 3-spac

1. INTRODUCTION

The mathematical model of the relativity theory is the Lorentz-Minkowski space time and it is an attractive area for researchers. The trajectory of a moving particle can be represented by a null curve if it travels at the speed of light and by a spacelike or timelike curve if it moves faster or slower than light, respectively.
Another important notion in Lorentz-Minkowski space time is surfaces. We see surfaces almost in every differential geometry book [1-3]. A constant mean curvature surface is a surface whose mean curvature is constant everywhere. It can be physically modeled by a soap bubble. There are several techniques to characterize surfaces. However, the construction of a surface is also an important issue. Current studies on surfaces have focused on finding surfaces with a common special curve [4-14]. Recently, Coşanoğlu and Bayram [15] obtained sufficient conditions for surfaces with constant mean curvature through a given curve in Euclidean 3-space. In the present paper, analogous to Coşanoğlu and Bayram [15], we obtain parametric surfaces with constant mean curvature through a given timelike curve. We present conditions for these types of surfaces. The method is validated with several examples.

2. MATERIAL and METHOD

The real vector space R^{3} equipped with the metric tensor

$$
\langle\mathrm{X}, \mathrm{Y}\rangle=-\mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{2}+\mathrm{x}_{3} \mathrm{y}_{3}
$$

is called the Minkowski 3-space and denoted by R_{1}^{3}, where $X=\left(x_{1}, x_{2}, x_{3}\right), \quad Y=\left(y_{1}, y_{2}, y_{3}\right) \in R^{3}[1]$. The Lorentzian vectorial product is defined by

$$
\mathrm{X} \times \mathrm{Y}=\left(\mathrm{x}_{2} \mathrm{y}_{3}-\mathrm{x}_{3} \mathrm{y}_{2}, \mathrm{x}_{1} \mathrm{y}_{3}-\mathrm{x}_{3} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{2}\right)
$$

$$
\left\{\begin{array}{c}
\langle\mathrm{X}, \mathrm{X}\rangle<0, \\
\langle\mathrm{X}, \mathrm{X}\rangle>0 \text { or } \mathrm{X}=\overrightarrow{0}, \\
\langle\mathrm{X}, \mathrm{X}\rangle=0,
\end{array}\right.
$$

respectively. Similarly, a curve in R_{1}^{3} is called a timelike, spacelike or lightlike curve if its tangent vector field is always timelike, spacelike or lightlike, respectively.
The Frenet frame of a curve α is denoted by $\{T(s), N(s), B(s)\}$, where T, N and B are the tangent vector field, the principal normal vector field and the binormal vector field, respectively.
Assume that α is a unit speed timelike curve with curvature κ and torsion τ. Hence, tangent vector field is a timelike vector field, principal and binormal vector fields are spacelike. For these vectors, we have

$$
\mathrm{T} \times \mathrm{N}=-\mathrm{B}, \quad \mathrm{~N} \times \mathrm{B}=\mathrm{T}, \quad \mathrm{~B} \times \mathrm{T}=-\mathrm{N} .
$$

The binormal vector field $\mathrm{B}(\mathrm{s})$ is the unique spacelike unit vector field perpendicular to the timelike plane $\{\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s})\}$ at every point $\alpha(\mathrm{s})$ of α , such that $\{T, N, B\}$ has the same orientation as R_{1}^{3} . Then, Frenet formulas are given by [16]

$$
\mathrm{T}^{\prime}=\kappa \mathrm{N}, \mathrm{~N}^{\prime}=\kappa \mathrm{T}+\tau \mathrm{B}, \mathrm{~B}^{\prime}=-\tau \mathrm{N} .
$$

The mean curvature of the surface $\mathrm{P}(\mathrm{s}, \mathrm{t})$ is given as
$\mathrm{H}(\mathrm{s}, \mathrm{t})=-\frac{\operatorname{det}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{ss}}\right) \mathrm{G}-2 \operatorname{det}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{st}}\right) \mathrm{F}+\operatorname{det}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{tt}}\right) \mathrm{E}}{2\left(\mathrm{EG}-\mathrm{F}^{2}\right)^{\frac{3}{2}}}$,
where $\mathrm{E}, \mathrm{F}, \mathrm{G}$ are the coefficients of the first fundamental form of the surface $P(s, t)$ [17].

A vector $X \in R_{1}^{3}$ is called timelike, spacelike or lightlike (null) if

[^0]
3. CONSTRUCTION OF SURFACES WITH CONSTANT MEAN CURVATURE ALONG A TIMELIKE CURVE

Let $\alpha(\mathrm{s}), \mathrm{L}_{1} \leq \mathrm{s} \leq \mathrm{L}_{2}$ be a timelike unit speed regular curve with curvature $\kappa(s)$ and torsion $\tau(\mathrm{s})$. Also, assume that $\alpha^{\prime \prime}(\mathrm{s}) \neq 0, \quad \forall$ s. Parametric surfaces possessing $\alpha(s)$ can be written as

$$
\begin{align*}
\mathrm{P}(\mathrm{~s}, \mathrm{t}) & =\alpha(\mathrm{s})+\mathrm{u}(\mathrm{~s}, \mathrm{t}) \mathrm{T}(\mathrm{~s}) \tag{1}\\
& +\mathrm{v}(\mathrm{~s}, \mathrm{t}) \mathrm{N}(\mathrm{~s})+\mathrm{w}(\mathrm{~s}, \mathrm{t}) \mathrm{B}(\mathrm{~s}),
\end{align*}
$$

$\mathrm{L}_{1} \leq \mathrm{s} \leq \mathrm{L}_{2}, \quad \mathrm{~T}_{1} \leq \mathrm{t} \leq \mathrm{T}_{2}$, where $\{\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s}), \mathrm{B}(\mathrm{s})\}$ is the Frenet frame of $\alpha(s) . C^{2}$ functions $u(s, t), v(s, t), w(s, t)$ are called marching-scale functions. Observe that, choosing different marching-scale functions yields different surfaces along the curve $\alpha(\mathrm{s})$.
To simplify the calculations, we suppose that the curve $\alpha(s)$ is a parameter curve on the surface $\mathrm{P}(\mathrm{s}, \mathrm{t})$ in Eqn. (1). So, we have

$$
\mathrm{u}\left(\mathrm{~s}, \mathrm{t}_{0}\right)=\mathrm{v}\left(\mathrm{~s}, \mathrm{t}_{0}\right)=\mathrm{w}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \equiv 0
$$

for some $t_{0} \in\left[T_{1}, T_{2}\right]$.
The mean curvature of the surface $\mathrm{P}(\mathrm{s}, \mathrm{t})$ is given as

$$
H(\mathrm{~s}, \mathrm{t})=-\frac{\operatorname{det}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{ss}}\right) \mathrm{G}-2 \operatorname{det}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{st}}\right) \mathrm{F}+\operatorname{det}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{tt}}\right) \mathrm{E}}{2\left(\mathrm{EG}-\mathrm{F}^{2}\right)^{\frac{3}{2}}},
$$

where E, F, G are the coefficients of the first fundamental form of the surface $P(s, t)$ [17] .
We make the following calculations required for the mean curvature.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{s}}(\mathrm{~s}, \mathrm{t})= & \left(1+\mathrm{u}_{\mathrm{s}}(\mathrm{~s}, \mathrm{t})+\kappa(\mathrm{s}) \mathrm{v}(\mathrm{~s}, \mathrm{t})\right) \mathrm{T}(\mathrm{~s}) \\
& +\left(\kappa(\mathrm{s}) \mathrm{u}(\mathrm{~s}, \mathrm{t})+\mathrm{v}_{\mathrm{s}}(\mathrm{~s}, \mathrm{t})-\tau(\mathrm{s}) \mathrm{w}(\mathrm{~s}, \mathrm{t})\right) \mathrm{N}(\mathrm{~s}) \\
& +\left(\tau(\mathrm{s}) \mathrm{v}(\mathrm{~s}, \mathrm{t})+\mathrm{w}_{\mathrm{s}}(\mathrm{~s}, \mathrm{t})\right) \mathrm{B}(\mathrm{~s}), \\
\mathrm{P}_{\mathrm{t}}(\mathrm{~s}, \mathrm{t})= & \mathrm{u}_{\mathrm{t}}(\mathrm{~s}, \mathrm{t}) \mathrm{T}(\mathrm{~s})+\mathrm{v}_{\mathrm{t}}(\mathrm{~s}, \mathrm{t}) \mathrm{N}(\mathrm{~s})+\mathrm{w}_{\mathrm{t}}(\mathrm{~s}, \mathrm{t}) \mathrm{B}(\mathrm{~s}), \\
\mathrm{P}_{\mathrm{s}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)= & \mathrm{T}(\mathrm{~s}), \\
\mathrm{P}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)= & \mathrm{u}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \mathrm{T}(\mathrm{~s})+\mathrm{v}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \mathrm{N}(\mathrm{~s})+\mathrm{w}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \mathrm{B}(\mathrm{~s}), \\
\mathrm{P}_{\mathrm{ss}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)= & \kappa(\mathrm{s}) \mathrm{N}(\mathrm{~s}), \\
\mathrm{P}_{\mathrm{st}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)= & \mathrm{P}_{\mathrm{ts}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)=\left(\mathrm{u}_{\mathrm{ts}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)+\kappa(\mathrm{s}) \mathrm{v}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)\right) \mathrm{T}(\mathrm{~s}) \\
& +\left(\kappa(\mathrm{s}) \mathrm{u}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)+\mathrm{v}_{\mathrm{ts}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)-\tau(\mathrm{s}){\left.\mathrm{w}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)\right) \mathrm{N}(\mathrm{~s})}\right. \\
& +\left(\tau(\mathrm{s}) \mathrm{v}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)+\mathrm{w}_{\mathrm{ts}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)\right) \mathrm{B}(\mathrm{~s}), \\
\mathrm{P}_{\mathrm{tt}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)= & \mathrm{u}_{\mathrm{tt}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \mathrm{T}(\mathrm{~s})+\mathrm{v}_{\mathrm{tt}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \mathrm{N}(\mathrm{~s})+\mathrm{w}_{\mathrm{tt}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \mathrm{B}(\mathrm{~s}),
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{ss}}\right)\left(\mathrm{s}, \mathrm{t}_{0}\right)=-\kappa(\mathrm{s}) \mathrm{w}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right), \\
& \begin{aligned}
\operatorname{det}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{st}}\right)\left(\mathrm{s}, \mathrm{t}_{0}\right)= & {\left[\mathrm{v}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{t}} \tau(\mathrm{~s})+\mathrm{w}_{\mathrm{ts}}\right)\right.} \\
& \left.-\mathrm{w}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{t}} \kappa(\mathrm{~s})+\mathrm{v}_{\mathrm{ts}}-\tau(\mathrm{s}) \mathrm{w}_{\mathrm{t}}\right)\right]\left(\mathrm{s}, \mathrm{t}_{0}\right),
\end{aligned} \\
& \begin{aligned}
\operatorname{det}\left(\mathrm{P}_{\mathrm{s}}\left(\mathrm{~s}, \mathrm{t}_{0}\right), \mathrm{P}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right), \mathrm{P}_{\mathrm{tt}}\left(\mathrm{~s}, \mathrm{t}_{0}\right)\right) & =\mathrm{v}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \mathrm{w}_{\mathrm{tt}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \\
& -\mathrm{w}_{\mathrm{t}}\left(\mathrm{~s}, \mathrm{t}_{0}\right) \mathrm{v}_{\mathrm{tt}}\left(\mathrm{~s}, \mathrm{t}_{0}\right),
\end{aligned}
\end{aligned}
$$

where subscript denotes the partial derivative with respect to the parameter in question. Hence, we have the mean curvature of the surface $\mathrm{P}(\mathrm{s}, \mathrm{t})$ in Eqn. (1) along the curve $\alpha(s)$ as

$$
\begin{aligned}
\mathrm{H}\left(\mathrm{~s}, \mathrm{t}_{0}\right) & =\frac{1}{2\left(\mathrm{v}_{\mathrm{t}}^{2}+\mathrm{w}_{\mathrm{t}}^{2}\right)^{\frac{3}{2}}}\left[\kappa \mathrm{w}_{\mathrm{t}}\left(-\mathrm{u}_{\mathrm{t}}^{2}+\mathrm{v}_{\mathrm{t}}^{2}+\mathrm{w}_{\mathrm{t}}^{2}\right)+\mathrm{v}_{\mathrm{t}} \mathrm{w}_{\mathrm{tt}}-\mathrm{w}_{\mathrm{t}} \mathrm{v}_{\mathrm{tt}}\right. \\
& \left.-2 \mathrm{u}_{\mathrm{t}}\left[\mathrm{w}_{\mathrm{t}}\left(\kappa \mathrm{u}_{\mathrm{t}}+\mathrm{v}_{\mathrm{ts}}-\tau \mathrm{w}_{\mathrm{t}}\right)-\mathrm{v}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{t}} \tau+\mathrm{w}_{\mathrm{ts}}\right)\right]\right]\left(\mathrm{s}, \mathrm{t}_{0}\right) .
\end{aligned}
$$

Theorem : The surface $P(s, t)$ in Eqn. (1) has constant mean curvature along the timelike curve $\alpha(s)$ if one of the following conditions is satisfied:
i)
$\left\{\begin{array}{l}u_{t}\left(\mathrm{~s}, \mathrm{t}_{0}\right)=\mathrm{v}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right) \neq 0 \\ \mathrm{u}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{v}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}_{\mathrm{tt}}\left(\mathrm{s}, \mathrm{t}_{0}\right) \equiv 0 \\ \tau(\mathrm{~s})=\text { constant, }\end{array}\right.$
ii)
$\left\{\begin{array}{l}u_{t}\left(s, t_{0}\right)=w_{t}\left(s, t_{0}\right) \neq 0 \\ u\left(s, t_{0}\right)=v\left(s, t_{0}\right)=w\left(s, t_{0}\right)=v_{t}\left(s, t_{0}\right)=v_{t t}\left(s, t_{0}\right) \equiv 0 \\ \kappa(s)-\tau(s)=\text { constant, }\end{array}\right.$
iii) $\left\{\begin{array}{l}u_{t}\left(\mathrm{~s}, \mathrm{t}_{0}\right)=\mathrm{v}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right) \neq 0 \\ \mathrm{u}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{v}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}\left(\mathrm{s}, \mathrm{t}_{0}\right) \equiv 0 \\ 4 \tau(\mathrm{~s})-\kappa(\mathrm{s})=\text { constant, }\end{array}\right.$
iv) $\left\{\begin{array}{l}\mathrm{v}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right) \neq 0 \\ \mathrm{u}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{v}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{u}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right) \equiv 0 \\ \mathrm{w}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}_{\mathrm{tt}}\left(\mathrm{s}, \mathrm{t}_{0}\right) \equiv 0,\end{array}\right.$
v) $\left\{\begin{array}{l}\mathrm{v}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right) \neq 0 \\ \mathrm{u}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{v}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{w}\left(\mathrm{s}, \mathrm{t}_{0}\right)=\mathrm{u}_{\mathrm{t}}\left(\mathrm{s}, \mathrm{t}_{0}\right) \equiv 0 . \\ \kappa(\mathrm{s})=\text { constant } .\end{array}\right.$

Example : In this example, we construct surfaces with constant mean curvature along a given timelike curve. The unit speed timelike curve $\alpha(s)=\left(\frac{5}{3} s, \frac{4}{9} \cos (3 \mathrm{~s}), \frac{4}{9} \sin (3 \mathrm{~s})\right)$ has the following Frenet apparatus

$$
\left\{\begin{array}{l}
\mathrm{T}(\mathrm{~s})=\left(\frac{5}{3},-\frac{4}{3} \sin (3 \mathrm{~s}), \frac{4}{3} \cos (3 \mathrm{~s})\right), \\
\mathrm{N}(\mathrm{~s})=(0,-\cos (3 \mathrm{~s}),-\sin (3 \mathrm{~s})), \\
\mathrm{B}(\mathrm{~s})=\left(-\frac{4}{3}, \frac{5}{3} \sin (3 \mathrm{~s}),-\frac{5}{3} \cos (3 \mathrm{~s})\right), \\
\mathrm{K}(\mathrm{~s})=4, \tau(\mathrm{~s})=5 .
\end{array}\right.
$$

Choosing marching-scale functions as $\mathrm{u}(\mathrm{s}, \mathrm{t})=\mathrm{v}(\mathrm{s}, \mathrm{t})=\mathrm{t}, \quad \mathrm{w}(\mathrm{s}, \mathrm{t}) \equiv 0 \quad$ and $\quad \mathrm{t}_{0}=0$,
Theorem (i) is satisfied and we obtain the surface $\mathrm{P}_{1}(\mathrm{~s}, \mathrm{t})=\left(\frac{5}{3}(\mathrm{~s}+\mathrm{t}), \frac{4}{9} \cos (3 \mathrm{~s})-\frac{4}{3} \mathrm{t} \sin (3 \mathrm{~s}),\left(\frac{4}{9}-\mathrm{t}\right) \sin (3 \mathrm{~s})+\frac{4}{3} \cos (3 \mathrm{~s})\right)$, $-1 \leq \mathrm{s} \leq 1, \quad 0 \leq \mathrm{t} \leq 1$ with constant mean curvature $\mathrm{H}(\mathrm{s}, 0)=5$ along the timelike curve $\alpha(\mathrm{s})$ (Figure 1)

Figure 1. $\mathrm{P}_{1}(\mathrm{~s}, \mathrm{t})$ with constant mean curvature along the timelike curve $\alpha(\mathrm{s})$.

For the same curve, if we choose marching-scale functions as $\mathrm{u}(\mathrm{s}, \mathrm{t})=\mathrm{w}(\mathrm{s}, \mathrm{t})=\mathrm{t}, \mathrm{v}(\mathrm{s}, \mathrm{t}) \equiv 0$ and $t_{0}=0$, Theorem (ii) is satisfied and we obtain the surface
$\mathrm{P}_{2}(\mathrm{~s}, \mathrm{t})=\left(\frac{5 \mathrm{~s}+\mathrm{t}}{3}, \frac{4}{9} \cos (3 \mathrm{~s})+\frac{\mathrm{t}}{3} \sin (3 \mathrm{~s}), \frac{4}{9} \sin (3 \mathrm{~s})-\frac{\mathrm{t}}{3} \cos (3 \mathrm{~s})\right)$,
$-1 \leq \mathrm{s} \leq 1, \quad 0 \leq \mathrm{t} \leq 1$ with constant mean curvature $\mathrm{H}(\mathrm{s}, 0)=1$ along the timelike curve $\alpha(\mathrm{s})$ (Figure 2)

Figure 2. $P_{2}(s, t)$ with constant mean curvature along the timelike curve $\alpha(\mathrm{s})$.

Choosing marching-scale functions as $\mathrm{u}(\mathrm{s}, \mathrm{t})=\mathrm{v}(\mathrm{s}, \mathrm{t})=\mathrm{w}(\mathrm{s}, \mathrm{t})=\mathrm{t}$ and $\mathrm{t}_{0}=0$, Theorem (iii) is satisfied and we obtain the surface
$\mathrm{P}_{3}(\mathrm{~s}, \mathrm{t})=\left(\frac{5 \mathrm{~s}+\mathrm{t}}{3},\left(\frac{4}{9}-\mathrm{t}\right) \cos (3 \mathrm{~s})+\frac{\mathrm{t}}{3} \sin (3 \mathrm{~s}),\left(\frac{4}{9}-\mathrm{t}\right) \sin (3 \mathrm{~s})-\frac{\mathrm{t}}{3} \cos (3 \mathrm{~s})\right)$, $-1 \leq \mathrm{s} \leq 1, \quad 0 \leq \mathrm{t} \leq 1$ with constant mean curvature $\mathrm{H}(\mathrm{s}, 0)=2 \sqrt{2} \quad$ along the timelike curve $\alpha(\mathrm{s})$ (Figure 3).

Figure 3. $\mathrm{P}_{3}(\mathrm{~s}, \mathrm{t})$ with constant mean curvature along the timelike curve $\alpha(\mathrm{s})$.

If we choose $u(s, t)=w(s, t) \equiv 0, v(s, t)=t$ and $\mathrm{t}_{0}=0$, Theorem (iv) is satisfied and we obtain the surface

$$
P_{4}(s, t)=\left(\frac{5 s}{3},\left(\frac{4}{9}-t\right) \cos (3 s),\left(\frac{4}{9}-t\right) \sin (3 s)\right)
$$

$-1 \leq \mathrm{s} \leq 1, \quad 0 \leq \mathrm{t} \leq 1$ with constant mean curvature $\mathrm{H}(\mathrm{s}, 0)=0$ along the timelike curve $\alpha(\mathrm{s})$ (Figure 4).

Figure 4. $\mathrm{P}_{4}(\mathrm{~s}, \mathrm{t})$ with constant mean curvature along the timelike curve $\alpha(\mathrm{s})$.

Letting $\mathrm{u}(\mathrm{s}, \mathrm{t}) \equiv 0, \mathrm{v}(\mathrm{s}, \mathrm{t})=\mathrm{w}(\mathrm{s}, \mathrm{t})=\mathrm{t} \quad$ and $\quad \mathrm{t}_{0}=0$, Theorem (v) is satisfied and we obtain the surface $\mathrm{P}_{5}(\mathrm{~s}, \mathrm{t})=\left(\frac{5 \mathrm{~s}-4 \mathrm{t}}{3},\left(\frac{4}{9}-\mathrm{t}\right) \cos (3 \mathrm{~s})+\frac{5 \mathrm{t}}{3} \sin (3 \mathrm{~s}),\left(\frac{4}{9}-\mathrm{t}\right) \sin \right.$ $-1 \leq \mathrm{s} \leq 1, \quad 0 \leq \mathrm{t} \leq 1$ with constant mean curvature $\mathrm{H}(\mathrm{s}, 0)=\sqrt{2}$ along the timelike curve $\alpha(\mathrm{s})$ (Figure 5) .

Figure 5. $P_{5}(s, t)$ with constant mean curvature along the timelike curve $\alpha(\mathrm{s})$.

6. CONCLUSION

In this study, we showed that it is possible to construct surfaces with constant mean curvature along a given timelike curve.

ACKNOWLEDGEMENT

The author would like to thank to editor and reviewers for their valuable comments which improved the clearity of the manuscript.

DECLARATION OF ETHICAL STANDARDS

The author of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

AUTHOR'S CONTRIBUTION

Ergin BAYRAM : Handled the related work and wrote the paper.

CONFLICT OF INTEREST

There is no conflict of interest in this study.

REFERENCES

[1] O'Neill B., "Semi-Riemannian Geometry with Applications to Relativity", Academic Press Lim., London, (1983).
[2] Willmore T.J., "An Introduction to Differential Geometry", Oxford University Press, Delhi, (1959).
[3] do Carmo M.P., "Differential Geometry of Curves and surfaces", Englewood Cliffs, Prentice Hall, (1976).
(284) - $\frac{\pi}{3}$ GPQS (G3S), Fang K. and Tai C.L., "Parametric representation of a surface pencil with a common spatial geodesic", Comput. Aided Design, 36: 447-459, (2004).
[5] Kasap E. and Akyildız F.T., "Surfaces with common geodesic in Minkowski 3-space", Appl. Math. Comput., 177: 260-270, (2006).
[6] Li C.Y., Wang R.H. and Zhu C.G., "Parametric representation of a surface pencil with a common line of curvature", Comput. Aided Design, 43: 1110-1117, (2011).
[7] Bayram E., Güler F. and Kasap E., "Parametric representation of a surface pencil with a common asymptotic curve", Comput. Aided Design, 44: 637-643, (2012).
[8] Bayram E. and Bilici M., "Surface family with a common involute asymptotic curve", Int. J. Geom. Methods Modern Phys., 13: 1650062, (2016).
[9] Güler F., Bayram E. and Kasap E., "Offset surface pencil with a common asymptotic curve", Int. J. Geom. Methods Modern Phys., 15: 1850195, (2018).
[10] Şaffak Atalay G. and Kasap E., "Surfaces family with common null asymptotic", Appl. Math. Comput., 260: 135-139, (2015).
[11] Yüzbaşı Z.K., "On a family of surfaces with common asymptotic curve in the Galilean space G_{3} ", \boldsymbol{J}. Nonlinear Sci. Appl., 9: 518-523, (2016).
[12] Şaffak Atalay G., Bayram E. and Kasap E., "Surface family with a common asymptotic curve in Minkowski 3-space", Journal of Science and Arts, 2, 43: 357-368, (2018).
[13] Yoon D.W., Yüzbaşı Z.K. and Bektaş M., "An approach for surfaces using an asymptotic curve in Lie Group", Journal of Advanced Physics, 6, 4: 586-590, (2017).
[14] Bayram E., "Surface pencil with a common adjoint curve", Turkish Journal of Mathematics, 44: 1649 1659, (2020).
[15] Coşanoğlu H., Bayram E., "Surfaces with constant mean curvature along a curve in 3-dimensional Euclidean space", Süleyman Demirel University, Journal of Natural and Applied Sciences, 24, 3: 533-538, (2020).
[16] Walrave J., "Curves and surfaces in Minkowski space", PhD. Thesis, K. U. Leuven Faculteit Der Wetenschappen, (1995).
[17] Lopez R., "Differential geometry of curves and surfaces in Lorentz-Minkowski space", Int. El. J. of Geometry, 7, 1: 44-107, (2014).

[^0]: *Corresponding Author
 e-mail : erginbayram@yahoo.com

