

POLİTEKNİK DERGİSİ JOURNAL of POLYTECHNIC

ISSN:1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE) URL: http://dergipark.org.tr/politeknik



# Construction of surfaces with constant mean curvature along a timelike curve

## Verilen bir timelike eğri boyunca sabit ortalama eğrilikli yüzeyler

Yazar(lar) (Author(s)): Ergin BAYRAM

ORCID: 0000-0003-2633-0991

<u>To cite to this article</u>: Bayram E., "Construction of surfaces with constant mean curvature along a timelike curve", *Journal of Politechnic*, 25(3): 1211-1215, (2022).

To link to this article: http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.870539

### Construction of Surfaces With Constant Mean Curvature Along A Timelike Curve

#### Highlights

- Surfaces constructed using a given timelike curve
- Constraints for surfaces to have constant mean curvature along the given curve are obtained
- \* The method is illustrated with examples
- \*

#### **Graphical Abstract**

We construct surfaces with constant mean curvature through a given timelike curve.



Figure. A surface with constant mean curvature along a given timelike curve (red in colour)

#### Aim

The aim of this paper is to construct surfaces with constant mean curvature through a given timelike curve

#### Design & Methodology

We construct surfaces using the Frenet frame of the given timelike curve and obtain conditions.

#### **Originality**

The study is original.

#### **Findings**

We find constraints on surfaces to have a constant mean curvature along a given timelike curve.

#### Conclusion

It is possible to obtain surfaces with constant mean curvature along a given timelike curve.

#### **Declaration of Ethical Standards**

The author of this article declares that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

## Construction of Surfaces with Constant Mean Curvature Along a Timelike Curve

Araştırma Makalesi / ResearchArticle

Ergin BAYRAM<sup>1\*</sup>

<sup>1</sup>Department of Mathematics, Arts and Sciences Faculty, Ondokuz Mayıs University, Turkey (Geliş/Received : 29.01.2021 ; Kabul/Accepted : 18.05.2021 ; Erken Görünüm/Early View : 01.06.2021)

#### ABSTRACT

We construct surfaces with constant mean curvature through a given timelike curve. We show that, it is possible to obtain such surfaces for any given timelike curve. The validity of the method supported with illustrative examples.

Keywords: Timelike curve, constant mean curvature surfaces, Minkowski 3-spac

#### **1. INTRODUCTION**

The mathematical model of the relativity theory is the Lorentz-Minkowski space time and it is an attractive area for researchers. The trajectory of a moving particle can be represented by a null curve if it travels at the speed of light and by a spacelike or timelike curve if it moves faster or slower than light, respectively.

Another important notion in Lorentz-Minkowski space time is surfaces. We see surfaces almost in every differential geometry book [1-3]. A constant mean curvature surface is a surface whose mean curvature is constant everywhere. It can be physically modeled by a soap bubble. There are several techniques to characterize surfaces. However, the construction of a surface is also an important issue. Current studies on surfaces have focused on finding surfaces with a common special curve [4 - 14]. Recently, Coşanoğlu and Bayram [15] obtained sufficient conditions for surfaces with constant mean curvature through a given curve in Euclidean 3-space. In the present paper, analogous to Coşanoğlu and Bayram [15], we obtain parametric surfaces with constant mean curvature through a given timelike curve. We present conditions for these types of surfaces. The method is validated with several examples.

#### 2. MATERIAL and METHOD

The real vector space  $\mathbf{R}^3$  equipped with the metric tensor

$$\langle \mathbf{X}, \mathbf{Y} \rangle = -\mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2 + \mathbf{x}_3 \mathbf{y}_3$$

is called the Minkowski 3-space and denoted by  $R_1^3$ , where  $X = (x_1, x_2, x_3)$ ,  $Y = (y_1, y_2, y_3) \in R^3$  [1]. The Lorentzian vectorial product is defined by

$$\mathbf{X} \times \mathbf{Y} = (\mathbf{x}_{2}\mathbf{y}_{3} - \mathbf{x}_{3}\mathbf{y}_{2}, \mathbf{x}_{1}\mathbf{y}_{3} - \mathbf{x}_{3}\mathbf{y}_{1}, \mathbf{x}_{2}\mathbf{y}_{1} - \mathbf{x}_{1}\mathbf{y}_{2}).$$

A vector  $X \in R_1^3$  is called timelike, spacelike or lightlike (null) if

\*Corresponding Author

$$\begin{cases} \langle \mathbf{X}, \mathbf{X} \rangle < \mathbf{0}, \\ \langle \mathbf{X}, \mathbf{X} \rangle > \mathbf{0} \text{ or } \mathbf{X} = \mathbf{\ddot{0}}, \\ \langle \mathbf{X}, \mathbf{X} \rangle = \mathbf{0}, \end{cases}$$

respectively. Similarly, a curve in  $R_1^3$  is called a timelike, spacelike or lightlike curve if its tangent vector field is always timelike, spacelike or lightlike, respectively.

The Frenet frame of a curve  $\alpha$  is denoted by  $\{T(s), N(s), B(s)\}$ , where T, N and B are the tangent vector field, the principal normal vector field and the binormal vector field, respectively.

Assume that  $\alpha$  is a unit speed timelike curve with curvature  $\kappa$  and torsion  $\tau$ . Hence, tangent vector field is a timelike vector field, principal and binormal vector fields are spacelike. For these vectors, we have

$$T \times N = -B$$
,  $N \times B = T$ ,  $B \times T = -N$ .

The binormal vector field B(s) is the unique spacelike unit vector field perpendicular to the timelike plane  $\{T(s), N(s)\}$  at every point  $\alpha(s)$  of  $\alpha$ 

, such that  $\left\{ T,N,B\right\}$  has the same orientation as  $R_{1}^{3}$ 

. Then, Frenet formulas are given by [16]

$$\Gamma' = \kappa N, N' = \kappa T + \tau B, B' = -\tau N.$$

The mean curvature of the surface P(s,t) is given as

$$H(s,t) = -\frac{\det(P_{s}, P_{t}, P_{ss})G - 2\det(P_{s}, P_{t}, P_{st})F + \det(P_{s}, P_{t}, P_{tt})E}{2(EG - F^{2})^{\frac{3}{2}}},$$

where E, F, G are the coefficients of the first fundamental form of the surface P(s,t) [17].

e-mail: erginbayram@yahoo.com

#### 3. CONSTRUCTION OF SURFACES WITH CONSTANT MEAN CURVATURE ALONG A TIMELIKE CURVE

Let  $\alpha(s)$ ,  $L_1 \le s \le L_2$  be a timelike unit speed regular curve with curvature  $\kappa(s)$  and torsion  $\tau(s)$ . Also, assume that  $\alpha''(s) \ne 0$ ,  $\forall s$ . Parametric surfaces possessing  $\alpha(s)$  can be written as

$$P(s,t) = \alpha(s) + u(s,t)T(s) + v(s,t)N(s) + w(s,t)B(s),$$
(1)

$$\begin{split} &L_1 \leq s \leq L_2, \ T_1 \leq t \leq T_2, \ \text{where } \left\{ T(s), N(s), B(s) \right\} \text{ is } \\ &\text{the Frenet frame of } \alpha(s). \ C^2 \ \text{functions} \\ &u(s,t), \ v(s,t), \ w(s,t) \ \text{ are called marching-scale} \\ &\text{functions. Observe that, choosing different} \\ &\text{marching-scale functions yields different surfaces} \\ &\text{along the curve } \alpha(s). \end{split}$$

To simplify the calculations, we suppose that the curve  $\alpha(s)$  is a parameter curve on the surface P(s,t) in Eqn. (1). So, we have

$$\mathbf{u}(\mathbf{s},\mathbf{t}_0) = \mathbf{v}(\mathbf{s},\mathbf{t}_0) = \mathbf{w}(\mathbf{s},\mathbf{t}_0) \equiv \mathbf{0},$$

for some  $t_0 \in [T_1, T_2]$ .

The mean curvature of the surface P(s,t) is given as

$$H(s,t) = -\frac{\det(P_s, P_t, P_{ss})G - 2\det(P_s, P_t, P_{st})F + \det(P_s, P_t, P_{tt})E}{2(EG - F^2)^{\frac{3}{2}}},$$

where E,F,G are the coefficients of the first fundamental form of the surface P(s,t) [17].

We make the following calculations required for the mean curvature.

$$\begin{split} P_{s}(s,t) &= (1 + u_{s}(s,t) + \kappa(s)v(s,t))T(s) \\ &+ (\kappa(s)u(s,t) + v_{s}(s,t) - \tau(s)w(s,t))N(s) \\ &+ (\tau(s)v(s,t) + w_{s}(s,t))B(s), \end{split}$$

$$P_{t}(s,t) &= u_{t}(s,t)T(s) + v_{t}(s,t)N(s) + w_{t}(s,t)B(s), \\ P_{s}(s,t_{0}) &= T(s), \end{aligned}$$

$$P_{t}(s,t_{0}) &= u_{t}(s,t_{0})T(s) + v_{t}(s,t_{0})N(s) + w_{t}(s,t_{0})B(s), \\ P_{ss}(s,t_{0}) &= \kappa(s)N(s), \end{aligned}$$

$$P_{ss}(s,t_{0}) &= P_{ts}(s,t_{0}) = (u_{ts}(s,t_{0}) + \kappa(s)v_{t}(s,t_{0}))T(s) \\ &+ (\kappa(s)u_{t}(s,t_{0}) + v_{ts}(s,t_{0}) - \tau(s)w_{t}(s,t_{0}))N(s) \\ &+ (\tau(s)v_{t}(s,t_{0}) + w_{ts}(s,t_{0}))B(s), \end{aligned}$$

$$P_{s}(s,t_{0}) &= u_{s}(s,t_{0})T(s) + v_{s}(s,t_{0})N(s) + w_{s}(s,t_{0})B(s), \end{aligned}$$

$$\begin{aligned} \det(\mathbf{P}_{s}, \mathbf{P}_{t}, \mathbf{P}_{ss})(s, t_{0}) &= -\kappa(s) w_{t}(s, t_{0}), \\ \det(\mathbf{P}_{s}, \mathbf{P}_{t}, \mathbf{P}_{st})(s, t_{0}) &= \left[ v_{t}(v_{t} \tau(s) + w_{ts}) - w_{t}(u_{t} \kappa(s) + v_{ts} - \tau(s) w_{t}) \right](s, t_{0}), \\ \det(\mathbf{P}_{s}(s, t_{0}), \mathbf{P}_{t}(s, t_{0}), \mathbf{P}_{tt}(s, t_{0})) &= v_{t}(s, t_{0}) w_{tt}(s, t_{0}) \\ - w_{t}(s, t_{0}) v_{tt}(s, t_{0}), \end{aligned}$$

where subscript denotes the partial derivative with respect to the parameter in question. Hence, we have the mean curvature of the surface P(s,t) in Eqn. (1) along the curve  $\alpha(s)$  as

$$H(s,t_{0}) = \frac{1}{2(v_{t}^{2}+w_{t}^{2})^{\frac{3}{2}}} \Big[ \kappa w_{t} (-u_{t}^{2}+v_{t}^{2}+w_{t}^{2}) + v_{t} w_{tt} - w_{t} v_{tt} - 2u_{t} \Big[ w_{t} (\kappa u_{t}+v_{ts}-\tau w_{t}) - v_{t} (v_{t}\tau+w_{ts}) \Big] \Big] (s,t_{0}).$$

**Theorem :** The surface P(s,t) in Eqn. (1) has constant mean curvature along the timelike curve  $\alpha(s)$  if one of the following conditions is satisfied:

i)  

$$\begin{cases}
\mathbf{u}_{t}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{v}_{t}(\mathbf{s}, \mathbf{t}_{0}) \neq 0 \\
\mathbf{u}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{v}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{w}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{w}_{t}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{w}_{tt}(\mathbf{s}, \mathbf{t}_{0}) \equiv 0 \\
\tau(\mathbf{s}) = \text{constant},
\end{cases}$$

ii)  

$$\begin{cases}
\mathbf{u}_{t}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{w}_{t}(\mathbf{s}, \mathbf{t}_{0}) \neq 0 \\
\mathbf{u}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{v}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{w}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{v}_{t}(\mathbf{s}, \mathbf{t}_{0}) = \mathbf{v}_{tt}(\mathbf{s}, \mathbf{t}_{0}) \equiv 0 \\
\mathbf{w}(\mathbf{s}) - \tau(\mathbf{s}) = \text{constant},
\end{cases}$$

iii) 
$$\begin{cases} u_{t}(s, t_{0}) = v_{t}(s, t_{0}) = w_{t}(s, t_{0}) \neq 0 \\ u(s, t_{0}) = v(s, t_{0}) = w(s, t_{0}) \equiv 0 \\ 4\tau(s) - \kappa(s) = \text{constant}, \end{cases}$$
  
iv) 
$$\begin{cases} v_{t}(s, t_{0}) \neq 0 \\ u(s, t_{0}) = v(s, t_{0}) = w(s, t_{0}) = u_{t}(s, t_{0}) \equiv 0 \\ w_{t}(s, t_{0}) = w_{tt}(s, t_{0}) \equiv 0, \end{cases}$$
  
v) 
$$\begin{cases} v_{t}(s, t_{0}) = w_{t}(s, t_{0}) \neq 0 \\ u(s, t_{0}) = v(s, t_{0}) = w(s, t_{0}) = u_{t}(s, t_{0}) \equiv 0. \\ \kappa(s) = \text{constant}. \end{cases}$$

**Example** : In this example, we construct surfaces with constant mean curvature along a given timelike curve. The unit speed timelike curve  $\alpha(s) = (\frac{5}{3}s, \frac{4}{9}\cos(3s), \frac{4}{9}\sin(3s))$  has the following Frenet apparatus

$$\begin{cases} T(s) = \left(\frac{5}{3}, -\frac{4}{3}\sin(3s), \frac{4}{3}\cos(3s)\right), \\ N(s) = \left(0, -\cos(3s), -\sin(3s)\right), \\ B(s) = \left(-\frac{4}{3}, \frac{5}{3}\sin(3s), -\frac{5}{3}\cos(3s)\right), \\ \kappa(s) = 4, \ \tau(s) = 5. \end{cases}$$

Choosing marching-scale functions as u(s,t) = v(s,t) = t,  $w(s,t) \equiv 0$  and  $t_0 = 0$ , Theorem (i) is satisfied and we obtain the surface  $P_1(s,t) = \left(\frac{5}{3}(s+t), \frac{4}{9}\cos(3s) - \frac{4}{3}t\sin(3s), \left(\frac{4}{9} - t\right)\sin(3s) + \frac{4}{3}t\cos(3s)\right)$ ,

 $-1 \le s \le 1$ ,  $0 \le t \le 1$  with constant mean curvature H(s,0) = 5 along the timelike curve  $\alpha(s)$  (Figure 1)



Figure 1.  $P_1(s,t)$  with constant mean curvature along the timelike curve  $\alpha(s)$ .

For the same curve, if we choose marching-scale functions as u(s,t) = w(s,t) = t,  $v(s,t) \equiv 0$ 

and  $t_0 = 0$ , Theorem (ii) is satisfied and we obtain the surface

$$P_{2}(s,t) = \left(\frac{5s+t}{3}, \frac{4}{9}\cos(3s) + \frac{t}{3}\sin(3s), \frac{4}{9}\sin(3s) - \frac{t}{3}\cos(3s)\right)$$

 $-1 \le s \le 1$ ,  $0 \le t \le 1$  with constant mean curvature H(s,0)=1 along the timelike curve  $\alpha(s)$  (Figure 2)



Figure 2.  $P_2(s, t)$  with constant mean curvature along the timelike curve  $\alpha(s)$ .

Choosing marching-scale functions as u(s,t) = v(s,t) = w(s,t) = t and  $t_0 = 0$ , Theorem (iii) is satisfied and we obtain the surface

$$\begin{split} P_3(s,t) = & \left(\frac{5s+t}{3}, \left(\frac{4}{9}-t\right)\cos(3s) + \frac{t}{3}\sin(3s), \left(\frac{4}{9}-t\right)\sin(3s) - \frac{t}{3}\cos(3s)\right), \\ -1 \leq s \leq 1, \quad 0 \leq t \leq 1 \quad \text{with constant mean curvature} \\ H(s,0) = 2\sqrt{2} \quad \text{along the timelike curve} \quad \alpha(s) \\ (\text{Figure 3}) \, . \end{split}$$



Figure 3.  $P_3(s,t)$  with constant mean curvature along

the timelike curve  $\alpha(s)$ .

If we choose u(s,t) = w(s,t) = 0, v(s,t) = t and  $t_0 = 0$ , Theorem (iv) is satisfied and we obtain the surface

$$P_4(s,t) = \left(\frac{5s}{3}, \left(\frac{4}{9} - t\right)\cos(3s), \left(\frac{4}{9} - t\right)\sin(3s)\right)$$

 $-1 \le s \le 1$ ,  $0 \le t \le 1$  with constant mean curvature H(s,0)=0 along the timelike curve  $\alpha(s)$  (Figure 4).



Figure 4.  $P_4(s,t)$  with constant mean curvature along the timelike curve  $\alpha(s)$ .

Letting  $u(s,t) \equiv 0$ , v(s,t) = w(s,t) = t and  $t_0 = 0$ , Theorem (v) is satisfied and we obtain the surface

$$P_{5}(s,t) = \left(\frac{5s-4t}{3}, \left(\frac{4}{9}-t\right)\cos(3s) + \frac{5t}{3}\sin(3s), \left(\frac{4}{9}-t\right)\sin(3s)\right)$$

 $-1 \le s \le 1$ ,  $0 \le t \le 1$  with constant mean curvature  $H(s,0) = \sqrt{2}$  along the timelike curve  $\alpha(s)$  (Figure 5).



Figure 5.  $P_5(s,t)$  with constant mean curvature along the timelike curve  $\alpha(s)$ .

#### 6. CONCLUSION

In this study, we showed that it is possible to construct surfaces with constant mean curvature along a given timelike curve.

#### ACKNOWLEDGEMENT

The author would like to thank to editor and reviewers for their valuable comments which improved the clearity of the manuscript.

#### DECLARATION OF ETHICAL STANDARDS

The author of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

#### **AUTHOR'S CONTRIBUTION**

**Ergin BAYRAM :** Handled the related work and wrote the paper.

#### **CONFLICT OF INTEREST**

There is no conflict of interest in this study.

#### REFERENCES

- [1] O'Neill B., "Semi-Riemannian Geometry with Applications to Relativity", Academic Press Lim., London, (1983).
- [2] Willmore T.J., "An Introduction to Differential Geometry", Oxford University Press, Delhi, (1959).
- [3] do Carmo M.P., "*Differential Geometry of Curves and Surfaces*", Englewood Cliffs, Prentice Hall, (1976).
- (4) Wang (3.9), Fang K. and Tai C.L., "Parametric representation of a surface pencil with a common spatial geodesic", *Comput. Aided Design*, 36: 447-459, (2004).
- [5] Kasap E. and Akyıldız F.T., "Surfaces with common geodesic in Minkowski 3-space", *Appl. Math. Comput.*, 177: 260-270, (2006).
- [6] Li C.Y., Wang R.H. and Zhu C.G., "Parametric representation of a surface pencil with a common line of curvature", *Comput. Aided Design*, 43: 1110-1117, (2011).
- [7] Bayram E., Güler F. and Kasap E., "Parametric representation of a surface pencil with a common asymptotic curve", *Comput. Aided Design*, 44: 637-643, (2012).
- [8] Bayram E. and Bilici M., "Surface family with a common involute asymptotic curve", *Int. J. Geom. Methods Modern Phys.*, 13: 1650062, (2016).
- [9] Güler F., Bayram E. and Kasap E., "Offset surface pencil with a common asymptotic curve", *Int. J. Geom. Methods Modern Phys.*, 15: 1850195, (2018).
- [10] Şaffak Atalay G. and Kasap E., "Surfaces family with common null asymptotic", *Appl. Math. Comput.*, 260: 135-139, (2015).
- [11] Yüzbaşı Z.K., "On a family of surfaces with common asymptotic curve in the Galilean space G<sub>3</sub>", *J. Nonlinear Sci. Appl.*, 9: 518-523, (2016).
- [12] Şaffak Atalay G., Bayram E. and Kasap E., "Surface family with a common asymptotic curve in Minkowski 3-space", *Journal of Science and Arts*, 2, 43: 357-368, (2018).

- [13] Yoon D.W., Yüzbaşı Z.K. and Bektaş M., "An approach for surfaces using an asymptotic curve in Lie Group", *Journal of Advanced Physics*, 6, 4: 586-590, (2017).
- [14] Bayram E., "Surface pencil with a common adjoint curve", *Turkish Journal of Mathematics*, 44: 1649 – 1659, (2020).
- [15] Coşanoğlu H., Bayram E., "Surfaces with constant mean curvature along a curve in 3-dimensional Euclidean space", Süleyman Demirel University, Journal of Natural and Applied Sciences, 24, 3: 533-538, (2020).
- [16] Walrave J., "Curves and surfaces in Minkowski space", *PhD. Thesis*, K. U. Leuven Faculteit Der Wetenschappen, (1995).
- [17] Lopez R., "Differential geometry of curves and surfaces in Lorentz-Minkowski space", *Int. El. J. of Geometry*, 7, 1: 44-107, (2014).