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Graphical Abstract 

We construct surfaces with constant mean curvature through a given timelike curve. 

 

Figure. A surface with constant mean curvature along a given timelike curve (red in colour) 
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We construct surfaces using the Frenet frame of the given timelike curve and obtain conditions. 
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It is possible to obtain surfaces with constant mean curvature along a given timelike curve. 
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ABSTRACT 

We construct surfaces with constant mean curvature through a given timelike curve. We show that, it is possible to obtain such 

surfaces for any given timelike curve. The validity of the method supported with illustrative examples. 

Keywords: Timelike curve, constant mean curvature surfaces, Minkowski 3-spac   
1. INTRODUCTION 

The mathematical model of the relativity theory is 

the Lorentz-Minkowski space time and it is an 

attractive area for researchers. The trajectory of a 

moving particle can be represented by a null curve 

if it travels at the speed of light and by a spacelike 

or timelike curve if it moves faster or slower than 

light, respectively. 

Another important notion in Lorentz-Minkowski space 

time is surfaces. We see surfaces almost in every 

differential geometry book [1-3]. A constant mean 

curvature surface is a surface whose mean curvature is 

constant everywhere. It can be physically modeled by a 

soap bubble. There are several techniques to characterize 

surfaces. However, the construction of a surface is also 

an important issue. Current studies on surfaces have 

focused on finding surfaces with a common special curve 

[4 - 14]. Recently, Coşanoğlu and Bayram [15] obtained 

sufficient conditions for surfaces with constant mean 

curvature through a given curve in Euclidean 3-space. In 

the present paper, analogous to Coşanoğlu and Bayram 

[15], we obtain parametric surfaces with constant mean 

curvature through a given timelike curve. We present 

conditions for these types of surfaces. The method is 

validated with several examples. 

  

2. MATERIAL and METHOD 

The real vector space 
3R  equipped with the metric 

tensor  

1 1 2 2 3 3X,Y x y x y x y= − + +  

is called the Minkowski 3-space and denoted by 
3

1R ,  

where ( )1 2 3X x ,x ,x ,=   ( ) 3

1 2 3Y y , y , y R=   [1] .  

The Lorentzian vectorial product is defined by  

( )2 3 3 2 1 3 3 1 2 1 1 2X Y x y x y ,x y x y ,x y x y . = − − −  

A vector 
3

1X R  is called timelike, spacelike or 

lightlike (null) if 

X,X 0,

X,X 0 or X 0,

X,X 0,

 


 =
 =


 

respectively. Similarly, a curve in 
3

1R  is called a 

timelike, spacelike or lightlike curve if its tangent 

vector field is always timelike, spacelike or 

lightlike, respectively. 

The Frenet frame of a curve   is denoted by 

( ) ( ) ( ) T s , N s ,B s , where T, N  and B  are the 

tangent vector field, the principal normal vector 

field and the binormal vector field, respectively.  

Assume that   is a unit speed timelike curve with 

curvature   and torsion  . Hence, tangent vector 

field is a timelike vector field, principal and 

binormal vector fields are spacelike. For these 

vectors, we have 

T N B, N B T, B T N. = −  =  = −  

The binormal vector field B(s)  is the unique 

spacelike unit vector field perpendicular to the 

timelike plane  T(s), N(s)  at every point ( )s  of 

, such that  T, N,B  has the same orientation as 
3

1R

. Then, Frenet formulas are given by [16]  

T N,  N T B,  B N.  =  =  +  = −  

The mean curvature of the surface ( )P s, t  is given 

as 

( )
( ) ( ) ( )

( )
3
2

s t ss s t st s t tt

2

det P ,P ,P G 2det P ,P ,P F det P ,P ,P E
H s, t ,

2 EG F

− +
= −

−

 

where E, F, G  are the coefficients of the first 

fundamental form of the surface ( )P s, t [17]. 
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3. CONSTRUCTION OF SURFACES WITH 

CONSTANT MEAN CURVATURE ALONG A 

TIMELIKE CURVE 

Let ( ) 1 2s , L s L    be a timelike unit speed 

regular curve with curvature ( )s  and torsion 

( )s .  Also, assume that ( )s 0,    s.  Parametric 

surfaces possessing ( )s  can be written as 

    
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

P s, t s u s, t T s

v s, t N s w s, t B s ,

=  +

+ +
                         (1) 

1 2 1 2L s L , T t T ,     where ( ) ( ) ( ) T s , N s ,B s  is 

the Frenet frame of ( ) 2s . C  functions 

( ) ( ) ( )u s, t , v s, t , w s, t  are called marching-scale 

functions. Observe that, choosing different 

marching-scale functions yields different surfaces 

along the curve ( )s .   

To simplify the calculations, we suppose that the 

curve ( )s  is a parameter curve on the surface 

( )P s, t  in Eqn. (1). So, we have 

( ) ( ) ( )0 0 0u s, t v s, t w s, t 0= =  , 

for some  0 1 2t T ,T .   

The mean curvature of the surface ( )P s, t  is given 

as 

( )
( ) ( ) ( )

( )
3
2

s t ss s t st s t tt

2

det P ,P ,P G 2det P ,P ,P F det P ,P ,P E
H s, t ,

2 EG F

− +
= −

−

 

where E,F,G  are the coefficients of the first 

fundamental form of the surface ( )P s, t  [17] .   

We make the following calculations required for the 

mean curvature. 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

s s

s

s

P s, t 1 u s, t s v s, t T s

s u s, t v s, t s w s, t N s

s v s, t w s, t B s ,

= + + 

+  + − 

+  +

 

( ) ( ) ( ) ( ) ( ) ( ) ( )t t t tP s, t u s, t T s v s, t N s w s, t B s ,= + +  

( ) ( )s 0P s, t T s ,=  

( ) ( ) ( ) ( ) ( ) ( ) ( )t 0 t 0 t 0 t 0P s, t u s, t T s v s, t N s w s, t B s ,= + +

( ) ( ) ( )ss 0P s, t s N s ,=   

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

st 0 ts 0 ts 0 t 0

t 0 ts 0 t 0

t 0 ts 0

P s, t P s, t u s, t s v s, t T s

s u s, t v s, t s w s, t N s

s v s, t w s, t B s ,

= = + 

+  + − 

+  +

 

( ) ( ) ( ) ( ) ( ) ( ) ( )tt 0 tt 0 tt 0 tt 0P s, t u s, t T s v s, t N s w s, t B s ,= + +  

( )( ) ( ) ( )s t ss 0 t 0det P ,P ,P s, t s w s, t ,= −  

( )( ) ( )( )

( ) ( )( ) ( )

s t st 0 t t ts

t t ts t 0

det P , P , P s, t v v s w

w u s v s w s, t ,

=  +

−  + −  

( ) ( ) ( )( ) ( ) ( )

( ) ( )

s 0 t 0 tt 0 t 0 tt 0

t 0 tt 0

det P s, t ,P s, t ,P s, t v s, t w s, t

w s, t v s, t ,

=

−
 

where subscript denotes the partial derivative with 

respect to the parameter in question. Hence, we have 

the mean curvature of the surface ( )P s, t  in Eqn. (1) 

along the curve ( )s  as 

( )
( )

( )

( ) ( ) ( )

3
2

2 2 2

0 t t t t t tt t tt
2 2

t t

t t t ts t t t ts 0

1
H s, t w u v w v w w v

2 v w

2u w u v w v v w s, t .

=  − + + + −


+

−  + −  − +  

 

Theorem : The surface ( )P s, t  in Eqn. (1) has 

constant mean curvature along the timelike curve 

( )s  if one of the following conditions is satisfied:  

i) 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

t 0 t 0

0 0 0 t 0 tt 0

u s, t v s, t 0

u s, t v s, t w s, t w s, t w s, t 0

s constant,

= 


= = = = 

 =

 

ii) 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

t 0 t 0

0 0 0 t 0 tt 0

u s, t w s, t 0

u s, t v s, t w s, t v s, t v s, t 0

s s constant,

= 


= = = = 

 −  =

 

iii) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

t 0 t 0 t 0

0 0 0

u s, t v s, t w s, t 0

u s, t v s, t w s, t 0

4 s s constant,

= = 


= = 

 −  =

  

iv) 

( )

( ) ( ) ( ) ( )

( ) ( )

t 0

0 0 0 t 0

t 0 tt 0

v s, t 0

u s, t v s, t w s, t u s, t 0

w s, t w s, t 0,




= = = 


= 

  

v) 

( ) ( )

( ) ( ) ( ) ( )

( )

t 0 t 0

0 0 0 t 0

v s, t w s, t 0

u s, t v s, t w s, t u s, t 0

s constant.

= 


= = = 

 =

. 

 

Example : In this example, we construct surfaces 

with constant mean curvature along a given timelike 

curve. The unit speed timelike curve 

( ) ( ) ( )( )5 4 4

3 9 9
s s, cos 3s , sin 3s =  has the following 

Frenet apparatus 
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( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

5 4 4
T s , sin 3s , cos 3s ,

3 3 3

N s 0, cos 3s , sin 3s ,

4 5 5
B s , sin 3s , cos 3s ,

3 3 3

s 4, s 5.

  
= − 
 

 = − −


  = − −   

 =  =

 

Choosing marching-scale functions as 

( ) ( ) ( )u s, t v s, t t, w s, t 0= =   and 0t 0,=  

Theorem (i) is satisfied and we obtain the surface  

( ) ( ) ( ) ( ) ( ) ( )1

5 4 4 4 4
P s, t s t , cos 3s t sin 3s , t sin 3s t cos 3s ,

3 9 3 9 3

  
= + − − +  

  

 

1 s 1, 0 t 1−      with constant mean curvature 

( )H s,0 5=  along the timelike curve ( )s  (Figure 1)

.   

 

Figure 1. ( )1P s, t with constant mean curvature along 

the timelike curve ( )s .  

 

For the same curve, if we choose marching-scale 

functions as ( ) ( ) ( )u s, t w s, t t, v s, t 0= =   

and 
0t 0,=  Theorem (ii) is satisfied and we obtain 

the surface 

( ) ( ) ( ) ( ) ( )2

5s t 4 t 4 t
P s, t , cos 3s sin 3s , sin 3s cos 3s ,

3 9 3 9 3

+ 
= + − 
 

 

1 s 1, 0 t 1−      with constant mean curvature 

( )H s,0 1=  along the timelike curve ( )s  (Figure 2)

.   

 

Figure 2. ( )2P s, t with constant mean curvature along the 

timelike curve ( )s .  

 

Choosing marching-scale functions as 

( ) ( ) ( )u s, t v s, t w s, t t= = = and 0t 0,=  Theorem 

(iii) is satisfied and we obtain the surface 

( ) ( ) ( ) ( ) ( )3

5s t 4 t 4 t
P s, t , t cos 3s sin 3s , t sin 3s cos 3s ,

3 9 3 9 3

 +    
= − + − −    

    

 

1 s 1, 0 t 1−      with constant mean curvature 

( )H s,0 2 2=  along the timelike curve ( )s  

(Figure 3) .   

 

Figure 3. ( )3P s, t with constant mean curvature along 

the timelike curve ( )s .  

 

If we choose ( ) ( ) ( )u s, t w s, t 0, v s, t t=  = and 

0t 0,=  Theorem (iv) is satisfied and we obtain the 

surface 
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( ) ( ) ( )4

5s 4 4
P s, t , t cos 3s , t sin 3s ,

3 9 9

    
= − −    

    
 

1 s 1, 0 t 1−      with constant mean curvature 

( )H s,0 0=  along the timelike curve ( )s  (Figure 

4) .   

 

Figure 4. ( )4P s, t with constant mean curvature along 

the timelike curve ( )s .  

 

Letting ( ) ( ) ( )u s, t 0, v s, t w s, t t = = and 
0t 0,=  

Theorem (v) is satisfied and we obtain the surface  

( ) ( ) ( ) ( ) ( )5

5s 4t 4 5t 4 5t
P s, t , t cos 3s sin 3s , t sin 3s cos 3s ,

3 9 3 9 3

 −    
= − + − −    

    
 

1 s 1, 0 t 1−      with constant mean curvature 

( )H s,0 2=  along the timelike curve ( )s  (Figure 

5) .   

 

Figure 5. ( )5P s, t with constant mean curvature 

along the timelike curve ( )s .  

 

 

6. CONCLUSION 

In this study, we showed that it is possible to construct 

surfaces with constant mean curvature along a given 

timelike curve. 
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