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Implementation and applications of a new approach to multiobjective optimization by evolutionary algorithms are 
presented. After non-dominated sorting for Pareto formation, a novel non-linear ranking is proposed during the fitness 
evaluation and tournament selection, as well as elitism. The non-linear ranking is based on a probabilistic model, which models 
the density of the genetic population throughout the generations by means of an exponential distribution. From this model, a 
robust probabilistic distance measure is established. The distance comprises a penalty parameter in an embedded form, which 
plays an important role for the convergence of the optimization process as it varies in an adaptive form during the generations in 
progress. Because of the embedded form, the penalty parameter is inherently tuned for every constraint, making the convergence, 
robust, fast, accurate, and stable. By the nonlinear ranking procedure, also the stiffness among the constraints is handled 
effectively. Convergence process is backed-up with an additional probabilistic threshold applied to the population, classifying 
them as productive and unproductive infeasible solutions. The details of the underlying theoretical work are presented in the first 
part of this sequel. The present work at hand describes the algorithmic implementation in detail, and the outstanding 
performance of the optimization process is exemplified by computer experiments. The problems used in the experiments are 
selected from the existing literature for the purpose of eventual benchmark comparisons.  
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I .  I N T R O D U C T I O N  

HERE IS CONTINUOUS growing interest in multi-objective 
evolutionary algorithms since their initial introduction 

some three decades ago. The algorithms are of interest in 
many diverse areas that may span diverse engineering science 
areas including the cognitive science. They are particularly 
suitable for the optimization tasks because they evolve 
simultaneously a population of potential solutions to the 
problem at hand, which allows one to search a set of favorable 
solutions in the form of an optimal front in a single run of the 
algorithm. Multi-objective optimization problems can be 
formulated in various ways depending on the problem at 
hand. One prominent example along that line is the constraint 
optimization [1], which is the subject matter of this work. In 
general multi-objectivity in optimization is a broad field in 
which much remains to be done in order to increase its 
effectivity in the diverse areas, where engineering applications 
take an important place [2]. The tutorials on evolutionary 
algorithm are widely available in the literature [3-5]. The 
updated research surveys on it are also available, e.g. [6, 7]. 

Since a multi-objective optimization can be formulated as a 
single objective problem with constraints, where the 
constraints are combined to be an additional objective subject 
to minimization, it is interesting to tackle the constraint 

optimization with single objective function as a general case. 
The method known as penalty function method is a 
commonly used method for constraint optimization. 
Following the penalty function method a solution is penalized, 
i.e. its fitness deteriorates when it violates constraints. This 
penalization is accomplished by adding a value to the objective 
function value in proportion to the amount of constraint 
violation, the proportionality factor being the penalty 
parameter. An evolutionary constrained optimization 
approach without penalty parameter was proposed by Deb in 
2000 [8]. Due to the determination of the penality parameter 
during the search,  Coello [9] proposed a self-adaptive penalty 
approach. Although introduction of penalty function for 
evolutionary multiobjective optimization problems is a general 
approach, the essential issue is the selection of the suitable 
penalty parameter which is dependent on each constraint of 
the penalty function. Therefore selection of a common penalty 
parameter becomes an oversimplification of the problem. As 
result of this, the approaches mentioned before leave a lot to 
be desired due to inadequate converge to the optimum while 
this is demanded. This is circumvented to some extent by 
using a classical optimization approach in combination with 
the evolutionary computation in order to converge the 
optimum matching the demands [1].  

This paper addresses the multi-objective optimization as a 
bi-objective optimization where penalty function plays an 
important role. In this paper a new approach is proposed 
eliminating the need of classical constraint optimization next 
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to the evolutionary computation, yet providing outstanding 
convergence properties. In this approach a probabilistic model 
of the random solutions is used to derive a nonlinear distance 
measure that it is used for effective, i.e. robust ranking of 
genetic population members, and efficient, i.e. fast converging, 
solutions. The research is organized in two parts. The first part  
is presented in a theoretical framework with a demonstrative 
example afterwards [10]. In the second part, namely this part, 
based on the theoretical considerations, the development of 
the algorithm is given in detail and some demonstrative 
optimization problems are presented as applications. The 
organization of the paper is as follows. In section two, the 
formulation of general multi-objective optimization problem 
as constrained single objective problem is described. In section 
three probabilistic constraint handling is presented. In Section 
four, implementation of the probabilistic approach for non-
linear ranking in an evolutionary algorithm is described. This 
is followed by a demonstrative computer experiment in 
section five, and conclusions. 

I I .  M E T H O D  F O R  M U L T I O B J E C T I V E  
O P T I M I Z A T I O N  

 WE I G H T I N G  M E T H O D  A. 
The base of the problem formulation in this are the 

considerations known as weighting method [11-13]. In this 
method each objective is associated with a weighting 
coefficient and the weighting sum of the objectives is 
minimized. Thus, the multiple objective functions are 
converted into a single objective function. We assume that the 
weighting coefficients wi are real numbers such that 0 ≤ wi for 
all objectives i=1,….,k so that a weighting problem can be 
stated as 

1
min ( )

k

i i
i

w f subject to S
=

   ∈∑ x x
 

(1) 

 WE I G H T I N G  M E T H O D  FO R M U L A T E D  A S  B. 
CO N S T R A I N E D  OP T I M I ZA T I O N  

In the constraint handling in this work a single objective is 
involved which is subject to minimization. Therefore the 
problem can be stated as  

1 2min ( ) ( [ ( ), ( ),..., ( )] 0T
mf subject to g g x g x g x  ≤x x) =  (2) 

We assume that the feasible region is of the form 

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x= ∈ ≤x) =  

(3) 

Considering that, the summation of the constraint violations is 
as another objective subject to minimization, the problem 
statement becomes a problem of two objective functions 
subject to minimization. The formulation of the problem in 
this case becomes  

1 2min ( ) (w f w G+x x)  (4) 

where  

 
(5) 

Thus, the problem definition becomes explicitly,  

1

1 2

min ( ) ( ) ( ) ( )

{ | ( [ ( ), ( ),..., ( )] 0}

m

i i
i

n T
m

f g f G

S x R g g g g

m
=

+ = +

= ∈ ≤

∑x x x x

x) = x x x  

(6) 

With this formulation, the weighting method becomes 
appropriate to employ where w1=1, w2i=mi. We can formulate 
the multiobjective optimization as two objectives optimization 
which can be treated further a single objective with 
constraints, without deviating from generality. Such an 
approach is known as ε-Constraint method [13, 14]. 

 IS S U E S  O F  T H E  PE N A L T Y  F U N C T I O N  AP P R O A C H  C. 
The problem statement given in (6) is written as 

1
( , ) ( ) ( )

J

j j
i

P R f R g
=

= + ∑x x x
 

(7) 

The function gj(x) is penalty function and the parameters Rj 
are the associated penalty parameters. Since each penalty 
parameter Rj indexed by the index parameter j is subject to  
identification, and this is a formidable task. To alleviate the 
issue, a common penalty parameter may be defined, so that (7) 
becomes 

1
( , ) ( ) ( )

J

j
i

P R f R g
=

= + ∑x x x
 

(8) 

The selection of the penalty parameter R can be done in two 
ways: 

1) Selecting a constant R. This case is illustrated in figure 1. 

 
 Approach to the final optimal solution by means of penalty Fig. 1. 

function approach; R is the penalty parameter 

From the figure it is clear that, we can hope to converge 
to the tangent at the point T which is far from the 
optimum Popt. Therefore a constant R is not a satisfactory 
strategy. 

2) To determine a variable R, an extrapolation polynomial 
can be used, extrapolating the Pareto front. At the 
intersection of the polynomial and the f2(x) the slope of 
the tangent gives some estimate of R [1].  However, in 
this case R goes gradually zero tending to ignore the 
constraints. This is depicted in figure 2. Gradient based 
constrained local search has to be invoked to obtain the 
optimal point [1]. Evolutionary algorithm is used to 

( ( )i iG gm∑
k

i=1
x) = x
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estimate a favorable starting point for the local search 
which makes the search very precarious. 

It is to note that, with above consequences the need for the 
evolutionary algorithm becomes subject to discussion, as there 
is no point to expect that the population converges to the 
optimum. In essence the main machinery for optimization 
becomes the local search, where evolutionary optimization 
becomes merely a tool providing a favorable starting point for 
a non-evolutionary optimization. 

 
 Approach to the final optimal solution by means of penalty Fig. 2. 

function approach; R is the penalty parameter 

I I I .  P R O B A B I L I S T I C  A P P R O A C H  

 PR O BA BI L I S T I C  M O D E L I N G A. 
As a new approach, we assume the problem formulation as a 

constraint optimization with single objective, so that in a 
general constrained optimization problem of the form  

1
( ) ( ) ( )

J

j j
i

P f gµ
=

= + ∑x x x
 

(9) 

where f(x) is the single objective function to be minimized; 
gj(x) is the violation of the j-th constraint, namely penalty 
function, µi is the associated parameter of the penalty function. 
At each generation during the evolutionary minimization 
process gj(x) is continually tried to be made to vanish. 
Considering the population density of solutions, this implies 
the probability density of gj(x) is highest about zero violations, 
and its value gradually diminishes proportional with the 
degree of violation. Based on the randomly generated 
population of the evolutionary algorithm, we can model the 
violations as a random variable, where the violations are 
independent due to random population formation by the 
random composition of chromosomes at each generation. The 
number of violations per unit violation gradually decreases 
with the degree of violation conforming to the commensurate 
number of chromosomes created by the elitism and sorting 
strategy in the genetic algorithm (GA). This probabilistic 
pattern continues in the same way without change throughout 
the generations. The probabilistic description of this process 
can be modeled by the exponential probability density (pdf), 
because of its memorylessness property. That is, the form of 
the density remains the same being independent of the range it 
models, and the exponential pdf is a unique density having 

this property. With this information peculiar to the subject 
matter of this research, we can confidently apply the 
exponential probability density function (pdf), which is given 
by 

( ) yf y e λ
λ λ −=  

(10) 

where λ is the decay parameter. Denoting 
( )jy g x=  

(11) 

the pdf in (10) becomes 
( ) j j

j

g
g j jf g e λλ −=

 
(12) 

The mean value of the exponential pdf function is equal to λj
-1.  

During the evolutionary search gi(x) is a general form of 
violation which applies to any member s of the population 
although s is not explicitly denoted. However, in explicit form, 
we can write 

,
,( ) j j s

j

g
g j s jf g e λλ −=

 
(13) 

where s denotes a population member. We can characterize 
the exponential pdf function according to the constraint j 
simply by equating the mean value of the violations gj to the 
mean of the exponential pdf, namely  

1/j jgλ
−

=  
(14) 

One should note that the mean of the exponential 
probability density of gj is equivalent to the mean of a uniform 
probability density applied to the violations gj. Therefore the 
mean of the exponential density function is estimated by 
taking the mean of the violations which are from a uniform 
probability density and they are independent. Since a violation 
gj spans all the violations starting from zero up to the point gj, 
the probability of the violation is expressed as cumulative 
distribution function whose implication is easy to comprehend 
by considering the extremes. The cumulative distribution 
function of (12) is given by 

0

1( ) 1
jj

j j j

gg
g gg

j j
j

p g e dg e
g

−−

= = −∫
 

(15) 

The probability p(gj) is an appropriate measure for the 
magnitude or effectiveness of a violation and it can be 
considered as a probabilistic distance function or a metric  

measuring the distance from the zero violation fulfilling all the 
conditions to be a distance measure. Therefore in this work, in 
(9), mj is replaced by Crj(gj) in the form 

( ) ( )j j j jC r g gµ=  (16) 

So that (9) becomes  

1
( ) ( ) ) ( )

J

j j j
i

P f C r (g g
=

= + ∑x x x
 

(17) 

where C is constant common for all the constraints, which is 
called as convergence parameter as it is related to the 
convergence properties of the search [10]; rj is a new penalty 
parameter which is a function of gj. In (17), rj(gj)gj is replaced 
by p(gj), in the form 
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( ) ( )j j j j jr g g p g=  
(18) 

so that (17) becomes  

1
( ) ( ) ( ))

J

j j
i

P f C p (g
=

= + ∑x x x
 

(19) 

In view of (18), rj is given by  
( ) ( ) /j j j j jr f g p g g= =  

(20) 

The plot of rj vs gj is shown in figure 3, and its variation 
during the evolutionary search as to the Pareto optimal front is 
shown in figure 4.  

 
 Illustration of the new penalty parameter r as to probabilistic Fig. 3. 

modeling: r=(1-exp(-λg))/g 

 
 Approach to the final optimal solution by means of penalty Fig. 4. 

function approach; r is the penalty parameter. 

I V .  I M P L E M E N T A T I O N  O F  T H E  
E V O L U T I O N A R Y  A L G O R I T H M  

In the probabilistic formulation of a constraint optimization 
problem, the function subject to minimization is given by 

( )
1

( ) ( ) ( )
J

j j
j

P g f C p g
=

= + ∑, x x x
 

(21) 

where J is the number of constraints; C is a common constant. 
The probability p(gj) controls the penalty parameter, mi(gj) 
which is absorbed in p(gj) in the form of rj. The penalty 
parameter mi(gj) varies theoretically between zero and infinity, 
while p(gj) varies between zero and unity. 

 ST A G E  O N E:  NO N-D O M I N A T E D  SO R T I N G  (NS)  A. 
As a first step in the algorithm, the multi-objective 

optimization problem is converted into a two-objective 
problem. The second objective subject to minimization is the 
summation of the violations. During the NS part of the 
algorithm we are considering G as second objective, i.e. the 
sum of the violations gj and not the sum of the probabilities 
p(gj). The reason for that is that, as a first step the algorithm 
should establish a Pareto front in the bi-objective space, and 
the bounded range of p-space as unity, i.e. 0≤p(gj)≤1 implies a 
tendency for aggregation in the space formed by f(x) and p(gj). 

For the Pareto-front formation in the first step, the selection 
among the solutions is based on binary tournament selection 
using non-dominated sorting (NS) and crowding [15]. It is 
noted that this procedure is applied for infeasible solutions 
exclusively, i.e. solutions where G<0. Solutions are sorted with 
respect to the Pareto subfront they belong to, and assigned a 
Pareto rank index accordingly. This is seen from figure 5a. The 
crowding computation is illustrated in figure 5b for two 
solutions B and C, where solution C is preferred in a 
tournament due to larger crowding distance for C. The length 
of the cuboid around a solution is compared among the 
solutions on the same subfront, 

 
 (a) (b) 

 Non-dominated sorting based selection among the infeasible Fig. 5. 
solutions (a); Crowding distance computation (b) 

and a solution with greater distance will be preferred over a 
solution with smaller distance. This is in order to avoid 
aggregation of solutions in the objective space, i.e. to reach a 
front with uniform density of solutions. Solutions at the 
extremity of a Pareto rank will be assigned infinite crowding 
distance, so that they will always prevail over other solutions 
on the same rank. This is to ensure that the sizes of the sub 
fronts remain large during the ranking-based front formation. 
Solutions in a tournament will be evaluated depending on the 
condition given by 

1
( )

J

j pj
j

p g n J
=

<  ∑
 

(22) 

where J is equal to the number of constraints, and npj denotes a 
probability threshold, above which a solution is deemed 
unproductive among the infeasible solutions, and below which  

 
 Sketch for the selection procedure during non-dominanted sorting Fig. 6. 

(NS) based tournament 

a solution is deemed productive. It has a counterpart in the 
violation domain denoted by nbj. This is seen in figure 6.For 
the condition in (22) three possible outcomes can occur: 

1. In case both solutions fulfill condition (22), i.e. both 
solutions are in the productive domain, the solutions are 
compared with respect to their rank. The solution with 
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lower rank wins the tournament. In case they are on the 
same rank, the solution with greater crowding distance 
wins the tournament. The crowding distance is computed 
as seen in figure 5b [15]. 

2. In case both solution do not fulfill condition (22), i.e. 
both belong to the unproductive domain, then the 
solution, whose sum of p(gj) is smallest, wins the 
tournament without considering rank or crowding 
distance. This is to favor the solution among the two 
unproductive one, which is nearer to the productive 
domain.  

3. In case one solution fulfills (22), while the other one does 
not, then she solution in the productive domain wins the 
tournament over the other one, without considering rank 
or crowding information. This case is shown in figure 6, 
where the violation in the productive domain is denoted 
by X2j and its counterpart is X1j. 

Optimal selection of the threshold, npj or nbj is explained in 
another publication, where the optimum value is identified to 
be 0.5 [ref. paper 1 JCS]. The functionality of (22) is especially 
due to case 3, as it increases the pressure, i.e. increased number 
of productive chromosomes, towards the feasible region. It is 
noted that the location of the boundary parameter np implies a 
fixed location in the p(gj)-dimension, whereas in gj-dimension 
the location of the boundary generally changes from 
generation to generation due to changing mean values.  

 
 Sketch for the tournament selection during NS Fig. 7. 

The possible comparison criteria and outcomes from binary 
tournaments mentioned above are exemplified in figure 7. 
During the search process feasible solutions may arise. In the 
binary tournament selection, when a feasible solution is 
selected together with an infeasible one, e.g. A and F, or two 
feasible ones are selected, e.g. A and D the comparison 
between the solutions is based on the values of f(x) exclusively, 
i.e. without considering the violation information or rank. 
This means the winner of the tournament is the solution 
among the two that has lower value of f(x), i.e. F wins over 
solution A, and in the same way D wins over A. Excluding the 
violation information is done, since for the feasible region the 
summation of the constraint violations is not defined. Namely 

the original optimization problem is to find a solution that 
minimizes f(x), while the constraints are not violated, i.e. there 
is no need for reaching solutions within the feasible region 
away from the feasibility boundary. When two solutions from 
the productive domain are in a tournament, e.g. F and G, then 
F wins over G due to the lower rank of F. When a solution 
from the productive domain is in a binary tournament with a 
solution from the non-productive domain, e.g. solutions H 
and I in the figure, then H wins over I. And finally, when 
among two solutions from the non-productive domain, e.g. I 
and K, then I wins over K, as the former is nearer to the 
boundary separating the productive and non-productive 
domains. It is noted that by means of the distinction between 
productive and non-productive solutions, the probabilistic 
considerations are introduced to the conventional non-
dominated sorting algorithm.  

After the tournament selection the genetic operators are 
applied and a new population is created. In the present 
implementation simulated binary crossover [16] and 
polynomial mutation [17] are used for this procedure. When 
the new generation is formed an elitism concept is applied [15] 
in a modified form in this work, seen from figure 8. The new 
generation is combined with the previous one, and thereafter 
the infeasible solutions are sorted based on their rank and the 
feasible solutions based on their f(x) values. The feasible 

 
 NS based elitism Fig. 8. 

solutions with the lowest f(x) values are used to fill up 
remaining places in the elitist population. The feasible 
solution with the lowermost value of f(x) is put to the 
uppermost place in the population after elitism. This solution 
is marked in yellow in figure 8. 

 ST A G E  T W O:  NO N-L I N E A R  RA N K I N G  (NR)  B. 
The NS algorithm described above is repeated for a number 

of generations, for example four generations, so that the 
Pareto front sufficiently develops. Thereafter a non-linear 
ranking procedure based on the probabilistic considerations 
described above is employed as follows. During the 
tournament selection process, for two infeasible solution 

14
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from the productive domain the value P(gj, x) in (2) is used to 
determine the winner of the tournament. In this procedure, 
clearly, a solution with lower P value is preferred over the 
solution with a larger P value. If a solution in the tournament 
belongs to the non-productive domain, then the same 
consequences apply as in the NS tournament. Namely, 
productive solutions win over non-productive solutions, and 
among non-productive solutions, the solution which is 
nearest to the productive domain wins. 
Possible outcomes during the non-linear ranking procedure 
are exemplified in figure 9.  

 
 Sketch of the tournament selection during NR  Fig. 9. 

For instance, in the figure solution B represents the best 
solution among the feasible ones. When this solution is in a 
tournament with in infeasible solution from the productive 
domain, e.g. solution E, the winner of the tournament is 
obtained using P(gj, x). That is solution B is considered as if it 
were an infeasible one for this comparison, so the chance B 
remains in the population is increased. For solutions from the 
productive domain, as P(gj, x) is a summation of function value 
f(x) and summed up values of p(gj), population members that 
have a low function value and at the same time small sum of 
p(gj) are favored in the selection process. A solution having a 
low summation of p(gj) means that this solution has the 
unusual property that it violates several constraints with an 
extraordinarily low amount, when considered in perspective 
with the average violations of the respective constraints. In 
contrast to the Pareto-ranking based algorithm exercised 
before, the probabilistic selection mechanism will not permit 
solutions with low function value to remain in the population, 
provided the coefficient C is selected large enough. The 
important implication of the NR tournament selection is 
assigning a commensurate right penalty parameter for every 
constraint, and even for each population member, where 
thepenalty parameter is embedded in the non-linear distance 
function [10]. By means of this, the robustness and precision 
of the algorithm is guaranteed, together with the high stability 
of the search process. After the non-linear ranking based 
tournament selection, P(gj, x) is used during an elitism 
procedure, as seen in figure 10. From the figure it is noted that 
in the sorting step for the elitism the infeasible solutions are 

sorted based on their P(gj, x) values. Generally the mean values 
for the different constraints of two consecutive generations 
being merged for elitism differ, and it is generally expected 
that the mean values improve from generation to generation. 
In order to ensure accurate convergence, in this 
implementation for the sorting procedure during the NR 
elitism P(gj,x) is obtained using the mean value of the 
respective generation when the chromosome was created. This 
way the convergence is slowed down in order to ensure that 
the solutions from the past generation will also have 
significant influence in the ensuing generation. This is in order 
to maintain diversity during the search and carefully target the 
minimum being approached with the population. 

 
 NR based Elitism Fig. 10. 

V .  C O M P U T E R  E X P E R I M E N T  

Computer experiments have been carried out using two 
optimization problems from the literature.  

 PR O BL E M  I  A. 
The following problem is due to Hock and Schittowski [18]. It 
is given by (23)-(25). 

2 2 4 2
1 2 3 4

6 2 4
5 6 7 6 7 6 7

( ) ( 10) 5( 12) 3( 11)

10 7 4 10 8

f x x x x
x x x x x x x

= − + − + + − +

+ + − − −

x

 
(23) 

where the ranges for the independent variables are given by 

10 10, 1,...,7ix i− < <  =  (24) 

Subject to: 
2 4 2

1 1 2 3 4 5
2

2 1 2 3 4 5
2 2

23 1 6 7
2 2 2

4 1 2 1 2 3 6 7

( ) 127 2 3 4 5 0

( ) 282 7 3 10 0

( ) 196 23 6 8 0

( ) 4 3 2 5 11 0

g x x x x x
g x x x x x
g x x x x
g x x x x x x x

= − + + + + + ≤ 

= − + + + + − ≤ 

= − + + + − ≤ 

= + − + + − ≤ 

x
x
x
x  

(25) 

It consists of a single objective with four constraints, subject to 
minimization. The best known optimum is located at  

f(x*)= 680.630057374402 
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The corresponding best known variable values are  
x1

*=2.33049935147405174; x2
*=1.95137236847114592;  

x3
*=-0.477541399510615805; x4

*=4.36572624923625874;  
x5

*=-0.624486959100388983; x6=5; x7
*=1.03813099410962173; 

x8
*=1.5942266780671519. 

The algorithm is executed with the following settings: 
population size=200; amount of generations=70; C=100000; 
the ratio of NS-NR procedures=4/1; crossover probability=0.9; 
mutation probability=0.05. The results are shown in figure 11-
13 using a logarithmic scale for the horizontal axis, which 
shows the sum of the violations gj denoted by G. From the 
figures it is observed how the initial population gradually 
approaches towards the optimal solution. It is emphasized that 
an iteration of the algorithm consists of four Pareto-ranking 
based generations, followed by one probabilistic selection 
based generation. From figures 11-13 it is observed that the 
search process continues to yield solutions near to the optimal 
point. From the results it is noted how the initially scattered 
population gradually approaches as a connected front towards 
the optimal solution. The search maintains the pressure 
towards the feasible region throughout the search process and 
arrives at the feasible region with a large amount of potential 
solutions near to the optimum. This manifests the robustness 
of the approach. 

After 10 iterations the best feasible solution is found to be 
f(x)= 681.776930738684. 

This solution is near to the optimum, namely at a distance 1.68 
promille from the best known optimum.  

The population is seen in figure 11.  

 
 Population after the 10-th iteration Fig. 11. 

 

The independent variables of this solution take: 

 x1=2.32189959894901; x2=1.95533366880135; 
x3=0.0913466483171242; x4=4.31676277251481;  
x5=-0.462500971507716; x6=1.04611582287531; 
x7=1.59865097668138. 

After 30 iterations the best feasible solution is found to be 

f(x)= 680.67949252499. 

The population is seen in figure 12. The independent variables 
of this solution take: 

x1=2.32743347740407; x2=1.9576387118545;  
x3=-0.503457841417583; x4=4.34872456501762;  
x5=-0.612760668700169; x6=1.0244876812099; 
x7=1.58909845884555. 

 
 Population after the 30-th iteration Fig. 12. 

After 70 iterations the best feasible solution is found to be 

f(x*)= 680.632527938176. 

The population is seen in figure 13. The independent variables 
of this solution take:  

x1=2.33064474976019; x2=1.95388009157449;  
x3=-0.469607706232811; x4=4.35926347613402;  
x5=-0.62611714120937; x6=1.03074889097774; 
x7=1.58906253465783. 

 
 Population after the 70-th iteration Fig. 13. 

 PR O BL E M   I I  B. 
The following problem is due to Floundas and Pardalos [19]. It 
consists of a single objective with two constraints, subject to 
minimization. The best known optimum is located at  

f(x*)= -6961.81387558015 

The corresponding best known variable values are  
x1

*=14.09500000000000064;  x2
*=-0.138032130213039. 
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The problem is given by (26)-(28).  

3 3
1 2( ) ( 10) ( 20)f x x= − + −x  (26) 

where the ranges for the independent variables are given by 

1 213 100; 0 100x x< <   < <  (27) 

subject to: 
2 2

1 1 2
2 2

2 1 2

( ) ( 5) ( 5) 100 0

( ) ( 6) ( 5) 82.81 0

g x x
g x x

= − − − − + ≤

= − + − − ≤

x
x  

(28) 

The algorithm is executed with the following settings: 
population size = 200; amount of generations=100; C=100000; 
the ratio of NS-NR procedures=10/1; crossover 
probability=0.9; crossover parameter nc=1.0; mutation 
probability=0.05; mutation parameter nm=30. The results are 
shown in figures 14-16 using a logarithmic scale for the 
horizontal axis, which shows G being the total sum of the 
violations gj.  

After 30 iterations the best feasible solution is found to be 

f(x)= -6944.7266618604. 

The population is seen in figure 14. The independent variables 
of this solution take: x1=14.1026225766318; 
x2=0.858143925111059. 

After 50 iterations the best feasible solution is found to be 

f(x)= -6952.4044222655. 

The population is seen in figure 15. The independent variables 
of this solution take: x1= 14.0992588088961; x2= 
0.851316093914925. 

 
 Population after the 30-th iteration Fig. 14. 

After 100 iterations the best feasible solution is found to be 

f(x)= -6961.75770743364. 

The population is seen in figure 16. The independent variables 
of this solution take: x1=14.095023241862; x2=0. 
0.843010744010595. 

 
 Population after the 50-th iteration Fig. 15. 

 
 Population after the 100-th iteration Fig. 16. 

V I .  C O N C L U S I O N S  

A new approach for multiobjective evolutionary optimization 
problem is presented. Conventionally the problem is handled 
in the form of single objective and the sum of constraints. 
However noting that in the optimal front formation the 
essential optimization progress is focused on the constraints 
where sum of a number of objectives are involved, the single 
objective is minimally attended yielding poor progress 
attached to it. As result conventionally in this problem 
formulation evolutionary computation has to be supported by 
auxiliary local search algorithms. By means of the new 
methodology a marked improvement is achieved for bi-
objective formulation, i.e. for a single objective with 
constraints. Next optimal front formation during the search, 
also evolutionary minimization of the single objective is 
carried out in alternating sequence. By doing so, a balanced 
optimal search is established between the objectives forming 
the constraints and the single objective. The result is a 
markedly effective front for advanced search operations 
paving the way for a probabilistic nonlinear ranking used for 
both nonlinear tournament selection and nonlinear elitism. 
For these operations evolutionary probabilistic model for the 
random solutions is established for both robust and rapid 
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convergence by means of effective ranking procedure 
throughout the generations, so that the results are not 
precarious. Based on this dynamic model, ranking the 
solutions is done always in a probabilistic scale, namely 
between zero and one preserving the same accuracy being 
independent of the level of convergence to the optimum; 
namely the method forms a dynamic “lens” whose magnifying 
power is commensurate with the scale of convergence. This 
allows accurate monitoring of convergence ensuring rapid 
convergence with precision. By the nonlinear ranking 
procedure, also the stiffness among the constraints is handled 
effectively by a commensurate model parameter, each of which 
is tuned for each individual constraint. The method showed 
outstanding performance as to robustness, precision, accuracy, 
and stability. Referring to the reported researches in the 
literature, a marked feature of the present algorithm is, that it 
approaches to the optimum in the same range of reported 
accuracy of the results without recourse to any auxiliary 
support like local search, memetic algorithm etc. that they 
make the search process dominated by the classical 
optimization methods rather than evolutionary. The 
performance of the algorithm is exemplified by means of two 
standard problems chosen from the literature for the 
comparison of the results. Another example is reported in 
another paper devoted to the theory underlying this work [ref. 
paper 01]. The reported results include not only the final 
outcomes, but also the progress of the convergence throughout 
the optimization process. This not only marks the effectiveness 
of the method proposed here, but also exhibits a transparency 
of the evolution throughout the generations.  
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