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One of the essential points in the evolutionary algorithms is the rank determination for the genetic population members. In this 
respect a new approach is presented, which is a probabilistic sorting for effective elitism and ensuing improved and robust 
convergence. This is achieved by an adaptive probabilistic model representing the commensurate probability density of the 
random solutions throughout the generations that it yields a probabilistic distance measure which is nonlinear with respect to the 
range of solutions as to their location in the objectives space. The implementation of the theoretical results leads an effective 
evolutionary optimization algorithm accomplished in two stages. In the first stage linear non-dominated sorting, tournament 
selection and elitism is carried out in objective space. In the second stage the same is executed in a transformed objective space, 
where probabilistic distance measure for ranking prevails. The effectiveness of the method is exemplified by a demonstrative 
computer experiment. The problem treated is selected from the existing literature for comparison, while the experiment carried 
out and reported here demonstrates the marked performance of the approach. The experiment complies with the theoretical 
foundations, so that the robust and fast convergence with precision as well as with accuracy is accomplished throughout the search 
up to 10-10 range or beyond, limited exclusively by machine precision.  

I n d e x  T e r m s — Evolutionary algorithm, multiobjective optimization, constraint optimization, probabilistic modeling.

I .  I N T R O D U C T I O N  

OMPUTATIONAL cognition makes use of the evolutionary 
optimization algorithms due to the decision-making 

process in the cognition. This is especially important in the 
action and communication stage of cognition. This work 
describes a research, which provides an effective method to 
enhance the effectiveness of evolutionary optimization 
algorithms, and consequently improve the cognition process. 
Evolutionary algorithms are powerful heuristic computations 
for multiobjective optimization problems. Their various forms 
of utilization are ubiquitous and they are reported regularly in 
the literature, e.g. [1, 2]. Some text book are available e.g. [3-5] 
that one can approach to master the topic. During the last 
decades evolutionary algorithms received growing interest, 
since they proved to be important tools for optimization. 
Added to that, they also proved to be effective in constraint 
optimization problem solving as the modern technological 
application areas imposes limitations on the solutions. The 
conventional constrained optimization methods generally use 
methods based on various penalty functions. Penalty function 
methods are generic but care has to be exercised to use the 
penalty parameter in a measured way to keep the balance 
between the constraints and the objective to avoid false optima 
and infeasible solutions. A strategy that does not use penalty 
parameter in evolutionary constrained optimization was 

proposed by Deb in 2000 [6, 7]. Although the penalty 
parameter can be kept constant during the search process, a 
better approach is to use a variable penalty parameter, which is 
adapted to the progress of the convergence, providing an 
effective approach to the optimum in the decision variable 
space. In this respect Coello proposed a self-adaptive penalty 
approach [8]. By doing so, also the evolutionary concept is 
clearly demonstrated. Conventionally in the penalty function 
approach, the constrained optimization problem is a search of 
the best compromises of the objective value and constraint 
satisfaction. Due to this construction, net result is the 
unsatisfactory convergence properties which are deemed to be 
repaired by some additional methods borrowed from classical 
optimization methods which are collectively addressed as 
‘local search’ methods. One of the essential components in 
evolutionary algorithms is the rank determination for the 
individuals. In this work, this issue is addressed by means of 
probabilistic distance measure which is used for probabilistic 
sorting and effective elitism by a nonlinear ranking. The 
method provides a kind of ‘mathematical lens,’ so that at any 
stage of convergence the level of rank resolution remains the 
same that it leads systematic, smooth convergence to the 
optimum without recourse to additional methods which are 
collectively regarded as ‘local search’ methods. 

The present work addresses the conversion of a single 
objective constrained optimization problem into a 
multiobjective, unconstrained optimization together with a 
penalty function. In this form, it is a bi-objective optimization 
problem. Each of the constraints has its own penalty 
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parameter. For each constraint a probabilistic model of the 
random solutions is used to derive a nonlinear distance 
measure. This measure is used for the genetic algorithm, to 
rank the population members for efficient, i.e. fast 
convergence.  In this form it is a constraint optimization 
problem. This is the new approach proposed in this paper, for 
robust and stable solutions. The method is implemented by a 
computer program developed for this research working based 
on non-dominated sorting (NS) and non-linear ranking (NR). 

The organization of the paper is as follows. In section two, 
formulation of general multiobjective optimization problem as 
constrained single objective problem and probabilistic 
constraint handling is presented. In section three, probabilistic 
modeling for nonlinear ranking is given. In section four the 
probabilistic nonlinear ranking for elitism is revealed. The 
important implications of the probabilistic modeling are 
highlighted in section five. In section six a demonstrative 
computer experiment is given and the section is followed by 
discussion and conclusions. 

I I .  O P T I M I Z A T I O N  M E T H O D   
F O R  M U L T I - O B J E C T I V I T Y  

Weighting method is a powerful instrument for the multi-
objective optimization. Its formulation in this work is adapted 
according to the works reported in the literature [9-11]. The 
weighting method deals with the weighted summation of the 
objective functions. Each function is associated with a 
weighting coefficient and weighting sum of the objectives is 
minimized. Thus, the multiple objective functions are 
expressed via a single objective function. The weighting 
coefficients wi are real numbers such that 0 ≤ wi for all 
objectives i=1,….,k so that a weighting problem can be stated 
as 

1
min ( )

k

i i
i

w f subject to S
=

   ∈∑ x x  (1) 

In the constraint handling a single objective is used and is 
subject to minimization. It can be stated that  

1 2min ( ) ( [ ( ), ( ),..., ( )]T
mf subject to g g x g x g x  ≤x x) =

 
(2) 

We assume that the form of the feasible region is given by  

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x= ∈ ≤x) =  (3) 

We consider that the summation of the constraint violations is 
another objective subject to minimization. The formulation of 
the problem in this case becomes 

1 2min ( ) (w f w G+x x)  (4) 

where  

 (5) 

Therefore, the problem definition becomes as below.  

1

1 2

min ( ) ( ) ( ) ( )

{ | ( [ ( ), ( ),..., ( )] 0}

m

i i
i

n T
m

f g f G

S x R g g g g

m
=

+ = +

= ∈ ≤

∑x x x x

x) = x x x

 (6) 

where w1=1, w2i=mi. With this, the problem is equivalent to a 
single objective problem, where the objective is denoted by f(x) 
and the constraints denoted by gj(x). The method known as e-
Constraint method is such an approach [11, 12]. In this 
method one of the objective functions is selected to be 
optimized, while all the other objective functions are 
converted into constraints. This is done by setting an upper 
bound to each of them. The problem to be solved is now of the 
form 

1min ( ); subject to ( )    

  for all j=1,2,.,k, j l; x S
j jf f e≤

≠ ∈

x x  (7) 

With the above considerations we minimize   fl(x);  subject to 
fj(x)≤ ej for all j=1,2,….,k, j≠l; x∈S 
where l∈{1,…,k}. Naturally, inequalities can be converted to 
equalities by taking ej=0 for all j=1,2,….,k, j≠l. 
In the present case, the minimization of the function in (6) 
takes the form 

1
min ( , ) ( ) ( )

J

j j
i

P f R g
=

= + ∑x R x x  (8) 

where J is the number of constraints; function gj(x) is 
considered to be a penalty function and the parameters Rj are 
the associated penalty parameters. The determination of the 
penalty parameters is an issue and although this issue 
addressed in the literature [6], the issue still persists and is 
subject to improvements. In this work this issue is addressed 
by a probabilistic approach which underlies also the 
probabilistic sorting for effective elitism, subject matter of this 
work.  

I I I .  N O N L I N E A R  R A N K I N G  W I T H  
P R O B A B I L I S T I C  C O N S I D E R A T I O N S  

In general a constrained optimization (8) is written in the 
form 

1
min ( ) ( ) ( )

J

j j
i

P f gm
=

  = + ∑x x x  (9) 

where f(x) denotes the single objective function to be 
minimized; g(x) is the violation of the gi-th constraint, namely 
penalty function, µi is the associated parameter of the penalty 
function given by 

( ) ( )j j j jg C r gµ =  (10) 

In (10), rj is a new penalty parameter; C is a constant common 
for all constraints. As gj(x) is at each generation continually 
tried to be vanishing during the evolutionary minimization 
process, with respect to the population density of solutions, 
the probability density of gj(x) is highest about zero violations, 
and its value gradually diminishes proportional with the 
degree of violation. In the randomly generated population of 
the evolutionary algorithm, we can model the violations as a 
random variable, where the violations are independent due to 

( ( )i iG gm∑
k

i=1
x) = x
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random population formation by the random composition of 
chromosomes at each generation. The number of violations 
per unit violation gradually decreases with the degree of 
violation conforming to the commensurate number of 
chromosomes created by the elitism and sorting strategy in the 
genetic algorithm. This probabilistic pattern continues in the 
same way without change throughout the generations. The 
probabilistic description of this process can be modeled by the 
exponential probability density (pdf), because of its 
memorylessness property, i.e. the form of the density remains 
the same being independent of the range it models, while the 
exponential pdf is a unique density having this property. With 
this information peculiar to the subject matter of this research, 
we can confidently apply the exponential pdf, which is given 
by 

( ) yf y e λ
λ λ −=  (11) 

where λ is the decay parameter. If we define 
( )jy g x=  (12) 

then the pdf in (11) becomes 
( ) j j

j

g
g j jf g e λλ −=  (13) 

The mean value of the exponential pdf function is equal to 
λj

-1. During the evolutionary search gi(x) is a general form of 
violation, which applies to any member s of the population, 
and therefore, in explicit form, we can write 

,
,( ) j j s

j

g
g j s jf g e λλ −=  (14) 

where s denotes a population member. We can characterize 
the exponential pdf function according to the constraint j 
simply by equating the mean value of the violations gj to the 
mean of the exponential pdf, namely  

1/j jgλ
−

=  (15) 

It is to note that the mean of the exponential probability 
density of gj is equivalent to the mean of a uniform probability 
density applied to the violations gj. Therefore the mean of the 
exponential density function is estimated by taking the mean 
of the violations which are from a uniform probability density 
and they are independent. Variation of the exponential pdf for 
different decay parameters is shown in figure 5a. The 
cumulative distribution function of (14) is given by 

  
 (a) (b) 

 P l o t  o f  ex p o n en t i a l  p d f  f o r  d i f f e r en t  d ec ay  Fig. 1. 
c o n s t an ts  v s  j - th  v i o l a t i o n  g j  ( a ) ;  p ( g j )  v s  g j  ( b )  

0

1( ) 1
jj

j j j

gg
g gg

j j
j

p g e dg e
g

−−

= = −∫  (16) 

If we take p(gj) as a new random variable, the probability 
density fp(p) of the new random variable p is given by[13] 

1 ( )

( )
( ) ( )

| |

j

j

g j
p

j
g H p

j

f g
f p dH g

dg −=

=
 

(17) 

that gives 
( ) 1pf p =  (18) 

which is a uniform probability density shown in figure 2b 
together with the exponential distribution in figure 2a. In this 
figure the marked areas are equal having important 
implication in nonlinear ranking and elitism. The probability 
p(gj) measures the magnitude or effectiveness of a violation, so 
that it can be considered as a probabilistic distance function or 
a metric  measuring the distance from the zero violation 

fulfilling all the conditions to be a distance measure [14, 15]. 
Substitution of (10) into (9) yields 

1
( ) ( ) ) ( )

J

j j j
i

P f C r (g g
=

= + ∑x x x  (19) 

 
                         (a)  (b) 

   P d f  o f  th e  c o n s t r a i n t  v i o l a t i o n s  i n  th e  o b j e c t i v e  Fig. 2. 
f u n c t i o n s  s p a c e  ( a ) ;  i n  th e  p r o b ab i l i s t i c  d i s tan c e  s p ac e  

( b ) .  

where the constant C is called as convergence parameter as it 
is related to the convergence properties of the search. The new 
penalty parameter rj which is a function of gj, in general. In 
(19), rj(gj)gj is replaced by p(gj), in the form  

( ) ( )j j j j jr g g p g=  (20) 

so that (19) becomes  

1
( ) ( ) ( ))

J

j j
i

P f C p (g
=

= + ∑x x x  (21) 

In view of (20), rj is given by  
( ) ( ) /j j j j jr f g p g g= =  (22) 

The new formulation (21) yields favourable far reaching 
implications which are presented in the next section.  

I V .  P R O B A B I L I S T I C  S O R T I N G  F O R  
E F F E C T I V E  E L I T I S M  

A.  ST A G E  O N E:  NO N-D O M I N A T E D  SO R T I N G  A N D  
EL I T I S M  

The implementation of the theoretical results yielding an 
evolutionary optimization algorithm is accomplished in two 
stages. In the first stage non-dominated sorting (NS), 
tournament selection and elitism is carried out in  a way 
essentially based on that as described in [7]. This is 
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schematically illustrated in figure 3, where subtle details are 
also indicated for clarity. 

 
 N S  b as ed  s o r t i n g  an d  e l i t i s m  Fig. 3. 

B .  ST A G E  T W O:  NO N-L I N E A R  RA N K I N G  A N D  
EL I T I S M  

The NS algorithm described above is repeated for some 
number of generations so that the Pareto front sufficiently 
develops. Thereafter a non-linear ranking (NR) procedure 
based on the probabilistic considerations described above is 
employed as follows. During the tournament selection process, 
for two infeasible solutions from the productive domain, the 
value P(gj, x) in (2) is used to determine the winner of the 
tournament. In this procedure, clearly, a solution with lower 
P(gj, x)  value is preferred over the solution with a larger P(gj, 
x) value. If a solution in the tournament belongs to the non-
productive domain, then the same consequences apply as in 
the NS tournament. Namely, productive solutions win over 
non-productive solutions, and among non-productive 
solutions, the solution which is nearest to the productive 
domain wins. The possible outcomes during the non-linear 
ranking procedure are exemplified in figure 4. For instance, in 
this figure solution B represents the best solution among the 
feasible ones. When this solution is in a tournament with in 
infeasible solution from the productive domain, e.g. solution 
E, the winner of the tournament is obtained using P(gj, x). That 
is solution B is considered as if it were an infeasible one for 

 
 S k e tc h  f o r  th e  to u r n am en t  s e l ec t i o n  d u r i n g  N R  Fig. 4. 

this comparison, so the chance B remains in the population is 
increased. For solutions from the productive domain, as P(gj, 

x) is a summation of function value f(x) and summed up 
values of p(gj), population members that have a low function 
value and at the same time small sum of p(gj) are favored in the 
selection process. A solution having a low summation of p(gj) 
means that this solution has the unusual property that it 
violates several constraints with an extraordinarily low 
amount, when considered in perspective with the average 
violations of the respective constraints. In contrast to the 
Pareto-ranking based algorithm exercised before, the 
probabilistic selection mechanism will not permit solutions 
with low function value to remain in the population, provided 
the coefficient C is selected large enough.  

The important implication of the NR tournament selection 
is assigning a commensurate right penalty parameter for every 
constraint, and even for each population member, where the 
penalty parameter is embedded in the non-linear distance 
function [16]. By means of this, the robustness and precision 
of the algorithm is guaranteed, together with the high stability 
of the search process. After the non-linear ranking based 
tournament selection, P(gj, x) is used during an elitism 
procedure, as seen in figure 10. From the figure it is noted that 
in the sorting step for the elitism the infeasible solutions are 
sorted based on their P(gj, x) values. Generally the mean values 
for the different constraints of two consecutive generations 
being merged for elitism differ, and it is generally expected 
that the mean values improve from generation to generation. 
In order to ensure accurate convergence, in this 
implementation for the sorting procedure during the NR 
elitism P(gj,x) is obtained using the mean value of the 
respective generation when the chromosome was created. This 
way the convergence is slowed down in order to ensure that 
the solutions from the past generation will also have 
significant influence in the ensuing generation. This is in order 
to maintain diversity during the search and carefully target the 
minimum being approached with the population. The 
nonlinear ranking based sorting and elitism is illustrated in 
figure 5. 

 
 N R  b as e d  s o r t i n g  an d  e l i t i s m  Fig. 5. 
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V .  I M P L I C A T I O N S  O F  T H E  
P R O B A B I L I S T I C  M O D E L I N G  

A.  AD A P T I V E  ZO O M I N G  FO R  RA N K I N G  A N D  
EF FE C T I V E  EL I T I S M   

Adaptive zooming for ranking with precision is 
accomplished as follows. The favourable solutions are by 
accurately ranked in the range zero and unity as probabilistic 
distances, even though the actual constraint values may be 
close to the optimal point as much as the machine or genotype 
coding precision can allow, say at the range of 10-10. A sketch 
of the Pareto front at the early stage of the genetic search is 
given in figure 6a. Illustration of the Pareto front at the last 
stage of the genetic search is given in figure 6b. 

   
 (a) (b) 

 S k e tc h  o f  f o r m a t i o n  o f  th e  P ar e to  f r o n t  a t  th e  Fig. 6. 
ear l y  s t a g e  ( a ) ;  a t  th e  a t  th e  l a s t  s t ag e  o f  th e  G A  s e ar c h  

( b ) .  

The probabilistic distance to the minimum is illustrated as a 
typical example in figure 2a by the indicated area. The 
computation of the colored area in the figure is very 
precarious at the tournament selection process, due to the 
issue of both exact parameterization of the exponential pdf in 
the existing range and the finite machine precision as well as 
the finite genotype coding. This situation is circumvented in 
figure 2b by taking simply p(gj) as the probability distance to 
the minimum. The indicated areas are the same and they are 
equal to p(gj). The indicated area in figure 2b defines the 
probabilistic distance function p(gj) which varies between zero 
and unity. This means if the penalty function to be minimized 
can be close to the optimal point in a micro scale, say in the 
range of 10-10, the minimization process i.e., tournament 
selection and ranking of the random solutions takes place in 
the transformed probabilistic space in a macro scale between 
zero and unity, always. This situation is equivalent to apply a 
commensurate mathematical ‘lens’ to the space formed by 
actual objective function and the constraint functions to carry 
out the convergence process without being effected by any 
scale of convergence happening in this space. 

B.  EF FE C T I V E  TO U R N A M E N T  S E L E C T I O N   

Two important aspects in this work, beyond the 
straightforward tournament selection process, are the 
followings.  

1. In the tournament of the non-linear ranking, the present 
and the preceding populations is accomplished using 

their respective decay constants (λ). In this case the 
situation is depicted in figure 7, where the same rank is 
assigned to different violations depicted gλ2j as present 
violation and gλ21j as the preceding violation. By doing so, 
diversity in the genetic population is maintained 
although it slows down the convergence to some extent. 
However, the gain is reducing the risk of premature 
convergence. 

 
 I l l u s t r a t i o n  o f  th e  g n e r a t i o n  d ep en d en t  r an k i n g  Fig. 7. 

p r o c ed u r e  d u r i n g  n o n - l i n ear  e l i t i s m  

2.  Solutions in NS as well as NR tournaments will be 
evaluated depending on the condition given by 

1
( )

J

j pj
j

p g n J
=

<  ∑  (23)  

where J is equal to the number of constraints, and npj 
denotes a probability threshold, above which a solution is 
deemed unproductive among the infeasible solutions, and 
below which a solution is deemed productive. It has a 
counterpart in the objective space denoted by nbj. This is 
seen in figure 8, where horizontal axis refers to NS 
(nondominated sorting) procedures and vertical axis 
refers to NR (nonlinear ranking) procedures.  

In case one solution fulfills (23), while the other one does 
not, then the solution in the productive domain wins the 
tournament over the other one, without considering rank or 

 
         (a) (b) 

   I l l u s t r a t i o n  o f  th e  th r es h o l d  as s es s m en t  f o r  Fig. 8. 
th e  t o u r n am en t  s e l ec t i o n  i n  b o th  N S  an d  N R  

p r o c ed u r es .  

crowding information. This case is shown in the same 
figure, where the violation in the productive domain is 
denoted by X2j and its counterpart is X1j. The counterpart of 
(23) in the objective space is given by 

1 1

j

j

J J
b

T b
j j j

n
g n g

λ
−

= =

= =∑ ∑  (24) 

However, since λj is evolving from generation to generation, 
gT is not constant. In contrast with this, in the probabilistic 
non-linear ranking domain, the location of maximum 
probability of the event that two solutions appear on either 
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side of the threshold nbj is always at np=0.5, irrespective of λj. 
The case for the probabilistic raking domain is illustrated in 
figure 9, where the variation of p(gj) with respect to nbj is 
illustrated. 

 
 P l o t  o f  th e  p r o b ab i l i ty  th a t  t w o  s o l u t i o n s  o c c u r  Fig. 9. 

o n  d i f f e r en t  s i d es  o f  th e  th t r es h o l d  n p j .  

The case for the objective space is illustrated in figure 10, 
where the maximum occurs for nbj=ln2/λj , which is the 
median of the exponential probability density shown in figure 
8b. In figure 10 the single plot seen in figure 9 corresponds to a 
family of plots with respect to the parameter λj. 

 
 P l o t  o f  th e  p r o b ab i l i ty  th a t  t w o  s o l u t i o n s  o c c u r  Fig. 10. 

o n  d i f f e r en t  s i d es  o f  th e  th r e s h o l d  n b j .  

Explicitly, for nbj=ln2/λj, its counterpart in terms of the 
probabilistic ranking domain is npj=0.5. Thus, the constant 
probabilistic distance measure provides an adaptive threshold 
for productive chromosomes throughout the generations, in 
any scale permitted by the machine or genotype precision. By 
means of this particular tournament selection procedure, the 
detrimental effect on the average violation by the stiff 
constraints, that is, by the members with high violations, is 
prevented; namely, during two consecutive generations the 
progressive diminishing of the average is augmented against 
the contingent average increase that may occur especially 
during the advanced stages of the convergence. The smaller 
total mean of the constraint violations implies improved 
convergence to the optimum. 

Referring to figure 8b, the probability Pj of the event 
relevant to the case described above is given by 

2( ) ( 1 ) ( 2 ) j bj j bjn n
j j j jP P g P X P X e eλ λ− −= = = −  (25) 

C.  FA S T  A N D  R O B U S T  C O N V E R G E N C E 

Thanks to the probabilistic distance providing nonlinear 
ranking, robust progress for convergence at each generation is 
obtained. To see this, from (22) 

( ) 1 e j jg
j

j
j j

p g
r

g g

λ−−
= =  (26) 

In the limiting case, i.e., convergence to the minimum, rj 
becomes  

0 0

( )
lim lim j j

j j

gj
g j g j j

j

p g
r e

g
lll −

→ →= = =
 

(27) 

The variation of the penalty parameter rj with gj , based on 
(36) is shown in figure 11. 

 
 I l l u s t r a t i o n  o f  th e  n e w  p en a l t y  p ar am et er  r  a s  Fig. 11. 

to  p r o b ab i l i s t i c  m o d e l i n g :  r = ( 1 - ex p ( - λ g ) ) / g ,  w h er e  
λ = 1 0 0 0 0  

V I .  C O M P U T E R  E X P E R I M E N T  

Computer experiments have been carried out using a 
standard optimization problem from the literature. The 
following problem is due to Floundas and Pardalos [17]. The 
problem consists of a single objective with 9 constraints, 
subject to minimization, as given by (38)-(40).  

4 4 13
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1 1 5
( ) 5 5i i i

i i i
Minimize f x x x

= = =

= − −∑ ∑ ∑x  (28) 
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(29) 

where the ranges for the independent variables are given by 

0 1 1,...,9); 0 100 10,11,12); 0 1 1i i ix i x i x i≤ ≤   ( =  ≤ ≤   ( =  ≤ ≤   ( =
 

(30) 

The best known optimum is  
f(x*)=-15.0,  

and the corresponding best variable values are 
x*=(1,1,1,1,1,1,1,1,1,3,3,3,1). 

The algorithm is executed with the following settings: 
population size=200; amount of generations=100; C=1000; 
ratio of NS/NR procedures=4/1; crossover probability=0.9; 
mutation probability=0.05. The results are shown in figure 12-
15 using a logarithmic scale for the horizontal axis, which 
shows the total violation G. From the figures it is observed 
how the initial population gradually approaches towards the 
optimal solution. It is emphasized that an iteration of the 
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algorithm consists of 4 Pareto-ranking based generations, 
followed by one probabilistic selection based generation. 

After 10 iterations the best feasible solution is found to be  
f(x)=-13.98583864.  
The population is shown in figure 12. 

 
 P o p u l a t i o n  a f t e r  th e  1 0 t h  i t e r a t i o n ;  h o r i z o n t a l  Fig. 12. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 20 iterations the best feasible solution is found to be  
f(x)=-14.9076345785146.  
The population is shown in figure 12. The figures 12-17 

demonstrate the robust convergence properties of the 
algorithm. Namely, the population members form a compact 
aggregation about the close vicinity of the optimum. This 
aggregation makes the mean of the violations gj small, so that 
the decay constant λj of the exponential pdf becomes large, 
and consequently the slope of the penalty parameter r is large. 
Due to this, the convergence to the optimum is fast, accurate, 
and with precision. Due to the memoryless ness property of 
the exponential pdf, the populations form about the same 
patterns in any scale of the convergence process. This is clearly 
seen in the figures by the logarithmic scale of representations 
of the violations. 

 
 P o p u l a t i o n  a f t e r  th e  2 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 13. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 30 iterations the best feasible solution is found to be  
f(x)=-14.9760230713287.  
The population is shown in figure 14. 

 
 P o p u l a t i o n  a f t e r  th e  3 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 14. 

ax i s   i s  th e  t o t a l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 50 iterations the best feasible solution is found to be  
f(x)=-14.9985221605613.  
The population is shown in figure 14. The independent 

variable values of this solution are x1=0.999997312719596; 
x2=0.999997982197311; 
x3=0.999999888524811; x4=0.999999871166525; 
x5=0.999994649877324; x6=0.999987862005421; 
x7=0.999984815877352; x8=0.999999999750139; 
x9=0.999926599531956; x10=2.99995794671011; 
x11=2.99961604207534; x12=2.99907993443006;  
x13=0.999999037205755.  

 
 P o p u l a t i o n  a f t e r  th e  5 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 15. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 80 iterations the best feasible solution is found to be  
f(x)=-14.999997075874.  
The whole population is shown in figure 12. The 

independent variable values of this solution are 
x1=0.999999970028148; x2=1; x3=0.999999993220535; 
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x4=0.999999971015986; x5=0.999999868494369; 
x6=0.999999960482284; x7=0.999999981750632; 
x8=0.999999947363726; x9=0.999999932369763; 
x10=2.99999980083455; x11=2.99999890685553; 
x12=2.99999900736034; x13=0.999999999039419. 

 
 P o p u l a t i o n  a f t e r  th e  8 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 16. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 100 iterations the best feasible solution is found to be  
f(x)=-14.9999999458368.  
The whole population is shown in figure 15. The 

independent variable values of this solution are 
x1=0.999999999790223; x2=0.999999999809861; 
x3=0.99999999933798; x4=0.99999999995506; 
x5=0.999999994377998; x6=0.999999995023679; 
x7=0.999999999831045; x8=1; x9=0.999999996761354; 
x10=2.99999999225267; x11=2.99999998081316; 
x12=2.99999999477602; x13=0.999999997535212.  

 
 P o p u l a t i o n  a f t e r  th e  1 0 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 17. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

V I I .  C O N C L U S I O N S  

Probabilistic sorting for effective elitism in multi-objective 
evolutionary algorithms is presented. In the evolutionary 
optimization ranking of the genetic population members plays 
very important role on the performance of the algorithm. This 
work addresses this issue by a new non-linear ranking 
procedure, which eventually leads to an effective elitism and 
marked performance of the algorithm. Conventionally, in 
constrained or multi-objective optimization problems 
evolutionary computation turns out to be supported by 
auxiliary optimization means, in order to approach the 
optimum sufficiently close. In this respect, by means of the 
new methodology a marked improvement is achieved. The 
source of the improvement lies in the non-linearity of the 
ranking, achieved by the transformation of the objective space 
to a newly defined probabilistic distance domain. The 
transformation is adaptively carried out throughout the 
generations, so that the commensurate ranking with respect to 
the generation is maintained. Additionally, explicit definition 
of productive and non-productive chromosomes has been 
made, and accordingly maximum gain from the unproductive 
chromosomes is exported to the productive portion of the 
population at each generation. By means of the particular 
tournament selection procedure, the detrimental effect on the 
average violation by the stiff constraints, that is, by highly non-
productive population members is prevented; namely, during 
two consecutive generations the progressive diminishing of 
the average is augmented against the contingent average 
increase that may be effective especially during the advanced 
stages of the convergence. Non-linear ranking plays two major 
roles at the same time. One is the accomplishment of an 
adaptive penalty parameter matching the optimality 
conditions during the search. The other is maintaining 
maximum gain constantly from unproductive to productive 
solutions. This allows accurate and systematic convergence 
with precision, which is also rapid. The probabilistic sorting is 
implemented in both, nonlinear tournament selection and 
elitism. The method showed outstanding performance as to 
speed of convergence, precision and approaches to the 
solution without auxiliary support like local search, memetic 
algorithm etc. This is exemplified by means of a standard 
problem chosen from the literature for the comparison of the 
results and demonstration of the effectiveness of the 
methodology. The reported results include not only the final 
outcomes but also the progress of the convergence throughout 
the optimization process, clearly showing the exact matching 
of the results with the theoretical underlying material. It is also 
noteworthy to mention that, due to the systematic 
convergence procedure established by the novel method, the 
search process is demonstrated to be transparent. 
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