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Penalty function approach used for optimization has a growing interest in the literature due to its effectiveness not only for 
multiobjective optimization but also for constraint optimization. Although there are several excellent papers on the penalty function 
approaches, up till now there is no clear method for the systematic selection of penalty parameters per constraint since the topic is 
quite elusive. The issues being well realized, there are several researches addressing these issues to some extent. However, still the 
robustness of these methods remains the main issue due to some newly added additional parameters subject to determination. This 
work endeavors to address this issue and first it makes a systematic analysis. Following the analysis it establishes a probabilistic 
approach as the issue is entirely in the domain of probability. According to the best knowledge of the authors the approach is unique 
as to probabilistic treatment of the issue. The approach models the probability density of the random population throughout the 
generations and based on this, penalty parameters are determined following the probabilistic derivations. The theoretical 
considerations are substantiated by computer experiments and a demonstrative example is presented showing the salient effectiveness 
of the approach.. 
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I .  I N T R O D U C T I O N  

VOLUTIONARY multiobjective optimization is a popular 
approach in science and engineering. It is particularly 

important in cognitive science, because of the decision-making 
process and ensuing optimization process for action and 
communication. In this work, constraint optimization is the 
subject matter, which is to consider as multiobjective 
optimization due to the method of Penalty function approach. 
Its use for constraint optimization has a growing interest in 
the literature, due to its effectiveness not only for 
multiobjective optimization but also for constraint 
optimization. Although there are several excellent papers on 
the penalty function approaches, up till now there is no a clear 
method for the systematic selection of penalty parameters per 
constraint, since the topic is quite elusive. The issues of 
common penalty parameter pertinent to all constraints are 
well understood. Still the robustness of these methods remains 
the main issue due to variation of the parameters during the 
optimization process. The penalty function methods are 
widely used methods for evolutionary constraint optimization, 
which differ from each other due to some different strategies. 
In this respect some examples are static penalty, dynamic 
penalty, annealing penalty, adaptive penalty, co-evolutionary 
penalty, death penalty and their associated penalty parameters 
[1-10]. Strategies that did not require a penalty parameter were 

proposed in the literature, e.g. [11, 12], while the latter work 
was later superseded by the penalty function approach [13]. 
This variety of penalty-function oriented researches is the 
manifestation of the persisting issue of determining the 
penalty parameters with respect to each constraint. 

In this work a new approach is proposed. Probabilistic 
considerations underlying the approach are described in 
detail. The approach is based on the evolutionary probabilistic 
modeling of the random solutions and the introduction of a 
probabilistic distance metric. The model is used for effective 
ranking of genetic population members and thereby yields 
efficient converging solutions. 

The organization of the paper is as follows. In section two, 
formulation of the general multiobjective optimization 
problem and non-linear ranking are presented. In section 
three, important implications of the evolutionary probabilistic 
approach are described. In section four a demonstrative 
computer experiment is given. The section is followed by 
conclusions. 

I I .  P R O B L E M  F O R M U L A T I O N  A N D   
N O N - L I N E A R  R A N K I N G  

 WE I G H T I N G  M E T H O D  A.
A well-defined method for dealing with the multi-objective 

optimization is known as weighting method [14-16]. In this 
method each objective is associated with a weighting 
coefficient and minimizes the weighting sum of the objectives. 
In this way, the multiple objective functions are transformed 
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into a single objective function. We assume that the weighting 
coefficients wi are real numbers such that 0 ≤ wi for all 
objectives i=1,….,k so that a weighting problem can be stated 
as 

1
min ( );

k

i i
i

w f S
=

∈∑ x x
 

(1) 

In the constraint handling in this work a single objective is 
involved which is subject to minimization. Therefore the 
problem can be stated as  
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We assume that the feasible region is of the form 

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x= ∈ ≤x) =  

(3) 

If we assume that, the summation of the constraint violations 
is as another objective subject to minimization the problem 
formulation becomes a problem of two objective functions 
subject to minimization. The formulation of the problem in 
this case becomes  

1 2min ( ) (w f w G+x x)  
(4) 

where  
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Hence, the problem definition becomes 
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With this formulation, the weighting method becomes 
appropriate to employ where w1=1, w2i=mi. In (6) the problem 
formulation becomes two objective functions subject to 
minimization or alternatively a single objective function with 
an objective vector subject to minimization. This formulation 
of the problem is equivalent to a single objective problem with 
constraints where the constraints are given by the vector g(x) 
which is considered to be a penalty function and the 
parameters mi are the associated penalty parameters. We 
formulate the multiobjective optimization as two-objective 
optimization, which can be further treated as single objective 
optimization with constraints, without deviating from 
generality. This approach is known to be as ε-Constraint 
method [16, 17]. Among the objective functions one function 
is selected to be optimized, and, by setting an upper bound to 
each of them, all the other objective functions are converted 
into constraints. The problem now has the form 

     minimize  fl(x) 

     subject to fj(x)≤ εj for all j=1,2,….,k, j≠l; x∈S; l∈{1,…,k} 

The inequalities can be transformed to equalities by 
considering εj=0 for all j=1,2,….,k, j≠l. Based on the above 
considerations, we assume the problem formulation as a 
constraint optimization with single objective, so that in a 
general constrained optimization problem the problem 
formulation is written as 

1
( ) ( ) ( )

J

j j
i

P f gm
=

= + ∑x x x  (7) 

In (7), we make the following observation. Since in the 
weighting method the weights are positive, in (7) the penalty 
parameter mj is positive. This implies that in a general case we 
can surmise that the optimization problem is in the form as 
depicted in figure 1. 

 
A p p r o ac h  to  th e  f i n a l  o p t i m a l  s o l u t i o n  b y  m e an s  Fig. 1. 

o f  c o n s t an t  p en a l ty  p ar am e t e r  R .   

Referring to (6) in figure 1 f2(x)=f(x) and f1(x)=g(x) denoting 
violations; also in place of multiple mi each of which belong to 
one constraint, we can consider both a common and constant 
penalty parameter R which is the slope of the tangent of the 
Pareto optimal front during the progressive search of the 
front. In figure 1, the slope of the tangent being negative, the 
violations are represented as negative quantities so that mj and 
gj(x) become positive quantities. If we consider that the 
optimal front is a series of solutions determined by the tangent 
points of the tangent line and the optimal front, we conclude 
that the optimal front is simply the envelope of the tangents. 
This envelope is established as follows. 

We assume that a theoretical optimal front compromises the 
solutions between the objectives f(x) and g(x) where objective 
g(x) admits to be minimally zero. In this case each solution on 
the optimal front can individually be represented by a line that 
is tangent to the optimal front at that particular solution. The 
parametric representation of the tangent is given by 

( ) ( ) 1
opt

f g
t P t

+ =
−

x x

 
(8) 

where t is the parameter. In (8), Popt is the optimum solution 
located at the point f(x )= Popt and  g(x ) =0. From (8), we write 

( ) ( )
( )opt

tf g t
t P

= +
−

x x
x  

(9) 

where the slope of the tangent is given by 

( )opt

tr
t P

=
− x  

(10) 

as a new penalty parameter r. The envelope of the tangent is 
shown in figure 2. The Pareto front is obtained by arranging 
(10) with respect to t and admitting a single solution for it; 
namely, 

( ( )i iG gm∑
k

i=1
x) = x
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2 [ ( ) ( ) ( )] ( ) ( ) 0opt optt g x f x P x t f x P x+ − − + =  
(11) 

2
1 2 2[ ( ) ( ) ( )] 4 ( ) ( ) 0opt optf f P f P− − − =x x x x x  

(12) 

then the optimal front is obtained by equating the 
discriminant to zero that gives the envelope of the tangent as 
the optimal front. The new penalty parameter r is zero for t=0 
and it monotonically increases as t increases. For t=Popt the 
penalty parameter r goes to infinity. 

 
T h e  en v e l o p e  o f  t an g en t  an d  th e  n e w  p en a l ty  Fig. 2. 
p ar am e te r  r .  r = ( P o p t - T) / T  w h er e  T= P o p t - t    

If we consider the optimal front for each constraint separately, 
(10) can be written as  

( )j
opt

tr
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=
− x  

(13) 

so that (7) becomes 
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(14) 

 

 PR O BA BI L I S T I C  DI S T A N C E  ME T R I C B.
In (14) gj(x) at each generation continually is tried for its 

vanishing during the evolutionary optimization process. This 
is accomplished by the evolutionary algorithm, giving higher 
probability of reproduction to population members with small 
gj values. Therefore, with respect to the population density of 
solutions, the probability density of gj(x) is highest about zero 
violations, and the density gradually diminishes proportional 
with the degree of violation. Based on the randomly generated 
population of the evolutionary algorithm, we can model the 
violations as a random variable, where the violations are 
independent due to random population formation by the 
random composition of chromosomes at each generation. The 
number of violations per unit violation gradually decreases 
with the degree of violation conforming to the commensurate 
number of chromosomes created by the elitism and sorting 
strategy in the genetic algorithm (GA). This probabilistic 
pattern continues in the same way without change throughout 
the generations. The probabilistic description of this process 
can be modeled by the exponential probability density (pdf), 
because of its memorylessness property, i.e. the form of the 
density remains the same being independent of the range it 
models and exponential pdf is a unique density having this 
property. With this information peculiar to the subject matter 

of this research, we can confidently apply the exponential 
probability density function (pdf), which is given by 

( ) yf y e λ
λ λ −=  

(15) 

where λ is the decay parameter. If we define 

( )jy g x=  
(16) 

the pdf in (15) becomes 

( ) j j

j

g
g j jf g e λλ −=

 
(17) 

The mean value of the exponential pdf function is equal to λj
-1. 

During the evolutionary search gj(x) is a general form of 
violation which applies to any member s of the population 
although s is not explicitly denoted. However, in explicit form, 
we can write 

,
,( ) j j s

j

g
g j s jf g e λλ −=

 
(18) 

The variation of the exponential pdf for different decay 
parameters is shown in figure 3a. 

 
 (a) (b) 

  P l o t  o f  ex p o n en t i a l  p d f  f o r  d i f f e r en t  d e c ay  Fig. 3. 
c o n s t an ts  v s  j - th  v i o l a t i o n  g j  ( a ) ;  P l o t  o f  p ( g j )  v s  g j  f o r  

v ar i o u s  m e an  v a l u es  o f  p ( g j )  ( b )  

The mean value of the violations gj is the characteristic of the 
constraint j and it defines the shape of the exponential 
distribution of the violations representing the decay constant  

1/j jgλ
−

=  
(19) 

The typical shape of the optimal front in figure 4, and the 
variation of the exponential distribution is shown together in 
figure 4, where 4a indicates the optimal front and 3b indicates 
the exponential probability density. 

   
 (a) (b) 

Fo r m i n g  th e  o p t i m al  f r o n t  a s  an  en v e l o p e  o f  a  Fig. 4. 
s l o p e  b y  m e an s  o f  th e  p r o b i l i s t i c  m o d e l l i n g  o f  r n ad o m  

s o l u t i o n s  a s  ex p o n en t i a l  d i s t r i b u t i o n .  

In figure 4b, a small change in violation gj causes small change 
in probability density and the probability of violations in this 
interval is given by 

( )
jf g j jy f g g∆ = ∆  (20) 
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From figure 4a we note that a small change in the violation gj 
causes a small change in the objective function along the 
optimal front, and it is given by 

( )p j j jy r g g∆ = ∆  (21) 

During the search evolution, at each generation the decay 
constant is newly estimated by the mean of the violations as 
given by(19), so that λj is assumed to be constant from one 
generation to another. Hence, (17) becomes 

/1( ) j j

j

g g
g j

j

f g e
g

−
−

−=

 

(22) 

In the same way, at each generation rj is newly estimated, so 
that rj is assumed to be constant from one generation to 
another. Taking infinitesimally small violation intervals, and 
equating (20) and (21), that is, equating to the objective 
function change to the probability in the interval dgj we write  

/1( ) j jg g
j j jj

j

r g dg e dg
g

−=
 

(23) 

It is to note that by means of this equation above we are 
relating the objective function space to a probability domain in 
the form of a transformation. The important implications of 
this transformation are presented in section 3. 

Defining  

0

1( ) 1j j j j j
g g g

j j
j

p g e dg e
g

λ λ− −= = −∫
 

(24) 

Integration of (24) from zero to gj  gives  

/

0 0

1( )
j j
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g g
g g
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r g dg e dg
g
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That is, 
/( ) 1 ( )j jg g

j j jjr g g e p g−= − =   , (26) 

or briefly  

( )j j jr g p g= . (27) 

The variation of p(gj) with gj is shown in figure 4b. 

In (7), mj is replaced by Crjgj, namely  

j j jCr gm =  (28) 

where C is a constant, and the substitution of (28) into (7) with 
the consideration of (27) yields 

1
( ) ( ) ( )

J

j
i

P f C p g
=

= + ∑x x  (29) 

where J denotes the number of constraints; C is a common 
constant for all constraints. The probability p(gj) controls the 
penalty parameter mi(gj) in (7), which is absorbed in p(gj). The 
importance of this transformation, namely from migj to p(gj) is 
mainly due to its use for ranking in the probabilistic domain 
during the genetic optimization process. 

In view of (27), rj is given by 

( ) ( ) /j j j j jr f g p g g= =  
(30) 

The variation of the slope rj versus gj is plotted in figure 5, 
where the variation of the slope given by (13) is also plotted. 

 
I l l u s t r a t i o n  o f  th e  n e w  p en a l t y  p ar am et er  r  a s  t o  Fig. 5. 

p r o b a b i l i s t i c  m o d e l i n g :  r = ( 1 - ex p ( - λ g ) ) / g  an d  as  t o  b i -
o b j ec t i v e  f o r m u l a t i o n :  r = t / ( P o p t - t )  

The two slopes, namely one obtained as the tangent, the 
envelope of which forms the Pareto front, and the other one 
obtained from a probabilistic model, introduced in this 
research, coincide satisfactorily, as seen in the figure. 

The probability p(gj) is a probabilistic distance function or a 
metric measuring the distance from the zero violation, as it 
fulfils all the conditions to be a distance measure [18, 19]. The 
probability density of this distance metric given by (26) is 
computed by  

1 ( )

( )
( ) ( )

| |

j

j

g j
p

j
g p p

j

f g
f p dp g

dg −=

=
 

(31) 

which gives 

( ) 1pf p =  
(32) 

as uniform pdf. The defined distance metric in the probability 
domain p(gj) is used for ranking the chromosomes for effective 
tournament selection and elitism, in place of remaining in the 
objective function space. The important implications of this 
transformation from objective function space to the 
probability domain are given in the next section.  

I I I .  I M P L I C A T I O N S  O F  T H E  P R O B A B I L I S T I C  
D I S T A N C E  M E T R I C  

 ST I F FN E S S  H A N D L I N G  A.
The stiffness is defined as the large numerical difference 

among several constraints subject to minimization. If there is 
stiffness among the constraints, the summation in (6) is 
dominated by the constraints, the pdfs of which have small 
decay constants. However, by using the probabilistic distance 
measure varying between zero and unity, this drawback is 
eliminated. The treatment is illustrated in figure 6, where the 
probabilistic distances for the constraints random variables gλ1j 
and gλ2j are the same, and the distance is between zero and 
unity. By giving the same priority or rank in the tournament 
selection process for the constraints gλ1j and gλ2j we consider 
purely their associated probabilities based on the probabilistic 
model without imposing any bias about the nature of the 
constraints. 
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I l l u s t r a t i o n  o f  th e  s t i f f n es s  h an d l i n g  Fig. 6. 

 IM P A R T I A L  E L I T I S M  S E L E C T I O N  B.
During elitism we consider the population from the 

preceding generation. Therefore, below first we compute the 
probability of having smaller constraint violation. If we 
consider two exponential probability density functions with 
the random variables X1 and X2 and the associated decay 
parameters λ1 and λ2 respectively, the probability P(X2<X1) is 
computed as follows. The probability of g2≤X1, namely 
P(g2≤X1) is given by 

1 1 1 2

2

2 1 1 1( ) e g g

g

P g X dg eλ λλ
∞

− −≤ = =∫
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so that 

1 2 2 2 1 2 2

2 1 2 1 2 2
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2 2 2 2
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e e eg g g

P X X P g X P g X
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∞ ∞

− − − +

< = ≤ ≤
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(34) 

which gives 
2

2 1
1 2

( )P X X λ
λ λ

< =
+  

(35) 

Let us carry out the same calculations with respect to the 
random variable P, the pdf of which is given by (32). 

2

1

2 1 1 2( ) 1
g

P g X dg g≤ = = −∫
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P X X P g X P g X

g dg

< = ≤ ≤

= − =∫
 

(37) 

This result shows that, irrespective to the decay constants λ1 
and λ2 of two exponential pdfs, the probability P(X2≤X1) is 
always 0.5, which means ranking the random solutions during 
the genetic search, probabilistic distance function p(gj) is fully 
impartial with respect to the decay constants. This means, 
although the decay constants vary and they are updated each 
iteration, this is not reflected to the elitism.  With other words, 
the procedure is not biased by apparently less favorable 
population of the latest generation due to higher probabilistic 
distances caused by higher decay constant. Instead, the 
preceding generation and the following generation are treated 
in perspective without bias, eliminating the decay constant 
factor in the computation. The exponential pdf fgj(gj) in (17) 
and uniform pdf in (32) are sketched in figures 7a and 7b, 
where the random variables X1, X2 and two corresponding 
violations gj1, gj2 are also shown. It should be pointed out that 

the uniformity of the uniform pdf is not affected even if the 
modelling error in the surmised exponential pdf model exists. 

 
 (a)  (b) 

P r o b ab i l i ty  d en s i ty  f g j ( g j )  v s  g j   ( a )  P r o b ab i l i ty  Fig. 7. 
d en s i ty  f p ( p )  v s  p  ( b )  

Two important aspects in this work, beyond the basic 
elitism procedure, are the followings. 

 During the elitism, the combination of the present and the 1.
preceding populations is accomplished using their 
respective decay constants (λ). In this case the situation is 
depicted in figure 6, where the same rank is assigned to 
different violations depicted gλ2j as present violation and 
gλ21j as the preceding violation. By doing so, diversity in the 
genetic population is maintained although it slows down 
the convergence to some extent. However, the gain is 
reducing the risk of premature convergence. 

 Solutions during tournament selection will be evaluated 2.
depending on the condition given by 

1
( )

J

j pj
j

p g n J
=

<  ∑
 

(38) 

where J is equal to the number of constraints, and npj 
denotes a probability threshold, above which a solution is 
deemed unproductive among the infeasible solutions, and 
below which a solution is deemed productive. It has a 
counterpart in the objective space denoted by nbj.  

 
 (a)   (b) 

  I l l u s t r a t i o n  o f  th e  th r es h o l d  as s es s m en t  f o r  th e  Fig. 8. 
to u r n am en t  s e l e c t i o n  i n  b o th  N S  an d  N R  p r o c e d u r es .  

In case one solution fulfills (38), while the other one does not, 
then the solution in the productive domain wins the 
tournament over the other one, without considering rank or 
crowding information. This case is shown in the same figure, 
where the violation in the productive domain is denoted by X2j 
and its counterpart is X1j. The counterpart of (38) in the 
objective space, and is given by 

1 1

j

j

J J
b

bT
j j j

n
g n g

λ
−

= =

= =∑ ∑  (39) 

Referring to figure 8b, the probability Pj of the event relevant 
to the case described above is given by X2<nb<X1, and 

2( ) ( 1 ) ( 2 ) j bj j bjn n
j j j jP P g P X P X e eλ λ− −= = = −  

(40) 
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However, since λj is evolving from generation to generation, gT 
is not constant. In contrast with this, in the probabilistic non-
linear ranking domain, the location of maximum probability 
of the event that two solutions appear on either side of the 
threshold nbj is always at np=0.5, irrespective of λj. The case for 
the probabilistic raking domain is illustrated in figure 9, where 
the variation of p(gj) with respect to nbj is illustrated also for 
the productive and unproductive domains. 

 
P l o t  o f  th e  p r o b ab i l i t i e s  f o r  d i f f e r en t  c o n d i t i o n s  Fig. 9. 

th a t  c an  ar i s e  d u r i n g  b i n ar y  to u r n am en t  s e l e c t i o n   

The case for the objective space is illustrated in figure 10, 
where the maximum occurs for nbj=ln2/λj, which is the median 
of the exponential probability density shown in figure 8b. The 
single plot for each of the three possible conditions, during a 
binary tournament seen in figure 9, depending on the 
occurrence of solutions in productive or non-productive 
domains, correspond to a family of plots with respect to the 
parameter λj.in figures 10-11. 

 
 P l o t  o f  th e  p r o b ab i l i ty  th a t  t w o  s o l u t i o n s  o c c u r  Fig. 10. 
o n  d i f f e r en t  s i d es  o f  th e  th r e s h o l d  n b j  f o r  

λ = 1 , 1 / 2 , 1 / 3 , 1 / 4 .  T h e  r es p e c t i v e  m ax i m u m  o c c u r s  a t  
n b = 0 . 6 9 3 /λ  

Explicitly, for nbj=ln2/λj, its counterpart in terms of the 
probabilistic ranking domain is npj=0.5. Thus, the constant 
probabilistic distance measure provides an adaptive threshold 
for productive chromosomes throughout the generations, in 
any scale permitted by the machine or genotype precision. By 
means of this particular tournament selection procedure, the 
detrimental effect on the average violation by the stiff 
constraints, that is, by the members with high violations, is 
prevented; namely, during two consecutive generations the 
progressive diminishing of the average is augmented against 
for the contingent average increase that may occur especially 
during the advanced stages of the convergence. The smaller 
total mean of the constraint violations implies improved 
convergence to the optimum.  

For the other cases, namely 

X2<X1,   X1,X2  <  nb 

2
2 1( ) 0.5(1 ) (1 )j b j b j bn n n

bP X X n e e eλ λ λ− − −< < = − − −  
(41) 

and for  X2<X1 ,    nb<X1,X2    
2

2 1( ) 0.5 bn
bP n X X e λ−< < =  

(42) 

The variations of the different probabilities in (41)-(42) are 
plotted together in figure 11. It is to note that for any value of 
nb, the summation of the probabilities is equal to 0.5, which 
conforms to (28) for λ1=λ2. 

Figure 11 is the counterpart of figure 9 in the objective 
function space. 

 
 (a) (b) 

 P l o t  o f  th e  p r o b ab i l i t i e s  f o r  d i f f e r en t  c o n d i t i o n s  Fig. 11. 
th a t  c an  ar i s e  d u r i n g  b i n ar y  to u r n am en t  s e l e c t i o n   f o r  

λ = 5  ( a ) ;  λ = 0 . 2  ( b )    

It is seen from figure 11 that the shape of the probability 
functions depends on λj, whereas in the probabilistic domain 
in figure 9, the shape remains constant, i.e. independent of λj.  

 ZO O M I N G  FO R  R O B U S T  R A N K I N G C.
Zooming for robust ranking is accomplished by accurate 

ranking the favourable solutions between zero and unity as 
probabilistic distances, even though the actual constraint 
values may be close to the utopic optimal point as much as 
allowed by the computer precision that may be at the range of 
10-10 or below. Illustration of the Pareto front at the early stage 
of the genetic search is given in figure 12a. Illustration of the 
Pareto front at the last stage of the genetic search is given in 
figure 12b. 

  
 (a) (b) 

 I l l u s  t r a t i o n  o f  th e  f o r m a t i o n  o f  th e  P ar e to  f r o n t  Fig. 12. 
a t  th e  e ar l y  s ta g e  ( a )  an d  l a s t  s t ag e  o f  th e  g en et i c  

s ear c h  ( b )  

Considering figure 12b, the probabilistic distance to the 
minimum is illustrated as a typical example in figure 13a by 
the shaded area where computation of the shaded area is very 
precarious at the tournament selection process. This is due to 
the issue of both exact parameterization of the exponential pdf 
in the existing range and the finite machine precision. This 
issue is prevented in figure 13b by taking simply p(gj) as the 
probability distance to the minimum. The marked areas in 
figure 13a and 13b are the same, and they are equal to p(gj). 
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The marked area in figure 13a, is represented in figure 13b 
by the probabilistic distance function p(gj) which varies 
between zero and unity. This means if the penalty function to 
be minimized can be close to the optimal point in a micro 
scale, say in the range of 10-10, the minimization process i.e., 
tournament selection and ranking of the random solutions 
takes place in a macro scale in the probabilistic space as shown 
in figure 13b. This treatment is equivalent to applying a 
matching ‘magnifying glass’ to the space formed by actual 
objective function and the constraint functions, in order to 
carry out the convergence process without being affected by 
any scale of convergence present in this very space. The Pareto 
front at this micro scale is illustrated in figure 12. 

 
 (a) (b) 

 A n  ex am p l e  i l l u s t r a t i o n  o f  th e  p r o b ab i l i ty  Fig. 13. 
d en s i ty  o f  th e   c o n s t r a i n t  v i o l a t i o n s  i n  th e  o b j ec t i v e  

f u n c t i o n s  s p a c e  ( a )  an d  th e  p r o b ab i l i s t i c  d i s tan c e  s p ac e  
( b ) .  

 FA S T  A N D  R O B U S T  C O N V E R G E N C E D.
With the probabilistic distance for nonlinear ranking we 

obtain an optimal step for convergence at each generation. To 
see this, from (27) 

1 exp
1 exp( )

j

j j jj
j

j j j

g

g gp g
r

g g g
λ

−

 
 − −
  − −   = = ≈  

(43) 

In the limiting case, i.e., convergence to the minimum, rj 
becomes 

0 0

( )
lim lim j j

j j

gj
g j g j j

j

p g
r e

g
λλ λ−

→ →= = = → ∞  (44) 

As it is seen, the genetic search algorithm is extraordinarily 
stable, that is, the convergence is due, and due to monotonic 
increase of the slope rj, the convergence is fast. 

I V .  C O M P U T E R  E X P E R I M E N T  

Computer experiments have been carried out using a 
standard optimization problem from the literature. To 
demonstrate the robust, fast and accurate computations the 
course of the convergence are given in detail. 

The following problem is due to Himmelblau [20]. given by 

2
3 1 5 1( ) 5.3578547 0.8356891 37.293239 40792.141f x x x x= + + −x  (45) 

where the ranges for the independent variables are given by 

1 278 102; 33 45; 27 45 ( 3,4,5)ix x x i< <  < <   < <   =  (46) 

subject to: 

1 2 5 1 4

3 5

2 2 5 1 4

3 5

3 2 5 1 2
2
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4

( ) 85.334407 0.0056858 0.0006262
0.0022053 92 0
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0.0022053 0
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(47) 

The problem consists of a single objective with 6 constraints, 
subject to minimization. The best known optimum is located 
at 

 f(x*)=-30665.53867178332  

and the corresponding best variable values are   

x1
*=78; x2

*=33; x3
*=29.9952560256815985; x4

*=45; 
x5

*=36.7758129057882073.  

The algorithm is executed with the following settings: 
population size=200; amount of generations=60; C=100000; 
crossover probability=0.9; mutation probability=0.05. The 
results are shown in figure 14-16 using a logarithmic scale for 
the horizontal axis, which shows the total violation G. It is 
noted that a single iteration of the algorithm consists of five 
generations.  

After 5 iterations the population is seen in figure 12, where the 
best feasible solution is  

f(x)=-30569.5213239566.  

 
 P o p u l a t i o n  a f t e r  th e  5 - th  i t e r a t i o n  Fig. 14. 

The independent variables of this solution take: 

x1=78.0265736760284; x2=33.658770910086; 
x3=30.470062623374; x4=44.7895003744468; 
x5=35.8616204529277. 

After 10 iterations the population is seen in figure 14, where 
the best feasible solution is found to be 
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T H E  J O U R N A L  O F  C O G N I T I V E  S Y S T E M S   
V O L U M E  0 1    N U M B E R  0 1  

f(x)=-30653.7876324169.  

The independent variables of this solution take: 

x1=78.0261567922629; x2=33.0152143977847; 
x3=30.0228958188968; x4=44.8232338738051; 
x5=36.7924311001587. 

 
 P o p u l a t i o n  a f t e r  th e  1 0 - th  i t e r a t i o n  Fig. 15. 

After 30 iterations the population is seen in figure 15, where 
the best feasible solution is found to be 

f(x)= -30665.4759429232.  

The independent variables of this solution take: 

x1=78.0000867626641; x2=33.000032984143; 
x3=29.9955726882451; x4=45; x5=36.7751232308258. 

 
 P o p u l a t i o n  a f t e r  th e  3 0 - th  i t e r a t i o n  Fig. 16. 

It is noted that the process will continue to improve the 
solution more and more as the search continues, i.e. the 
population converges at the optimal solution, demonstrating 
the robustness of the approach. Namely after 60 iterations the 
population is seen in figure 16, where the best feasible solution 
is found to be 

f(x)= -30665.5386683921.  

The independent variables of this solution take 

x1=78.0000000039558; x2=33.0000000083502; 
x3=29.9952560418378; x4=45; x5=36.7758128740195. 

V .  C O N C L U S I O N S  

Probabilistic considerations underlying a novel evolutionary 
computation are presented. In this work, multi-objective 
optimization is considered in the form of constraint 
optimization, the case conventionally being described in the 
literature, selecting appropriate penalty function parameters. 
However, since these parameters vary during the search 
process the determination of these parameters is very elusive 
and remained an issue to treat for researches. In contrast to 
this, in this work, a probabilistic model is introduced, by 
means of which the penalty parameters are embedded in the 
model, and they are inherently tuned, as the model is 
adaptively modified throughout the generations. The 
probabilistic model also has several favorable implications, 
which are treated in this research. These are stiffness handling, 
impartial elitism, zooming for robust ranking, as well as fast 
and robust convergence. The theory presented in this work is 
exemplified by an optimization problem for demonstration of 
the general effectiveness resulting from this analytical 
treatment of the constraint optimization methodology. 
However the method is not restricted to constraint 
optimization, but suitable for multi-objective optimization in 
general. The reported results include not only the final 
outcomes but also the progress of the convergence throughout 
the optimization process conforming exactly to the theoretical 
considerations presented. 
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