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A note on the information theoretic aspect of the fuzzy neural tree (FNT) is presented.  The detailed description of the FNT is given 
in an earlier work, where its information-theoretic aspect is heuristically mentioned but not elaborated because of some space 
limitation. The present note is to highlight this aspect of the tree as this is important in working of the tree with its knowledge-driven 
structure. 
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I .  I N T R O D U C T I O N  

uzzy neural tree (FNT) structure is given in an earlier 
published work  where its information-theoretic aspect is 

briefly mentioned [1]. The present note is to highlight this 
aspect of the tree as this is important in working of the tree 
with its knowledge-driven structure. The information-
theoretic aspect of the FNT concerns the application of fuzzy 
concept to some concepts of Information Theory and using 
the result as knowledge in the tree structure. In this way, the 
FNT is driven by both assessments of soft issues as fuzzy 
memberships, and fuzzy membership of measurement data. 
The rest of the FNT structure is formed by the fuzzy 
information as knowledge source for the tree. The brief 
description of the FNT is intentionally presented here for the 
sake of the completeness of the note. 

Neural tree concept and neuro-fuzzy computation is well 
established in the literature. In particular, neural tree concept 
is a kind of “free format” neural computation where layer–by-
layer structure of neural network is relaxed as this will be 
shown shortly afterwards. In the realm of neuro-fuzzy 
paradigm, a neural network can be considered as fuzzy system 
in the sense of the non-linearity introduced at the neurons can 
be seen as fuzzy membership functions. Although such a view 
is appealing from the fuzzy system viewpoint, fuzzy 
interpretation of a neural network becomes formidably 
involved as the network is not a simple one. Therefore, a 
neural network is established generally by learning the input 
data without any recourse to fuzzy considerations. Then such 
structure is considered as non-parametric model. On the other 
hand a neural network can be established by some fuzzy 
considerations as a knowledge model and the same structure 
can be seen as a parametric model, depending on the input 
data in both cases. Even in this parametric model case some 

ranked structure of the neural network can be relaxed and the 
knowledge considered in this context can be the information 
provided by the inputs of the network. As it can duly be 
anticipated, in this fuzzy model the input data is represented 
in terms of information and this information is fuzzified being 
subject to fuzzy information processing. 

The organization of the paper is as follows. Section II 
describes the structural and computational aspects of fuzzy 
neural tree, as well as its information-theoretic aspect. This is 
followed by conclusions. 

I I .  F U Z Z Y  N E U R A L  T R E E  

A.  ST R U C T U R A L  A N D  CO M P U T A T I O N A L  AS P E C T S 
A neural tree can be considered as a feed-forward neural 

network that is organized not layer by layer but node by node. 
The nodes comprise nonlinear functions for processing the 
incoming information. In fuzzy neural networks, this 
nonlinear function is treated as a fuzzy logic element like 
membership function or possibility distribution. Therefore, 
fuzzy logic is integrated into a neural tree with the fuzzy 
information processing executed in the nodes of the tree. A 
generic description of a neural tree subject to analysis in this 
research is as follows. Neural tree networks are in the 
paradigm of neural networks with obvious similarities in their 
structures. A neural tree consists of terminal nodes that also 
referred to as leaf nodes, non-terminal nodes that are also 
referred to as internal or inner nodes, and weights associated 
with the connection links between the pairs of nodes. The 
non-terminal nodes are considered to be neural units, as the 
neuron type is an element introducing a non-linearity 
simulating a neuronal activity. In the present case, this element 
is a Gaussian function, which has several desirable features for 
the goals of the present study; namely, it is a radial basis 
function ensuring a solution, as well as the smoothness. At the 
same time it plays the role of possibility distribution in the tree 
structure, which is considered to be a fuzzy logic system as its 
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outcome is based on fuzzy logic operations thereby providing 
associated reasoning. In a conventional neural network 
structure there is a hierarchical layer structure, where each 
node at the lower level is connected to all nodes of the upper 
layer nodes. However, this stipulation is very restrictive when 
a general system should be represented. Therefore, a more 
relaxed network model is necessary, and this is accomplished 
by a neural-tree, the properties of which are as defined above. 
An instance of a neural tree is shown in figure 1. Each terminal 
node, is labeled with an element from the terminal set T=[x1, 
x2, … , xn]   where xi is the i-th component of the external input 
x which is a vector. Each link (i,j) represents a directed 
connection from node i to node j. A value wij is associated with 
each link. In a neural tree, the root node is an output unit and 
the terminal nodes are input units. 

 
Fig. 1. Structure of a neural tree  

A non-terminal node should have minimally multiple inputs 
to be meaningful, although a single input is also valid for 
operation. A node may have a single or multiple outputs;. 

An internal node having a single input is considered to be a 
trivial case. This is because in this case output of the node is 
approximately equal to the input that it is to be considered 
equal. The node outputs are computed in the same way as 
computed in a feed-forward neural network. In this way, 
neural trees can represent a broad class of feed-forward 
networks that have irregular connectivity and non-strictly 
layered structures. In conventional neural tree structures 
generally connectivity between the branches is avoided. They 
are used for pattern recognition, progressive decision making, 
or complex system modeling. In contrast with such works, in 
the present research connectivity between the branches is 
possible, and the fuzzy neural tree structure is in a fuzzy logic 
framework for knowledge modeling, where fuzzy 
probability/possibility as element of soft computing is central. 
Added to this, the fuzzy neural tree functionality is based on 
likelihood representing fuzzy probability/possibility. This is 
another important difference between the existing neural trees 
in literature and the one in this work. Although in literature a 
family of likelihood functions is used to define a possibility as 
the upper envelope of this family [2, 3], to the authors’ best 
knowledge there is no likelihood function approach in the 
context of neural tree. In the fuzzy neural tree, the output of i-
th terminal node is denoted yi and it is introduced to a non-
terminal node. The detailed view of node connection from 
terminal node i to internal node j is shown in figure 2a and 
from an internal node i to another internal node j is shown in 

figure 2b. 

 
 (a) (b)  (c) 

Fig. 2.  The detailed structure of different type of node connections 

The connection weight between the nodes is shown as wij. In 
the neural network terminology, a node is a neuron and wij is 
the synaptic strength between the neurons. This means, it 
represents the strength of connection between the nodes 
involved. In the fuzzy neural tree it is between zero and unity. 
Figure 3 shows some sample membership functions for the 
terminal nodes. 

 
Fig. 3.  Some sample membership functions at the terminal nodes 

 To start with we refer to figure 2a. We assume the input to 
an input node, namely a terminal node, is a Gaussian random 
variable, which is instructive to start with. In the fuzzy neural 
tree introduced in this work, all the processors operating in the 
internal nodes are Gaussian. Since the inputs to neural tree are 
also Gaussian random variables, due to functions of random 
variable theorem [4] all the processes in the tree are to be 
considered Gaussian. In a neural tree for each terminal input 
we define a linear or Gaussian fuzzy membership function as 
seen in figure 3, whose associated membership provides a 
probabilistic/possibilistic value for that input. Referring to 
figure 2, let us consider two consecutive nodes as shown in 
figure 2c. In the neural tree, any fuzzy 
probabilistic/possibilistic input delivers an output at any non-
terminal node. Due to Gaussian considerations given above, 
we can consider this probabilistic/possibilistic input value of a 
node as a random variable x which can be modelled as a 
Gaussian probability density around a mean 𝑥𝑚 . The 
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probability density is given by 
2
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where xm is the mean; σ is the width of the Gaussian.  
D e f i n i t i o n : Assuming a statistical model parameterized 

by a fixed and unknown θ the likelihood 𝐿(θ) is the 
probability of the observed data 𝑥 considered as a function of 
θ.  

The likelihood function of the mean value xm is given by [5] 
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where θ  is the unknown mean value xm. Likelihood function is 
considered to be as a fuzzy membership function or fuzzy 
probability, converting the probabilistic uncertainty to fuzzy 
logic terms. θ is a general independent variable of the 
likelihood function, and the likelihood is between 0 and 1. L(θ) 
plays the role of fuzzy membership function and the likelihood 
at the node output is given by 

( )j j jy L θ=     (3)

Referring to figure 2c, we consider the input xj of node j as a 
random variable given by  

j i ijx y w=     (4)

where wij is the synaptic connection weight between the node i 
and node 𝑗 seen in figure 2. In the same way as described 
above, the pdf of xj is given by  
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and the likelihood function of the mean value θ=xmj with 
respect to the input xj is given by 
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where θ is the likelihood parameter. Using (3) in (6), we 
obtain 
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We consider the neural tree node status where the likelihood is 
maximum for the input is maximum, namely Lj(θj)=1 for 
Li(θi)=1 . In (7) using Li(θi)=1 we obtain  

j ijwθ =  
  (8)

for the maximum likelihood Lj(θj)=1. Hence, from (7) and (8), 
we obtain that likelihood Lj(θj) is maximum for Li(θi)=1 as was 
designed. Li(θi) is the likelihood of the preceding node. 

2 2
2

1 ( ( ) 1)
2( )

j i i
j

L

j jL e
θ θ

σθ
− −

=
 

  (9)

 

Referring to (3), from (9) we can also write 
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Referring to (9) the likelihood Lj(θj) is the probability of 
observed data as a function of θ via Li(θi) which is the 
likelihood of the preceding node output. In other words, each 
likelihood output of a node is dependent on the probability of 
the outcome of the preceding node output, which is the 
observed data in this likelihood context. 

B .  IN FO R M A T I O N- TH E O R E T I C  AS P E C T  
For 𝐿𝑖(θ𝑖) = 1 the likelihood 𝐿𝑗(θ𝑗) is maximum being 

independent of θ𝑗 . However for 𝐿𝑖(θ𝑖) ≠ 1, the likelihood 
𝐿𝑗(θ𝑗) is dependent on θ𝑗 . In (9), we note the variation of 
𝐿𝑗(θ𝑗) with respect to θ𝑗   while 𝐿𝑖(θ𝑖) is a parameter. For 
𝐿𝑖(θ𝑖) close to unity or θ𝑗  is close to zero likelihood, then 
𝐿𝑗(θ𝑗) is close to maximum. From the information theory 
viewpoint, likelihood is probability 𝑝 and the information is 
given by 

 log log ( )I p L θ= − = −    (11)

The information content of likelihood is given by (11) since 
L(θ) is considered to be a fuzzy probability [6] in the form of a 
membership function. The fuzzification of this information is 
accomplished by means of the information fuzzy membership 
function 

1 exp( )MF I= − −    (12)

as this is shown in figure 4 with respect to information. 

     
Fig. 4.   Fuzzy membership function of information 

The same information fuzzy membership function with 
respect to likelihood is shown in figure 5.  

 
Fig. 5. Membership function of fuzzified information 

The fuzzy membership function of information in figure 4 can 
take slightly different forms, taking the decay constant 
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different than unity. In that case the membership function in 
figure 5 would read 𝑀𝑀 = 1 − 𝑃𝜏 where 𝜏 denotes the decay 
constant. 

The membership function value of the fuzzified information 
is used as the connection weight in the fuzzy neural tree,  

1 1 ( )ij ij i iw p L θ= − = −    (13)

as was explained above by (1) through (8). The fuzzified 
information is to consider as fuzzy information between zero 
and unity. In the FNT, the connection weights throughout the 
model are determined by the inputs of the FNT without 
recourse to any expert knowledge, in this knowledge model. It 
is interesting to note that if the inputs of the model are 
measurement data, then the measurements are fuzzified by 
means of appropriate membership function to a fuzzy 
probability as shown in figure 6.  

 
Fig. 6.  Membership function as fuzzy probability 

If the inputs of the model are soft inputs, then these inputs are 
considered to be directly fuzzified inputs between zero and 
unity and the fuzzfied information introduced above prevails 
throughout the model. 

The heuristic explanation of (13) is as follows.θ𝑗  refers to the 
connection of the node 𝑖 to the node 𝑗. From the information 
theoretic viewpoint 𝑦𝑖  is a probability and it contains no 
information when it is unity. In this case we do not have to 
convey any information from node 𝑖 to node 𝑗, and therefore 
θ𝑗 = 0. From other side if 𝑦𝑖  is zero, it contains information 
that it goes to infinity. Therefore, we connect the node 𝑖 to 
node 𝑗 with total connectivity, that means θ𝑗 = 1 in the case of 
single input. For a multiple input case, which is the non-trivial 
or actual situation, θ𝑗  is selected in a normalized form for 
defuzzification in the rule-chaining process through from 
node to node process in the tree. 
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In (15) 𝑛 is the index number of the number of inputs to the 
node j.  

I I I .  C O N C L U S I O N  

A note on a fuzzy neural tree is presented from the 
information-theoretic properties viewpoint involved in the 
tree. Information-theoretic viewpoint is essential for an 
automatic knowledge model formation directly from the 

inputs of the model. Heuristically we can consider that the 
information supplied to the model is from the inputs, and this 
information is used to form the model without any training 
process. This is an important property of the present neural 
tree structure since in the general neural tree concept in 
literature, the tree structure is determined in one way or other 
by learning and hence the model is non-parametric.  

Fuzzy neural tree subject to study in this work, is an essential 
component of computational cognition, and its effectiveness is 
demonstrated in several applications reported in the literature 
[7, 8].  
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