e-1SSN:2564-7954 CUSIE 18(2): 087-100 (2021) Research Article
— Cankaya University

L oF
SCIENC!
ENGIN

/ Journal of Science and Engineering CU] SE

https://dergipark.org.tr/cankujse

A Fifth-Order Hybrid Block Integrator for Third-Order

Initial VValue Problems

Rotimi Oluwasegun Folaranmi'**', Abayomi Ayotunde Ayoade? “*', Tolulope Latunde?

T Department of Mathematics and Computing, Thomas Adewumi University, Kwara State, Nigeria
2 Department of Mathematics, University of Lagos, Lagos State, Nigeria
% Department of Mathematics, Federal University Oye-EKiti, Ekiti State, Nigeria

Keywords Abstract

The formulation of hybrids block method as integrator of third-order Initial Value
Problems in Ordinary Differential Equations is our focus in this paper. Chebyshev

Block Method,

Chebyshev polynomials were used as trial function to develop a hybrid One-step Method

Polynomials, (HBOSM3) adopting collocation and interpolation technique. The basic properties of

k/:”ter?rdM“”'StEP HBOSM3 were integrated and findings revealed that the method was accurate and
ethod.

convergent. One of desirable features of these methods is the production of exact
solutions at the grid points.

1. Introduction

This work is concerned with the class of the Problems

yW ()= f(xy, Y, y'K, ")

Yy (%) = Y, (s) s=012K ,m—1 (1)
for the case m = 3.

The analytical solution of many of such problems does not exist. Thus, the need for formulation of numerical
schemes to integrate (1) becomes necessary.

Researchers have reduced higher order of (1) to first order ODEs but with a set back see [1,2,3,4] and the inability
of the method to utilize additional information associated with a specific ODE such as the oscillatory nature of
the solution [5] occasioned by the increase dimension of the problem and low order of accuracy of the methods
employed to solve the system of first-order 1\VVPs of ODEs.

It has commonly been reported by scholars that implementation of linear multistep methods in predictor-
corrector mode is very expensive.

To circumvent the setbacks encounter in predictor-corrector approach, the block methods have been introduced
to solve IVVPs in ODEs. [6,7] first proposed block methods as a means of obtaining stating values for predictor-
corrector algorithms. The block methods however provide the advantage of being self starting, possess uniform
order and they are obtained from a single continuous formula. Of recent, [8,9,10,11,12,13,14,15] developed
different numerical methods and considered different trial functions.

Problems arising from ODEs can either be formulated as an I\VP or a BVP. However, our concern shall be with
IVP. Several researchers such as [16,17,18] attempt solving (1) directly using derived LMMSs without reduction
to system of first order ODEs. [6,18] developed new block methods which are self-starting using power series
and newly constructed orthogonal polynomials as basis function. While [18] used power series as the basis
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function, [19] employed a newly derived orthogonal polynomials as trial function to develop one step hybrid
block method for solution of general second order Initial value problem. Despite elegant properties of Chebyshev
polynomials, it is rare seeing scholars considering it as basis function.

Thus, in this paper,we propose the development of one-step hybrid block linear multistep method for the solution
of Initial Value Problems of Third Order Differential Equations with the use of Chebyshev polynomial as basis
function.

2. Methodology

The approximation of analytical solution of problem (1) employing Chebyshev polynomial of the form

r+s-1

y(x) =2 a,T,(x), (2)
n=0

as basis function on the partition a =X, < X; <....... <X < Xpyg < < X, =b is considered here.

The function y(x) is integrated in the interval [a, b], with a constant step size h, given byh=x,,, —X,;

and T, (x) = Cos(nCos 'x) = Y C"x" .

j=0
which is the nth degree Chebyshev polynomial which is valid in the range of definition of (2).
The Chebyshev polynomials T, (x) satisfied the recurrence relation

T () =2XT, (x) =T, 1 (), n=1(T(x) =1) (4)
for interval [-1, 1].
2X =X — X 2X=2%X.—h

Thus T,(x) =X = = =1, X SX< X4
X — X h
(%)
wheret = t(x) ,a function of X, is given by (5).
The first, second and third derivative of (2) is given by
r+s-1
yl(x) = zanTn"(X) (6)
n=0
r+s-1
y () =2 a,T,"(x) ()
n=0
r+s-1
yr 0= > a,T,"(x) (8)
n=0

where X € (a,b), the a,'s are constant, r and s are points of collocation and interpolation respectively.

Conventionally, we need to interpolate at least three points to be able to approximate the solution of (2) and, for
this purpose, we proceed by arbitrarily selecting two off-step point,

Xy V€ (0D in(X,,X,,,) ensuring that the zero-stability of the main method is guaranteed.
Thus, equation (2) is interpolated at X, ,; , i=0, v and 1 and its third derivative is collocated at X,,; i=0, v, and 1

SO as to obtain a system of equations.

In what follows, we shall develop one step methods with three off step pointsv = and

N |-
Mlw

NS
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2.1. Development of the Proposed Method

In this section, the derivation of continuous one-step method with three off-step point is considered. Using (2)

with r = 5 and s = 3, we have a polynomial of degree seven as follow;

7
y(x) =2 a,T,(x) )
n=0
with third derivative given by
7
yr () =>a,T,"(x) (10)
n=0
. . 113 . 1 1
Collocating (10) at X =X, ., 1 =0, 127 1 and interpolating (9) at X =X,,,, | = O,Z and > lead to a
system of equations written in matrix form AX = B as:
0 0 0 192 —1536 6720 —21504 56448
h®f,
0 0 0 192 — 768 960 768 —4032 he f
ao k-¢-1
0 0 0 192 0 —-960 0 2688 | & he f )
a2 k+E
0 0 0 192 768 960 —-768  —4032 | 5 h*f .
=l Ay
0 0 0 192 1536 6720 21504 56448 | h®fy..
as y
k
1 -1 1 -1 1 -1 1 -1 a,
1
k+=
1 _1 _l 1 _1 _l 1 _1 & !
2 2 2 2 2 k%
1 0 -1 0 1 0 -1 0
The values of a;, j =0,1,K 7below are obtained using Maple software to solve (11)
By = — R+ per P pse o D per ol her ey -2y 42y
11520 23040 ki 2560 Kk 4608 kS 23040 e
a = = hsfk+ 793 h® 1+3l : 1‘*‘£h3 3t — oo = h? fa+tye—4y +3y
161280 80640 «+; 26880 k+; 80640 k-, 161280 ket k>
a, 1 °f, PRLARY: . L ne . L nef . Jrihsfk+1
46080 5760 k- 2560 k5 5760 k- 46080
a, = L 3fk L *f 1""Lh3 3 . ——h’ fra 12)
46080 11520  «; 11520 K+, 46080
B = hf, 4 | — L R | +—— hf ,+—h°f,,
46080 5760 k-, 2560 k-, 5760 k3 46080
B — B 4t R - 4t hf,,
46080 23040 k-, 23040 k-, 46080
a, = 1 thK—Lh:‘f 1+Lh3 I—Lh3f 3+#h3fk+l
161280 40320  «+; 26880  k+; 40320 «+; 161280

Substituting the values of a, (0 <i < 7) into (2), we obtain a continuous scheme in the form
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4 2 2

V00 = 2 (Y, + @y (Y 4 +ay (Y 5 +0° QB (0 s+ B,00T +B,00T 4+ 5, (0) fk+3)}(13)
4 4 2 2 0 4 4 4
Simplifying (13), we have
a,(t) =t+2t°
a, (t)=-4t- 4t?

4

a, (1) =1+3t+2t°

2

- + - - +
161280 23040 1152 2880 1440 2520
583 ,, 193 , 1 . 1. 1. 1 t7j

ﬂo(t):h3( 13 t L t? L t L t° 1 o, 1 t7j

B, (1) =h®

4

+ + + -
80640 11520 144 180 720 630

B, (t)=h’ L t2+it3—it5+it7j
> 26880 1280 48 96 420
B (t) =h?| - 47 5 ey lpe, b 1 1 t7j
s 80640 2304 144 180 720 630
ﬂl(t):hs( 13 UL S SV S C RS R t7j
161280 23040 1152 2880 1440 2520 (14)
Wheret:&hxk_h

Evaluating (13) with the expressions in (14) at X = Xk 5 and X = X, ,, the following main methods are obtained
4

as
hS

yk% =Yy —3yk% +3yk% +%[ f, +116fk+% +126fk% —4fk% + fk+1] (15)
h3

Vi =3Yy —8yk 1 +6yk+% +%(fk +86 fk% +126 fk% +26 fk% + fmj (16)

Differentiating (13), we obtain
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o'y (t) = %(2+8t)

a' (t)——h(8+16t)

4

o'y () = %(6+8t)

1
2

ik (t):hz(i_iu_it?*_it“_it5+it6)
° 80640 5760 144 288 120 180 17)
B (t)=h (5—83+£t—i S t4+it5—it6)
i 40320 2880 18 18 60 45
ﬂ‘3(t)—h2(—i—it+it3+it4 its—it‘*J
i 40320 576 18 18 60 45
ﬂ'l(t):hz(i+it—it3—it4+it5 +it6j
80640 5760 144 288 120 180
The second derivatives of continuous functions are given as
. 16
a'y (1) he
32
a', () = -
% ( ) h2
16
a', () =—
% ( ) h2
" 1 l 2 l 3 1 4 1 5
t)=hl ———+ —t% ——t° - —t* + —t
Ao V) ( 2880 24 36 12 15 j
ps 0 198 1 el tp >
Z 1440 9 6 15
L) = [—1 ET t 34 2 )
5 60 5
'3 = ( > —'[2 4t3—1t4—it5j
Z 88 9 6 15
£t =h N A e N N I R S R
2880 24 36 12 15 (18)

The additional methods to be coupled with the main methods are obtained by evaluating the first and second
derivatives of (13) at X, xk 1 xk 1 xk sandX,,;. Thus, we have the following discrete schemes:
+— +—= +—
4

307 793 19 79
f, + e f
80640 “ 40320 i 4480 i ' 40320 K

4

hy, +6y, =8y 1 +2y .= h3[ - fk+1J(19)
4 2
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hy?+j + 2% _Zyk% B hs[_ 16380 O 43220 fk+§ _Wgeso fk+§ _Wlem fst : 32;56 k”J( 9
W, 2 oY, oy ~o¥ 1o h3[8016340 ft 42220 fk% +13*94740 fk+§ B 4;3720 . : 801:40 k“]m)
hy 2 —6y, +16y , 10yk% = h3(16813280 f, + 41083?210 fk% +1171972 fk% +% 2 +E156 fa [(22)
hy,,, —10y, + 24yk+% —14yk% = h3(1611128 f + 430036210 fk% + 4546890 fk% +% 2 +% f., [(23)
h?y, —16y, +32yk+% —16yk% = hg{—% f —% k% +% k% —1:20 k+§ —1;2 f., [(24)
Y, 16y, 132y, , 16y, , = h{% f, +7—12 ¥ —4% . +% s 730 k+1](25)
iy, oy, 32y, 16y, - [ R Lo M](za)
hzy 2 16yk+32y o 16yk+;:h3(2i88 fk+%fk+i+ii8?)fk+; 33670 . § 540 fk+1J(27)
iy, 16y, <32y, 6, - hs(_s_;o R TR LR g 18

Equations (19), (20) (28) are solved simultaneously to obtain the block method as shown below.
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y yk+1hyk+i v 113 hef, s 107 s - 103\ q, 1 43 o - 471 3
5 4 71680 64512 ki 107520 ke 107520 k> 645120
y 1:yk+£hyll<+*h2yl:+ 331 +£h3f 1_i *f 1"'£ : 3_ih fia
ket 2 8 40320 5040 ki 168 k+r 5040 k> 40320
3,9 , . 1431 | 1863 243 45 81
=y, +=hy, +—h? 2 R +——hf ,———hf
yk+9 Y g™ T3 " 71680 " ¢ " 35840 k+§ 35840 k- 7168 k> 71680 "
31 L34 1 2 1
+hy, += h +—h*f, +——h*f | +——h*f | +—h®f , - —h°f
Yiu =Y+ I, Y e "t a8 “; 210 w3 105 i 504 7
y _hyk+ Ly yk+£h foeopig  — A peg 20 g T gy
ket 0103 * 128 ki 3840 koo 5760  keo 7680
53 1 1 1
L =hy, += h L Y N R N P By
Y, - Y Ve Taao" "t o oy 48 ey 90 ey 480 7
y'szw;+fwy;435m foe g o 20 e S psp 9 psp
ks 2560 640 ki 1280 ki 128 ke 2560
Y =Ny, +h? yk+—h f\ +—h fk+%+Eh fk%+4—5h fk%
y . =h%, + 21 k 323 1 -2 1t >3 h*f - = h®fis
ket 2880 " 1240 kj 120 w5 1440 k3 2880 (29)
. . 1 1
_h2y) + 2y f, —h"f BN N Ik
yk+§ Y " 360 G150 et To0 el T3e0 K
yoo=hty w2l o b pee o S pep 2l 3 g
ke 320 160 ki 40 ke 160 k3 320
. . 2 16 7
=h? +—h3f +—h f ,+—=hf [ +—=h%f , +—h%f
Y= YT g0 45 g 15 ey 450 e 90
3. Basic Properties of the Method
3.1. Order and Error Constant
Here under, the basic properties of the derived schemes are discussed.
The implicit schemes (15) and (16) belong to the class of LMM of the form
(30)

k k
Do =Y BT,
j=0 j=0

Following [21], the approach adopted in [9,20,3], we define the local truncation error associated with equation

(30) by the difference operator
k

Ly - hl =Y [e, y(x, + jh)—h°B, T (x, + jh)]
j=0

Where y(x) is an arbitrary function, continuously differentiable on [a, b].
Expanding (31) in Taylor series about the point X, we obtain the expression

LIy (; h] = CoY(x) + C,hy' (%) + C,h2y" () +K +C,.;h*2yP(x)
Wherethe C; , C,, C,n C n C,,, are obtained as

ko 1&
Co=2a; C,=2 e, =2 1%,

j=1 2. =1

qua —q(q-1)(q- Z)Zﬁj“

j=1

ale 1
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Definition 1:
The LMM (30) is said to be of order pif C, =C, =C,=KC, =C_,=0. C,;#0is called the error

constant and C h’”?’yp+3 (X,) is the principal local truncation error at the point X, (see Lambert [3] and

Henrici [21]).

The approach adopted above to obtain order and error constant can be further simplified as presented below.
Defining the derived schemes in a generalized form as

yk+p - uyk+q Wi —WYy — h? {afk + b.I:k+r + ka+q + dfk+p } =0 (32)
Where p>Q>n and p,gandn are desired positive real numbers.

Expanding (32) in Taylor series gives

p+3

LUV OYRY: j j s~ h9™ G j j j
=y P {p) —u(@! —v(n) s+ wy, = > Ty () e +d(p)’ 2
i J! i I (33)
—ah®’y® =0

Thus, we have

h h h? 113h® 107h® h
L ‘h] = — |- ——y'(x )= — y" (X )= Ty (X, ) — ki
YR = %+ |- Y00 =y )=y )= Ty )= oy, )
. 103h® y,,,(x +Dj_ 43h3 y,,,(x +@j+ 47h° v (x, +h)
107520 “2) 107520 “ 4 ) 645120 :

h h h? 331h° 83h° h
LIy(x,);hl=y| x, += |- y(X)—=VY'(x, )—— y" (X, )-——Vy""(x,) — "X =
s = %+ 5 |- ¥00) =y )=y ()= S0y ) - B0y, 44
+h—3 " x +D _Lsn [x +%j+ 19h° "'(x, +h)
1687 \"2) 50407 (T4 )T a03207

3h 3h 9h? 1431h° 1863h° h
L ‘hl = ) 2y EEALER VL (Y Wit bR YA ik RV =
[y(x);h] y(xw 4j YO ==y ()= 55 (%) - T v () - e s [xk 4j

| 2430’ v x 0 _ 45h° vl 3, 81h° v (%, +h)
35840 K 2) 7168 4 ) 71680 X

LIy ()3T = Y%, + )= y(x) = hy (1) =2y (x) - S0y %) - 20 y"'[xk +2]

L [x +Ej—2h3 (x +%j+ h’ "'(x, +h)
2107 (%" 2) 1057 "2 ) 5087

In this way, we obtain the following local truncation errors
139h%y® (x, ) N

107h°y @ (x,) N

L h] = o(h®), ' = 10

Ly ) = e aza11520 +OM) WY ) M= e is0720 T

L[y(x )h]_m+o(h9) L[y'(x )h]—M+O(h1°)
Y1 M= 2949120 ’ VP2 Tea5120
243n°y® (x,) 9h°y® (x,)

L[y(x ,),h]=2 2 2 4 O(h?), L[y" hp= 2 Y X | oo

0, o)M= oas01280 O Y M= 5570006 T
h8y(8)(x ) h9 (9)(X )

L[y(X,.,),h] = ——¢2 4+ O(h?), L[y' hp =YY | opo

[y(Xy,1), 0] 645120 (h%) [y (X,.1),h] 322560 +0O(h™)

10 ., (10)
3h y (Xk)+o(hll), hloy(lo)(xk)+o(hll)

655360

LIy (x ,h] =
[y™( k%) ] 368640

LIy"(x_y).hl=

94
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5h°y 2 (x,)
655360

LLY" (X,1),h] =0+ O(h')
Thus, with the analysis above the method is of order P =5.

LLy"(x_3).h]= o(h'*)

3.2. Zero Stability

Definition 2: The LMM (30) is said to be zero-stable if no root of the first characteristic polynomial has modulus
greater than one, and if every root of modulus one has multiplicity not greater than three.

Al the roots of the derived schemes have been verified to be less than or equal to 1 and|Z| =1, simple.

Region of Absolute Stability
The region of absolute stability is as shown in Figure 1 below.

k=2

0.6

0.4

Im(z) 0

_0.4-

-0 .64

0.3 0.4 0.5 06
Re(z)

Figure 1. Region of Absolute Stability of the Proposed Scheme

3.3. Consistency

Definition 3: The LMM (30) is said to be consistent if it is of order p >1and its first and second characteristic

k ) k )
polynomials defined as p(z) = Y @;z' and o(z2) =) _ Bz’

j=0 j=0
where Z satisfied (i) thoaj =0 (i) pO=p'WY=0 and (iii) o' =3c()
The discrete schemes derived are all of order greater than one and satisfy the conditions (i)-(iii).
4. Numerical Applications

We consider here the application of the derived schemes to four test problems for the efficiency and accuracy of
the method implemented as block method.

Problem 1. (A constant coefficient non-homogeneous problem)
y'"'=2y"-3y'+10y = 34xe ¥ —16e > —10x* + 6x + 34
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y(0)=3y'(0)=y"(0)=0, x<[0,b]
Exact Solution: y(X) = x’e¢™® —x* +3
Source: [22]

Problem 2. (System of Third Order Non- homogeneous Equations)
Consider linear system

y'''= é (817y +1393z + 448w)

z'"'= —é (1141y + 2837z + 896wW)
w'''= 1 (3059y + 4319z +1592w)
136

with initial conditions
y(0) =-2,z(0) = -2,w(0) =-12

y'(0) =-12,z'(0) = 28,w'(0) = —33

y"(0) =20,2"(0) = -52,w"(0) =5

The analytical solution of the problem is given by
y = exp(x) — 2exp(2x) + 3exp(—3x)

z = 3exp(Xx) + 2exp(2x) — 7 exp(—3x)

w = —11exp(x) —5exp(2x) + 4exp(—3x)
Source: [23]

Problem 3. Non-linear Blasius Equation (Application Problem)
2ylll+yle: 0

y(©0) =0

y'(0) =0

y'(0) =1

The exact solution does not exist.

Source: [24]

Problem 4. Non-linear problem

yey"'=1
y(0)=1y'(0)=1y"(0)=1h=0.1
Source: [2]

The above problem was derived by [25] to investigate the motion of the contact line for a thin oil drop spreading

on a horizontal surface.
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4.1. Table of Results for Derived Schemes

Table 1. Comparing the Exact and Approximate Solutions for Problem 1

S/N

Exact Solution

HBOSM3

Error in HBOSM3
Order p=5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.99818730753077981860
2.98681280184142557200
2.95939304724846237890
2.91189263425875545460
2.84196986029286058040
2.74842991628839275480
2.63083251233138717370
2.48921377151657946140
2.32389209945948509600
2.13533528323661269190

2.99818730747705733110
2.98681280161700194330
2.95939304672226093300
2.91189263327710326110
2.84196985867073284320
2.74842991380017445720
2.63083250870099794350
2.48921376640688782660
2.32389209246103497220
2.13533527385580657200

5.37224875x10™
2.24423629x107"°
5.26201446x107"°
9.81652194x107*°
1.62212774x107%°
2.48821829x10°%
3.63038923x10°%®
5.10969163x10°%
6.99845012x10™
9.38080612x10™

Table 2a. Comparing the Exact and Approximate Solutions Problem 2

SIN_ Y(X)

Z(X)

W(X)

y(X)

2(x)

w(X)

0.1  -3.1231894926
0.2 -4.1798720039
0.3 -5.2907280101
04  -6.5671473768
0.5 -8.1153095717
0.6  -10.0394579136
0.7  -12.4447423776
0.8  -15.4400130476
0.9 -19.1409691671
1.0 -23.6741293029

0.5837759655
2.8955946767
5.1490391846
7.5295418360
10.2017225511
13.3141947486
17.0026290626
21.3918511265
26.5977797475
32.7300983533

-15.3156161567
-18.8192683596
-22.7376338078
-27.2927163439
-32.7093811319
-39.2223944883
-47.0835436967
-56.5694498912
-67.9907375934
-81.7033541871

-3.1231894560
-4.1798719797
-5.2907279628
-6.5671472799
-8.1153095365
-10.0394578721
-12.4447425605
-15.4400134215
-19.1409702416
-23.6741307084

0.5837758783
2.8955946098
5.1490390677
7.5295416251
10.2017223859
13.3141945579
17.0026291561
21.3918516601
26.5977812383
32.7300983533

-15.3156161090
-18.8192683368
-22.7376337494
-27.2927161981
-32.7093811583
-39.2223945116
-47.0835442368
-56.56945068415
-67.9907399319
-81.7033568756

Table 2b. Absolute Errors Comparing the Exact and Numerical Solution of HBOSM3 for Problem 2

X Y (X) - y(x) Z(x) —z(X) W (X) —w(X)
Order P=5 Order P=5 Order P=5

01 365973272x107" 8.71808821x10 ™% 4.76871627x10%
02 2.41625333x10°* 6.69145923x10% 2.28771554x10™®
03 473871817x107® 1.16903887x10™ 5.84087227x107%®
04 9,68805796x10% 2.10923016x107 1.45746882x 107"
05 352409556x107" 1.65185369x 107" 2.63339165x10™®
06 4.15722789x10°* 1.90594603x 10" 2.33019014x107%
0.7 1.82932181x10™ 9.34770509x10 5.40070027 x10™"
0.8

3.73898906x 107"

5.33604181x107"

7.92936188x107"
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09 1,07452850x10 1.49079207x107 2.33857116x10™®
10 1.40552304x107% 2.35365180x10™ 2.68851230x10™®
Table 3. Comparing the Solution of the Approximate and the Existing Method for Problem 3

S/IN  Exact Solution HBOSM3 Error in HBOSM3 Error in [3]

Order P=5 Order P=6
0.1  0.00499995518745601000  0.00499995833397275076 3.14693822 x 10—09 4.27300000 x 10—08
0.2  0.01999865908023810000  0.01999866684107568891 7 76083759 x 10—09 1.20759000 x 10—06
0.3  0.04498987410259470000  0.04498987947242828080 5 36983358 x 10—09 8.60719000x 10—06
0.4 0.07995737735167610000  0.07995737798187473660 6.30198637 x 10—10 3.40900400 x 10—05
0.5 0.12487004764653700000  0.12487005751675742098 9.87022042 x 10—09 9.74068000 x 10—05
0.6 0.17967712636121700000  0.17967714132520461733 1.49639876X10_08 225711000)(10—04
0.7  0.24430361290038500000  0.24430361709211550733 4.19173051x 10—09 451454700 x 10—04
0.8  0.31864597946467400000  0.31864600945693486117 2 09922609 x 10—08 8.08472900 x 10—04
0.9 0.40256860621313400000  0.40256862074667307803 1.45335391x 10—08 1.32622070 % 10—03
1.0 0.49590033762933700000  0.49590038304760480831 4.54182678x 10—08 2 0220546 x 10—03

Table 4. Comparing the Solution of the Approximate and the Existing Method for Problem 4

S/IN  Exact Solution HBOSM3 Error in HBOSM3 Errorin [7]

Order P=5 Order P=4
0.2 1.22121001337746352620  1.22121000453347653350 8.84398699 x 10—09 2 40500000 x 10—05
0.4  1.48883473296637175650  1.48883477988252287300 4.69161511x 10—09 7.71670000x 10—05
0.6 1.80736134919720764840  1.80736139771131630540 4.85141087><10_09 7'9494500())(10—06
0.8  2.17981922624938085950  2.17981923396911604190 7.71973518X10_08 4.3494900())(10—03
1.0 2.60827491835217941000  2.60827486766264780410 5.06895316)(10_07 1.83199620><10_02
KEY:

HBOSM3: HYBRID BLOCK ONE STEP METHOD WITH THREE OFF-STEP POINTS

5. Discussion of Results

Problems 1 and 2 are constant coefficient non- homogeneous equations and system of third order non-
homogeneous equations respectively. The results were displayed in Tables 1 and 2 respectively. The absolute
errors obtained revealed that low errors resulted from the comparison of the solutions obtained from the
implementation of the derived schemes with the corresponding exact solutions.

Problem 3 however considered Blassius equation in Thermodynamics, while another non-linear differential
equation was considered in problem 4. Their exact solutions were not available. Hence, they were generated
directly using Maple software environment. Tables 3 and 4 presented the solutions of problems 3 and 4 as
comparison of our developed order 5 HBOSM3 with order 6 method of [24] and order 4 method of [2]
respectively. The superiority of the method has been established numerically.
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6. Conclusions

Initial value problem solver had been developed by interpolation and collocation techniques using Chebyshev
polynomials as basis function. Four test problems have been considered to show the efficiency and accuracy of
the method. Tables 1, 2, 3 and 4 display the accuracy and comparison of the numerical results of the HBOSM3
with the exact solution and existing methods. The method’s desirability and superiority have been established by
the numerical results. With little extension, the approach adopted in this paper is viable for the solution of higher
order initial value problems of ordinary differential equations.
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