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INDEPENDENCE COMPLEXES OF STRONGLY

ORDERABLE GRAPHS
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Department of Mathematics, Süleyman Demirel University, Isparta, TURKEY

Abstract. We prove that for any finite strongly orderable (generalized strong-

ly chordal) graph G, the independence complex Ind(G) is either contractible
or homotopy equivalent to a wedge of spheres of dimension at least bp(G)− 1,

where bp(G) is the biclique vertex partition number of G. In particular, we

show that if G is a chordal bipartite graph, then Ind(G) is either contractible
or homotopy equivalent to a sphere of dimension at least bp(G)− 1.

1. Introduction

An independent set in a graph is a subset of its vertices which are pairwise non-
adjacent. The independence complex Ind(G) of a graph G is an abstract simplicial
complex whose simplices correspond to independent sets of G. The topology of in-
dependence complexes of graphs has been the central subject of many papers (see,
for instance [8, 9, 12, 13]). In the present work, we are mainly concerned with the
homotopy type of independence complexes of strongly orderable graphs.

The class of strongly orderable graphs is firstly introduced by Dahlhaus [5] under
the name “generalized strongly chordal graphs” as it constitutes a generalization
of strongly chordal graphs and chordal bipartite graphs. Dragan [6] also provided
vertex and edge elimination ordering characterizations of strongly orderable graphs.
In our study, we benefit one of these characterizations of strongly orderable graphs,
described in terms of quasi-simple vertex elimination schemes.

It turns out that the biclique vertex partititon number has a role to play in
determining the homotopy type of independence complexes of strongly orderable
graphs (and possibly of many other classes). Our main result is the following.
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Theorem 1. If G is a strongly orderable graph, then Ind(G) is either contractible
or homotopy equivalent to a wedge

∨
Sdi of spheres, where di ≥ bp(G)− 1 for each

i.

Denote by γ(G), the domination number of the graph G. A simple observation
shows that bp(G) = γ(G) for every graph G which does not contain C4 as a sub-
graph (see, [7]). Moreover, we show that this is also the case for C4-free graphs.
This naturally helps unifying several of earlier results regarding to the homotopy
type of independence complexes of graphs. Recall from [12] that the independence
complex of a chordal graph G is either contractible or homotopy equivalent to a
wedge of spheres of dimension at least γ(G) − 1. Since bp(G) = γ(G) for ev-
ery chordal graph G, it can be said that the independence complexes of strongly
orderable graphs and chordal graphs have similar topological structure.

As Theorem 1 generalizes the current characterization for homotopy type of
independence complexes of strongly chordal graphs, it is further possible to achieve
an improvement in the case of bipartite graphs, since we have the advantage that
any bipartite graph which is strongly orderable is a chordal bipartite graph.

Theorem 2. If G is a chordal bipartite graph, then Ind(G) is either contractible
or homotopy equivalent to a sphere of dimension at least bp(G)− 1.

Theorem 2 also generalizes a result from [14]. In their seminal paper [14], Nagel
and Reiner introduce some classes of graphs parametrized from shifted-skew shaped
diagrams and determine the homotopy type of the independence complexes cor-
responding to these graphs via rectangular decompositions. As bipartite graphs
related to such diagrams constitute a subclass of chordal bipartite graphs, we are
also able to determine the homotopy type of their independence complexes.

Our paper is structured as follows: Section 2 provides the necessary background
on graphs and simplicial complexes. In the subsequent section, we recall the struc-
tural properties of strongly orderable graphs and provide the characterization on
the homotopy type of their independence complexes. In Section 4, we describe
the bipartite graphs associated to shifted-skew diagrams from [14] and decide the
homotopy type of their independence complexes.

2. Preliminaries

We start with recalling some basic notions from graph theory.

2.1. Graphs. All the graphs we study on are simple, i.e., do not have any loops or
multiple edges. By writing V (G) and E(G), we mean the vertex set and the edge
set of G, respectively. The edge e := uv is contained in E(G) if and only if u and v
are adjacent in G. If S ⊂ V (G), the graph induced by S is written G[S]. A graph
G is said to be H-free, if it does not contain any induced subgraph isomorphic to
H. We abbreviate G[V \S] to G−S, and write G−x whenever S = {x}. The open
and closed neighborhood of a vertex v are NG(v) = {u ∈ V (G) : uv ∈ E(G)} and
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NG[v] = NG(v) ∪ {v}, respectively. The cardinality of the set NG(v) is called the
degree of the vertex v in G and denoted by degG(v).

A bipartite graph G = (X,Y,E) is a graph with the vertex set X ∪ Y such that
each of its edges is between a vertex of X and a vertex of Y . A bipartite graph
G = (X,Y,E) is called convex on Y if the vertices of Y can be ordered in such a
way that the neighbours of any vertex v ∈ X are consecutive. A bipartite graph G
is called convex bipartite if it is convex on X or Y . If G is both convex on X and
Y , then it is called biconvex or doubly convex.

Throughout, Ck denotes the cycle graph on k ≥ 3 vertices and Km,n denotes the
complete bipartite graph, for any m,n ≥ 1. In particular, the complete bipartite
graph K1,n is called a star. A graph is called chordal if it is Ck-free for k ≥ 4. A
bipartite graph is called chordal bipartite if it is Ck-free for k ≥ 6.

A biclique in a graph G is a complete bipartite subgraph of G which is not
necessarily induced. A set B = {B1, B2, . . . , Bk} of bicliques of a graph G is a
biclique vertex partition of G of size k, if each vertex of G belongs to exactly one
biclique in B. Biclique vertex-partition number of a graph G, denoted by bp(G), is
the smallest integer k such that G admits a biclique vertex-partition of size k.

A subset S ⊆ V (G) is called a dominating set of G, if each vertex of G is either
in S or adjacent to a vertex in S. The minimum size of a dominating set of G,
denoted by γ(G), is called the domination number of G.

We also use the notation [n] := {1, 2, . . . , n} throughout, for any integer n ≥ 1.
Let G = (X,Y,E) be a bipartite graph with |X| = m and |Y | = n. Then the

m×n matrix A(G) = [aij ] is called the bipartite adjacency (biadjacency) matrix of
G, where

aij =

{
1, xiyj ∈ E(G)

0, otherwise.

Now let A(G) be the biadjacency matrix of G indexed by any ordering of X and
convex ordering Y = [y1 < y2 < . . . < yn]. It is clear that A(G) has consecutive 1’s
in each row (i.e, no induced submatrix [1 0 1]). Therefore, one may observe that
if A(G) is a biadjacency matrix of a convex bipartite graph G, then columns (or
rows) of A(G) can be permuted so that all the 1’s in each row (or each column)
appears consecutively in the resulting matrix.

2.2. Simplicial Complexes. An (abstract) simplicial complex ∆ on a finite set
of vertices V is a collection of subsets of V such that

(i) {v} ∈ ∆ for every v ∈ V
(ii) if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆.

The elements of ∆ are called faces. The dimension of a face σ ∈ ∆ is dim(σ) :=
|σ| − 1 and the dimension of ∆ is dim(∆) := max{dim(σ) : σ ∈ ∆}. The join of
two complexes ∆1 and ∆2 is defined by ∆1 ∗∆2 = {τ ∪ σ : τ ∈ ∆1, σ ∈ ∆2}.

In particular, the join of a simplicial complex ∆ and zero-dimensional sphere
S0 = {∅, {a}, {b}} is called the suspension of ∆ and denoted by Σ∆ = S0 ∗ ∆.
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Similarly, the join of ∆ and the simplicial complex {∅, {a}} is called the cone of
∆ with apex a. A topological space is called contractible if its identity map is
homotopic to a constant map. Note that a simplicial complex is contractible if it
is a cone of another simplicial complex. It is also well-known that the suspension
of a k-dimensional sphere is homotopy equivalent to k+1-dimensional sphere, that
is, ΣSk ≃ Sk+1.

One can associate to a graph G, the simplicial complex Ind(G), namely the
independence complex of G, whose faces are independent sets of G.

We now provide some well-known facts from combinatorial topology, for which
we use as a tool while computing the homotopy type of given graphs.

Theorem 3. [9,13] Let G be a simple graph. If NG(u) ⊆ NG(v) for some distinct
vertices u, v ∈ V (G), then the homotopy equivalence Ind(G) ≃ Ind(G− v) holds.

Theorem 4. [13] If v and u are distinct vertices with NG[v] ⊆ NG[u], then
Ind(G) ≃ Ind(G− u) ∨ Σ(Ind(G−NG[u]).

Note that a vertex v is called simplicial in G if NG[v] induces a complete graph
in G. If v is a simplicial vertex in the graph G, then for any u ∈ NG(v), we have
NG[v] ⊆ NG[u]. Since v remains simplicial in the graph G−u, applying Theorem 4
repeatedly for each neighbor of v leads us to the following property (see also [1]).

Corollary 1. [9] If v is a simplicial vertex of the graph G, then

Ind(G) ≃
∨

u∈NG(v)

Σ(Ind(G−NG[u]).

3. Homotopy Type of Strongly Orderable Graphs

In this section, we determine the homotopy type of independence complexes of
strongly orderable graphs. We start with describing strongly orderable graphs.

Definition 1. [6] Let σ : v1, v2, . . . , vn be an ordering of the vertices of a graph G.
Then σ is called a simplicial ordering of G, if i < j, i < k and vivj , vivk ∈ E(G)
implies that vivk ∈ E(G). On the other hand, σ is called a strong ordering of G, if
vivj , vivk, vjvl ∈ E(G), i < l and j < k implies that vjvk ∈ E(G). The ordering σ
is called a strong simplicial ordering of G if it is both strong and simplicial.

Chordal graphs are well-known to be the class of graphs admitting a simplicial
ordering [11], while graphs admitting a strong simplicial ordering are known as
strongly chordal graphs, which is introduced by Farber [10].

A graph G is called a strongly orderable if G has a strong ordering of its vertices.
Thus by definition, the class of strongly orderable graphs is a natural generaliza-
tion of strongly chordal graphs. A strong simplicial ordering of a strongly chordal
graph G is known to have further properties. A vertex v of G is called simple if
NG[x] ⊆ NG[y] or NG[y] ⊆ NG[x] for any x, y ∈ NG(v), that is, the closed neigh-
borhoods of neighbors of v are linearly ordered under inclusion. Then an ordering
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σ : v1, v2, . . . , vn is called a simple elimination ordering if vi is a simple vertex in
the graph Gi := G[{vi, vi+1, . . . , vn}] for each i ∈ [n]. Farber [10] showed that a
graph is strongly chordal if and only if it has a simple elimination ordering of its
vertices. Dragan [6] gave a similar characterization for strongly orderable graphs.

Definition 2. [6] Any two vertices u and v are said to be comparable in the graph
G, if there holds NG(v)\{u} ⊆ NG(u)\{v} or NG(u)\{v} ⊆ NG(v)\{u}, otherwise
they are noncomparable. A vertex w ∈ E(G) is called quasi-simple if for every
u, v ∈ NG(w), the vertices u and v are comparable. An ordering v1, v2, . . . , vn of
the vertices of a graph G is called a quasi-simple elimination ordering if for each
i ∈ [n], the vertex vi is a quasi-simple vertex in Gi := G[{vi, vi+1, . . . , vn}].

Theorem 5. [6] A graph G is strongly orderable if and only if G has a quasi-simple
elimination ordering.

Now our task is to investigate the homotopy type of the independence complexes
of strongly orderable graphs. In order to do that, we first need a structural property,
namely hereditary property of strongly orderable graphs. We show that being a
strongly orderable graph is closed under taking induced subgraphs.

Lemma 1. If G is strongly orderable, then so is G− x for any vertex x of G.

Proof. Let α : v1, v2, . . . , vn be a strong ordering of the vertices of G. We show
that removal of any vertex x from G still preserves the ordering. The case when
x = v1 is clear. Thus we assume that x = vi for some i ∈ {2, 3, . . . , n} and consider
the graph Gi := G − vi. We claim that the ordering β : v1, . . . , vi−1, vi+1, . . . , vn
is a strong ordering of G − vi. For every s ∈ {2, 3, . . . , n}\{i}, we need to verify
that the vertex vs is quasi-simple in the graph Gi

s := Gi\{v1, . . . , vs−1}. Firstly,
if s > i, then it is straightforward because of the strong ordering α of G. Now
let s < i and assume on the contrary that vs is not quasi-simple. Then for some
vk, vl ∈ NGi

s
(vs) with s < k < l, the vertices vk and vl must be noncomparable

in Gi
s, while they are comparable in Gs. Therefore the set NGi

s
(vk)\NGs

(vl) must
contain a vertex vr with r > s and r ̸= i. However, this is a contradiction, since
NGs(vk)\{vl} ⊆ NGs(vl)\{vk} because of the ordering α of G. □

Lemma 2. [4] Let G be a graph. If NG(u) ⊆ NG(v) for some distinct vertices
u, v ∈ V (G), then bp(G) ≤ bp(G− v) holds.

Proof. Let {B1, B2, . . . , Bk} be a biclique vertex partitioning of G − v. Assume
without loss of generality that u ∈ B1. Then observe that {B1 ∪ {v}, B2, . . . , Bk}
is a biclique vertex partitioning of G. □

Remark 1. The inequality bp(G) ≥ bp(G−v) is not true in general. For the graph
G in Figure 1, we have bp(G) = 2 < bp(G− v) = n+ 1 while NG(ui) ⊆ NG(v) for
each i ∈ [n].
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v1
v2

vn
vn−1 v

u1

u2

un
un−1u

Figure 1. A graph G such that bp(G) = 2 < bp(G− v) = n+ 1

Proof of Theorem 1. We use induction on the number of vertices. The theorem
is trivial if G has fewer than 3 vertices. Let G be a strongly orderable graph
and σ : v1, v2, . . . , vn be a quasi-simple elimination ordering of the vertices of G.
Suppose that the theorem is true for the graphs with fewer than n vertices. Since
v1 is quasi-simple in G, all of its neighbors are comparable. First assume that v1
have two neighbors vi, vj (with i < j) which are not adjacent to each other. In
this case, we must have NG(vi) ⊆ NG(vj), since vi and vj are comparable in G.
Then it follows that Ind(G) ≃ Ind(G−y) by Theorem 3. Therefore, if Ind(G−y) is
contractible, then Ind(G) is also contractible. If Ind(G−y) is not contractible, then
by induction hypothesis, Ind(G− y) ≃

∨
Sdi , where di ≥ bp(G− y)− 1 for each i.

Since Ind(G) ≃ Ind(G− y) and bp(G− y)− 1 ≥ bp(G)− 1 by Lemma 2, we obtain
that Ind(G) ≃

∨
Sdi , where di ≥ bp(G)− 1. Thus we may further assume that all

the neighbors of v1 are pairwise adjacent. Notice that the vertex v1 is simplicial in
such a case. Following Theorem 4, we have

Ind(G) ≃
∨

u∈NG(v1)

Σ(Ind(G−NG[u])) (∗)

Recall that G − NG[u] is a strongly orderable graph for each u ∈ NG(v1), by
Lemma 1. By the induction hypothesis, we know that for each u ∈ NG(v1), the
complex Ind(G −NG[u]) is either contractible or homotopy equivalent to a wedge
sum

∨
Sdu of spheres, where du ≥ bp(G − NG[u]) − 1. Now, if Ind(G − NG[u])

is contractible for each u ∈ NG(v1), then so is Ind(G). Therefore, we let u be an
arbitrary neighbor of v1 such that Ind(G − NG[u]) ≃

∨
Sdu . Then it follows that

Σ(Ind(G−NG[u])) ≃
∨
Sdu+1. For any biclique vertex partition {B1, B2, . . . , Bk} of

G−NG[u], observe that the collection {NG[u], B1, B2, . . . , Bk} is a biclique partiton
of G, which implies that bp(G) ≤ bp(G − NG[u]) + 1. Thus we have du + 1 ≥
bp(G−NG[u]) ≥ bp(G)− 1. Hence the theorem follows from (∗). □

As every strongly chordal graph is strongly orderable, we have the following.

Corollary 2. If G is a strongly chordal graph, then Ind(G) is either contractible
or homotopy equivalent to a wedge

∨
Sdi of spheres, where di ≥ bp(G)− 1 for each

i.
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Note that Corollary 2 is well-known since every strongly chordal graph is a
chordal graph and the biclique vertex partition number coincides with the domina-
tion number on C4-free graphs. Although it is not hard to see, we include its proof
for the completeness.

Proposition 1. If G is a C4-free graph, then bp(G) = γ(G).

Proof. If S is a dominating set of G, then it is clear that V (G) can be partitioned
into stars each of which has its center from S, thus bp(G) ≤ γ(G).

Conversely, let B = {B1, B2, . . . , Bk} be a biclique partition of G. We claim that
for each i ∈ [k], the subgraph Bi has at least one vertex vi which is adjacent all
other vertices in Bi so that {vi : i ∈ [k]} is a dominating set in G. Let Bi ∈ B
be an arbitrary biclique of G, with the partitioning Xi ∪ Yi. Note that Xi and Yi

need not to be independent. The claim is trivial if |Xi| = 1 or |Yi| = 1. Thus we
let min{|Xi|, |Yi|} ≥ 2 and assume on the contrary that there is no such vertex in
Bi. This forces that there exist some vertices xi1 , xi2 ∈ Xi and yi1 , yi2 ∈ Yi such
that xi1 and xi2 (resp. yi1 and yi2) are nonadjacent in G. This is a contradiction,
since the set {xi1xi2 , yi1 , yi2} induces a C4 in G. This completes the proof. □

Since chordal graphs are C4-free, Proposition 1 allows us interpret the homotopy
type of independence complexes of chordal graphs in terms of biclique vertex parti-
tion number, when they are homotopy equivalent to a wedge sum of spheres. Recall
from [12] that if the complex Ind(G) of a chordal graph G is homotopy equivalent
to a wedge of spheres, then each of the spheres has dimension at least γ(G) − 1.
Hence, Proposition 1 helps us unify the results for chordal and strongly orderable
graphs.

Remark 2. It is known that chordal graphs are vertex-decomposable, since they
are codismantlable [3]. Therefore, the homotopy type of independence complexes of
chordal graphs can also be inferred from vertex-decomposability [2]. However, unlike
the class of chordal graphs, strongly orderable graphs are not vertex-decomposable.
C4 is an easy example of chordal bipartite (thus a strongly orderable) graph which
is not vertex decomposable.

Strongly orderable bipartite graphs coincide with the class of chordal bipartite
graphs. Any quasi-simple vertex turns out to be a weak simplicial vertex in a
chordal bipartite graph. A vertex x in G is said to be a weak simplicial if for any
u, v ∈ NG(x), either NG(u) ⊆ NG(v) or NG(v) ⊆ NG(u) holds [15]. This leads to a
refinement of our main result on chordal bipartite graphs.

Lemma 3. Every connected chordal bipartite graph with more than one edge has a
pair x, y of vertices such that NG(x) ⊆ NG(y).

Proof. Let G be a chordal bipartite graph with more than one edge and let v be a
weak simplicial vertex of G. First assume that degG(v) = 1 and let NG(v) = {w}.
Then for every u ∈ NG(w)\{v}, we have NG(v) ⊆ NG(u). If degG(v) ≥ 2, then any
two neighbors of u form such a pair. □
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Theorem 6. If G is a chordal bipartite graph, then Ind(G) is either contractible
or homotopy equivalent to a sphere of dimension at least bp(G)− 1.

Proof. Once again, we use the induction on the number of the vertices. Let G
be a bipartite graph. We may assume that G has a component with more than
one edge, since otherwise the claim is clear. Let H be such component of G. By
Lemma 3, H has a pair of vertices x, y such that NG(x) ⊆ NG(y). It follows that
Ind(G) ≃ Ind(G − v), by Theorem 3. By induction hypothesis, the subcomplex
Ind(G − v) is either contractible or homotopy equivalent to a sphere of dimension
at least bp(G − v) − 1. If Ind(G − v) is contractible, then so is Ind(G). Assume
further that Ind(G − v) is homotopy equivalent to a sphere of dimension at least
bp(G − v) − 1. Since bp(G − v) ≥ bp(G) by Lemma 2 and Ind(G) ≃ Ind(G − v),
the complex Ind(G) is homotopy equivalent to a sphere of dimension of at least
bp(G)− 1. □

We also have the following corollary, since every convex bipartite graph is a
chordal bipartite graph.

Corollary 3. If G = (X,Y,E) is a convex bipartite graph, then Ind(G) is either
contractible or homotopy equivalent to a sphere.

4. Bipartite Graphs Related to Shifted-Skew Diagrams

In [14], Nagel and Reiner introduced graph classes associated to shifted-skew
shaped diagrams. They also compute the homotopy type of such constructed
graphs. In the case of bipartite graphs, our results from previous section gener-
alize the mentioned classification. We first provide the necessary background about
these diagrams and then conclude the homotopy type of independence complexes
of bipartite graphs corresponding such diagrams. For more detailed description of
shifted-skew shapes, we refer to [14].

Definition 3. [14] A shifted diagram is an interpretation of the lattice points
{(i, j) ∈ N × N : 1 ≤ i < j} by replacing each point with unit squares/cells where
the first coordinate i (row index) increases from top to the bottom and the second
coordinate j (column index) increases from left to the right, as in matrices.

(1, 2)(1, 3)(1, 4) . . .

(2, 3)(2, 4) . . .

(3, 4) . . .

. . .

Figure 2. A shifted diagram
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A shifted Ferrers diagram Dλ with respect to the strict partition λ = (λ1, λ2, . . . ,
λt) (where λ1 > λ2 > . . . > λt > 0) is a finite shifted diagram consisting of λi cells
in the row i. For instance, given partition λ = (13, 12, 11, 9, 6, 3, 2, 1), corresponding
diagram is depicted in the Figure 3-(a).

Now let λ and µ are such partitions with λ ⊆ µ, that is µi ≤ λi for all i, and
possibly µ has less number of parts than λ has. Then one can form the shifted
skew diagram D := Dλ/µ by removing the diagram Dµ from the diagram Dλ. An
example with partitions λ = (13, 12, 11, 9, 6, 3, 2, 1) and µ = (9, 7, 6, 5, 3, 1) given
below (compare Figure 3-(a) with Figure 3-(b)).

1 2 3 4 5 6 7 8 9 10111213
1
2 .
3 . .
4 . . .
5 . . . .
6 . . . . .
7 . . . . . .
8 . . . . . . .

(a) Dλ

1 2 3 4 5 6 7 8 9 10111213
1
2 .
3 . .
4 . . .
5 . . . .
6 . . . . .
7 . . . . . .
8 . . . . . . .

(b) Dλ/µ

Figure 3. A shifted Ferrers diagram Dλ and shifted skew diagram Dλ/µ.

For any shifted skew diagram and linearly ordered subsets X = {x1 < x2 <
. . . < xm} and Y = {y1 < y2 < . . . < yn} of positive integers, let DX,Y denote
the diagram consisting of cells in the position (i, j) whenever the cell (xi, xj) is
present in D, i.e., we restrict the diagram D to the rows indexed by X and columns
indexed by Y . For instance, if we set X = {x1, x2, x3, x4, x5} = {1, 3, 5, 6, 7} and
Y = {y1, y2, y3, y4} = {8, 9, 11, 13} for the diagram D := Dλ/µ in Figure 3, the
corresponding diagram DX,Y is drawn as in the Figure 4.

Given shifted-skew diagram DX,Y , Nagel and Reiner [14] define the bipartite
graph G(DX,Y ) = (X,Y ;E) on the vertexX∪Y = {x1, x2, . . . xm}∪{y1, y2, . . . , yn}

y1 y2 y3 y4
8 9 1113

x1 = 1
x2 = 3
x3 = 5
x4 = 6
x5 = 7

x5 x4 x3 x2 x1

y1 y2 y3 y4

Figure 4. Shifted skew diagram DX,Y and the bipartite graph G(DX,Y ).
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such that (xi, yj) ∈ E(G) if the cell (i, j) is present in DX,Y . One may observe
that there is a one-to-one correspondence between the biadjacency matrix and the
diagram of the graph G(DX,Y ), such that the cells in the diagram corresponds to
1’s in the matrix (see, Figure 5).

A(G(DX,Y )) =


0 0 1 1
0 1 1 1
1 1 0 0
1 0 0 0
1 0 0 0


Figure 5. Biadjacency matrix of G(DX,Y )

Consequently, we deduce that all the 1’s in each row (and each column) are
consecutive, which in turn implies that the graph G(DX,Y ) is a doubly convex
graph. Note that this fact is independent from the choice of the sets X and Y . In
fact, the bipartite graph G(D) corresponding to the diagram D := Dλ/µ is clearly
a convex bipartite graph. Therefore, the choice of the sets X and Y will determine
an induced subgraph G(DX,Y ) of G(D) which is again convex bipartite. Hence the
following fact is an immediate consequence of Corollary 3.

Corollary 4. [14] Let G(DX,Y ) is the bipartite graph associated to a shifted-skew
diagram DX,Y . Then the complex Ind(G(DX,Y )) is either contractible or homotopy
equivalent to a sphere.

The same argument can be further applied to a bipartite graph G(D) paramet-
rized (in the similar fashion) from any diagram D whose cells in each row (or each
column) appear consecutively, since G(D) is a convex bipartite graph.

5. Conclusion

In our study, we characterize the homotopy type of the independence complexes
of strongly orderable graphs. We further refine the mentioned characterization in
the case of chordal bipartite graphs. These characterizations extend several known
results and unify them in terms of biclique vertex partitions. There is, however,
a natural question which arises in this context: “For which classes of graphs, the
biclique vertex partitions is also relevant to the topology of independence com-
plexes?”.
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