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1. Introduction 

Many structural engineering structures, such as bridges, 

tall-buildings [1,2,40], railways [3] and nuclear power plants 

[4] around the world, still suffer from the vibrations induced 

by winds or earthquakes during their lifetime. In recent 

decades, these mentioned natural disturbances are 

considered as the most destructive. They are able to alter the 

physical property of the majority of infrastructures by 

causing the severe structural damage and human life losses. 

Generally, the dynamic loads of these natural phenomenon 

are applied in two directions (horizontal and vertical 

motions) along the engineering structures. Due to its effect 

on the performance of the structural system, the horizontal 

movement has proven to be of a great importance for the 

design of the structural engineering [5]. 

To further increase the ability and resiliency of tall 

buildings to withstand against the external perturbations, the 

outrigger systems were developed in the tall buildings as an 

alternative solution [6]. Some cases of application of these 

structures already exist in Shanghai with a height of 632 

meter [7] and The Burj Khalifa in Dubai with the height of 

828 meters [8]. In a traditional design, this system is 

constituted of the core-structure characterizing the tall 

building behaviour, the outriggers associated with control 

devices and the perimeter columns. Hence, the 

understanding of this design has considerably increased the 

columns. These control devices are semi-active in nature and exhibit a nonlinear  behavior.  One

 This paper deals with the combined effects of wind and earthquake on the dynamic response of a 

cantilever structure. It is mainly composed of the core-structure, multi-outriggers with magneto-

rheological (MR) dampers localized at different levels along of the structure and perimeter 

 

of their interesting characteristics is their ability to add supplementary energy dissipation to the 

structural system. Exposed to combined wind and earthquake loads, the core-structure is modelled 

using a Timoshenko cantilever beam. The stochastic approach based on the statistic properties is 

employed to estimate the degree excitations of the two natural hazards. The peak Root-Mean-

Square (RMS) are evaluated to quantify the optimal location of damped outriggers. Defined as 

the control algorithm based on human reasoning, the Fuzzy logic is used to select the appropriate 

current that feeds the control devices. The obtained results indicate that the application of the 

fuzzy logic further minimizes the effects of bending-moment and shear force. All of these enhance 

the performance of the whole structural response and lead to a significantly reduction of excessive 

vibration to an acceptable level.  
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motivation of many researchers [9–11]. Huang et al. [12] 

proposed an analytical method to evaluate the dynamic 

response of a single damped outrigger system. Based on this 

approach, they obtained the optimal locations of outrigger to 

further reduce response. Yang et al. [13] used the finite 

element methods to assess the seismic performance. They 

indicated that the equivalent energy design procedure is an 

efficient method to design the outrigger system and helps to 

avoid the collapse at different levels of the earthquake. Zhou 

et al. [14] studied the analytical methods to investigate the 

earthquake response of an outrigger system. The authors 

applied this approach to determine the optimal location of the 

outrigger.  

    In view of further reinforcing the performance of the 

damped outriggers, the control devices are installed between 

the core-structure and perimeter columns. These control 

devices are either passive, active, semi-active nature. They 

can adjust the magnitude of the control force. A large number 

of theoretical and experimental studies have been done [15–

19]. The results reveal that among the different types of 

control devices, MR dampers are a promising type. Because 

they include the active and passive properties and also 

require a low power to change the system's physical 

characteristic [20]. Despite all these encouraging results, 

they are however, characterized by an intrinsically non-linear 

behaviour, which can sometimes be a major disadvantage. 

To avoid any inconvenience, some suitable control 

algorithms were developed. They remedy to this situation by 

optimising the dynamics response of the MR dampers. In this 

context, one can note the algorithms such as Clipped optimal 

control [21,22], Bang-bang control [23,24], Lyapunov 

stability [25], genetic algorithm [26–28], sliding mode [29] 

and fuzzy logic [31–37]. In the present work, the fuzzy logic 

is directly applied to select the appropriate input current of 

the MR dampers. of the shear in investigating transverse 

vibrations [38]. It is defined as an extension of the Euler-

Bernoulli theory [39]. It is in this way that, Ndemanou et al. 

examined the performance of magneto-rheological damper 

on the outrigger system. Their results indicated that at the 

position near the top of the structural system, the damper 

outrigger further imporves the dynamic response of the 

structure. The drawback of aforementioned studies is the fact 

that the effects of outrigger dampers do not assessed on the 

bending moment and shearing force of the core-structure. 

   To analyse the structural response of the outrigger 

system, the core-structure is assumed to be elastic and 

homogeneous. Thus, Timoshenko cantilever beam will be 

used to model the core-structure. This model includes the 

rotatory inertia and the effect.  

In this paper, the Timoshenko’s beam formulation based 

on the partial differential equations is used to model the core-

structure. The structural system will be subjected to 

combined wind and earthquake loads. It is assuming that the 

perimeter columns are axially very stiff [15]. Therefore, the 

effect of its dynamic response will be assumed neglected 

during this investigation.  

The aim of this study is to analyze how the different 

locations of damped outriggers significantly affect the 

bending moment, shear force and transversal displacement 

of the core-structure under the combination of two natural 

disturbances. Although, the mentioned above force occurs in 

a structure by further causing stresses.  It is important to 

underline that the one of the most important points is to 

increase the beam’s ability by dramatically reducing the 

undesirable vibrations. 

 

2. Description of the Physical System 
 

The structural system subjected to two natural hazards is 

schematically displayed in Figure 1. It is constituted of an 

elastic core-structure, the exterior columns and three damped 

outriggers localized at different positions 𝑥1 , 𝑥1 + 𝑥2  and 

𝑥1 + 𝑥2 + 𝑥3 along the height of the structural system. The 

connection of all these elements is an effective means to 

work together and changing their dynamic response. In 

traditional configuration, the core-structure is a tall-building 

constituted of several floors. It is assumed as a uniform 

cantilever beam, so the ends are fixed at the bottom and free 

at the top.  The damped outriggers denote the outriggers 

equipped of MR dampers and are assumed to be symmetrical 

in relation to the central line of the core-structure. The 

indicated control devices are mounted vertically between the 

core-structure and the perimeter column as shown in Figure 

1. As can be seen, this whole structure is submitted to 

combined action of wind and earthquake loads. In the current 

state, only their component in the horizontal direction is 

considered. Hence, the wind flow presents an unsteady 

behaviour and distributed all along the height of the structure.  

Unlike wind dynamics, the horizontal earthquake 

displacement also defined as a ground motion is rather 

applied to the base of the mechanical structure. It should be 

noted that in the present case, each of   outriggers behaves as 

a rigid body. It is important to point up that the outriggers 

and the exterior columns have commonly a high stiffness. 

 

3. Mathematical modelling 
 

Varying with the coordinate along the beam and with time, 

the lateral displacement of the structure from equilibrium 

line is defined by the variable. In this case study, the 

influence of the perimeter columns on the dynamics of the 

core is not taken into consideration. As a result, the 

governing equation modelling the dynamics of the cantilever 

Timoshenko beam with damped outriggers submit to 

combined actions of vertical wind and horizontal earthquake 

loadings can be defined by the partial differential equation 

given as follows [26]. 
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Figure 1. Schematic representation of the system under study: the simplified structure under the earthquake and wind loads
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𝒌𝒔𝑮
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𝝏𝟒𝒚

𝝏𝒙𝟐𝝏𝒕𝟐
= 𝒇(𝒙, 𝒕) −

𝒎𝒚
••

𝒈(𝒕) +
𝝏𝑴𝒂

𝝏𝒙
                                                      (1) 

 

This above equation denotes transverse equation of 

motion. In this definition, 𝑚 is the mass per unit length, 𝜌 is 

the mass density of the beam, 𝐼 is the moment of inertia of 

the cross-section area about the neutral axis, 𝐸 is the elastic 

modulus; 𝐺 is the shear modulus of elasticity. The 

dimensionless quantity 𝑘𝑠 is the shear coefficient depending 

on the geometric of the cross-sectional area of the beam and 

depends on as well as of the Poisson’s ratio. As indicated 

earlier, any information dynamics from perimeter columns 

liked to core-structure are not taken into account.   

Note by passing that these defined geometrical 

characteristics are assumed constant. 

Thus, within the Timoshenko theory configuration, the 

slope of the deflection curve (
𝜕𝑦

𝜕𝑥
) is the sum of the angular 

rotation 𝜓(𝑥, 𝑡) = 𝜓 of the beam cross-section due to the 

bending moment. and also of the angle due to shear distortion 

𝛾(𝑥, 𝑡), it follows that [41]. 

                         
𝜕𝑦

𝜕𝑥
= 𝜓(𝑥, 𝑡) + 𝛾(𝑥, 𝑡)                            (2)     

Consequently, the bending moment is given by Equation 

(3). 

                             𝑀 = −𝐸𝐼
𝜕𝜓(𝑥,𝑡)

𝜕𝑥
                                (3) 

The shearing force 𝑄(𝑥, 𝑡) = 𝑄 along the beam length by 

the following equation: 
 

                𝑄 = 𝑘𝑠𝐴𝐺 (
𝜕𝑦

𝜕𝑥
− 𝜓)                               (4) 

 

As stated earlier, the shearing force is a force that occurs 

in a structure under external loads. As a result, reducing its 

effects will increase the resilience of the structure.   

The angular rotation mentioned in Equations (2), (3) and 

(4) can be obtained through the following partial equation of 

motion: 

             𝜌𝐼
𝜕2𝜓

𝜕𝑡2
= 𝐸. 𝐼

𝜕2𝜓

𝜕𝑥2
+ 𝑘𝑠𝐺𝐴 (

𝜕𝑦

𝜕𝑥
− 𝜓)                  (5) 

 

The distributed moment generated by MR dampers is 

[42]: 

                𝑀𝑎 = 2𝑟 ∑ 𝛿(𝑥 − 𝑥𝑖)𝑓𝑖(𝑡)
3
𝑖=1                               (6)                       

 

The symbol 𝛿(𝑥 − 𝑥𝑖) denotes the Dirac Delta function 

and has the property given as follows 

                   𝛿(𝑥 − 𝑥𝑖) = {
∞    𝑥 = 𝑥𝑖
0     𝑥 ≠ 𝑥𝑖

                                 (7) 

 

The subscript i indicates the different points along the 

core-structure. As a result, 𝑥𝑖 in equation (7) points out the 

places where the damped outriggers are installed.  

 As mentioned earlier, the MR devices are semi-active 

systems and also have the capacity to add the damping to the 

mechanical structure. They essentially exhibit a nonlinear 

behavior. Thus, a great number of studies in the literature 

have paid attention on the understanding of different accurate 

mathematical models that fully describe their dynamic 

response [43,44]. The mathematical form proposed by Yang 

et al. [45] is employed in this paper. Thus, it is defined as 

follows: 

𝑓𝑖(𝑡) = 𝑚𝑟𝑦
••
(𝑥𝑖 , 𝑡) + 𝑐 (𝑦

•
(𝑥𝑖 , 𝑡)) 𝑦

•
(𝑥𝑖 , 𝑡) + 𝑘1𝑦(𝑥𝑖 , 𝑡) +

𝛼𝑙𝑧𝑏 + 𝑓0                                                                        (8)



 

 
  𝑧𝑏 is an evolutionary variable given by: 

 

𝑧
•

𝑏 = −𝛾𝑎|𝑦
•
(𝑥𝑖 , 𝑡)|𝑧𝑏|𝑧𝑏|

𝑛𝑜−1 + (𝛿𝑎 − 𝛽𝑎|𝑧𝑏|
𝑛𝑜)𝑦

•
(𝑥𝑖 , 𝑡)   

                                               (9) 

Where 𝑚𝑟is the equivalent mass which represents the MR 

fluid stiction phenomenon and inertial effect; 𝑘1 is the 

accumulator stiffness and MR fluid compressibility; 𝑓0 

represents the damper friction force; 𝑐 (𝑦
•
(𝑥𝑖 , 𝑡)) is the 

postyield plastic damping coefficient, 𝛾𝑎 , 𝛿𝑎and 𝛽𝑎  are the 

shape parameters of the hysteresis loops. 

The damping coefficient is considered as follows: 
 

     𝑐 (𝑦
•
( 𝑥𝑖 , 𝑡)) = 𝑎𝑏 𝑒𝑥𝑝 (− (𝑎𝑐|𝑦

•
(𝑥𝑖 , 𝑡)|)

𝑝

)            (10) 
 

With 𝑎𝑏, 𝑎𝑐 and 𝑝 are positive constants.  

Note that, an overdot denotes differentiation with 

respect to the time variable 𝑡. 

Wind is a phenomenon of great complexity due to the 

many flow situations resulting from the interaction of wind 

with structures[46].Thus,wind-induced vibrations may 

cause structural damage and have devastating effects on 

infrastructure [47]. Thus, the mathematical model of the 

dynamic wind loads can be established from an aero-

elastic principle. Consequently, the aero-elastic force is 

given by the following expression [48,49]. 
 

𝑓(𝑥, 𝑡) =
1

2
𝜌𝑎𝑈

2𝑏 [𝛯0 +
𝛯1

𝑈
(
𝜕𝑦

𝜕𝑡
) +

𝛯2

𝑈2
(
𝜕𝑦

𝜕𝑡
)
2

+

𝛯3

𝑈3
(
𝜕𝑦

𝜕𝑡
)
3

]                                                                             (11) 

 

Where 𝛯𝑗  (𝑗 = 1,2,3) are the aerodynamic coefficients 

relevant to square section, 𝜌𝑎 is the air mass density.𝑈 is 

the wind velocity which can be considered as having two 

components 
 

                               𝑈 = 𝑢1 + 𝑢2(𝑡)                             (12) 
 

In which 𝑢1  denotes the mean wind velocity, 

representing the steady component. The velocity 

fluctuation component 𝑢2(𝑡) is a time varying part 

representing the turbulence that defined any movement of 

air at speeds very great, causing particles of air to move 

randomly in all directions. 

By inserting (11) into (12) by applying the Taylor 

expansion, the Equation (11) can be rewritten as follows: 

           

           𝑓(𝑥, 𝑡) = 𝑓𝑤1(𝑥, 𝑡) + 𝑓𝑤2(𝑥, 𝑡)𝑢2(𝑡)             (13) 

Where: 

𝑓𝑤1(𝑥, 𝑡) =
1

2
𝜌𝑎𝑏 [𝛯0𝑢1

2 + 𝛯1𝑢1 (
𝜕𝑦

𝜕𝑡
) + 𝛯2 (

𝜕𝑦

𝜕𝑡
)
2

+
𝛯3
𝑢1
(
𝜕𝑦

𝜕𝑡
)
3

] 

    and 

𝑓𝑤2(𝑥, 𝑡) =
1

2
𝜌𝑎𝑏 [2𝛯0𝑢1 + 𝛯1 (

𝜕𝑦

𝜕𝑡
) −

𝛯3

𝑢1
2 (
𝜕𝑦

𝜕𝑡
)
3

] 

Note by passing that the effects of turbulence on 

structural motion stability have become an important area 

in wind engineering [50]. 

The turbulent component of the wind flow used here, is 

assumed by the random processes of bounded variation 

with multiple spectrum peaks [51]. Consequently, the 

corresponding form is given by the following expression: 
      

      𝑢2(𝑡) = ∑ 𝐴𝑗
𝑁1
𝑗=1 𝑐𝑜𝑠[𝜔𝑗𝑡 + 𝜎𝑗𝐵𝑗(𝑡) + 𝜃𝑗]           (14) 

Where: 

𝐴𝑗 are positive constants representing the amplitude of 

bounded noise, 𝐵𝑗(𝑡) are mutually independent unit 

Wiener processes, 𝜔𝑗  are representing center and 𝜎𝑗  are 

mutually independent random variables uniformly 

distributed in range [0, 2𝜋]. 

 The spectral density of 𝑢2 defined analytically can be 

found as: 

𝑆𝑤(𝜔) = ∑

(

 
 𝐴𝑗

2𝜎𝑗
2(𝜔2+𝜔𝑗

2+
𝜎𝑗
4

4
)

4𝜋[(𝜔2−𝜔𝑗
2−

𝜎𝑗
4

4
)

2

+𝜎𝑗
4𝜔2]

)

 
 𝑛1

𝑗=1       

(15) 
 

It should be noted that the magnitude of the spectral 

density can be adjusted to approximate the well-known 

Dryden and Von Karman spectral of wind turbulence. By 

modifying the values of mentioned parameters as pointed 

up in the reference [52]. 

Figure 2 displays the two-side spectral density. The 

mathematical expression is developed in Equation (15). 

This gives a view on the repartition of the energy of the 

bounded noise. 

As mentioned earlier, the same structure is also under 

earthquake loads. In this configuration, the mentioned 

variable 𝑦
••

𝑔(𝑡) in Equation (1) defines the seismic events 

characterized by the ground acceleration.  

It is worth pointing out that dot denotes derivative with 

respect to 𝑡. Thus, the governed equations are described as 

follows 
 

      𝑦
••

𝑔(𝑡) = (2𝜉𝑔𝜔𝑔𝑥
•

𝑔(𝑡) + 𝜔𝑔
2𝑥𝑔(𝑡)) 𝑒(𝑡)               (16) 

      𝑥
••

𝑔(𝑡) + 2𝜉𝑔𝜔𝑔𝑥
•

𝑔(𝑡) + 𝜔𝑔
2𝑥𝑔(𝑡) = 𝑤(𝑡)             (17) 

 

Where 𝑥𝑔(𝑡) is the filter response, and 𝑤(𝑡) is the 

stationary Gaussian white noise with the following 

statistics: 
 

              {
⟨𝑤(𝑡)⟩ = 0
⟨𝑤(𝑡)𝑤(𝜏)⟩ = 2𝜋𝑆0𝛿(𝑡 − 𝜏)

                          (18) 
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From  Equation  12,  it  is  clearly  observed  that  the 

wind-induced  vibrations  on  the  whole  structure  mainly 

present  a  dissipative  nonlinear.  Moreover,  its  effects 

depend  on  the temporal and  spatial  fluctuations  along 
the height of the structures.  
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Figure 2. Spectral density of the bounded noise, with  

𝐴1 = 0.8, 𝐴1 = 0.4, 𝜔1 = 3.0 𝑟𝑎𝑑/𝑠 𝜔2 = 2𝜔1, 𝜎1 = 1.0, 

𝜎2 = 0.8 
 

𝑆0is the constant power spectral intensity of noise. ⟨ ⟩ 

denotes the angular brackets stand for ensemble averages 

[53]. 

The evolutionary power spectrum is given by: 
 

                  𝑆𝑔(𝛺, 𝑡) = |𝑒(𝑡)|
2𝑆𝑒(𝛺)                         (19) 

 

In which 𝑒(𝑡) is a deterministic envelope function of 

time. It is then given by the following form [54]: 

    𝑒(𝑡) =

{
 

 
𝑒01(𝑡 − 𝑡1) 𝑒𝑥𝑝(−𝜆1(𝑡 − 𝑡1))

0
𝑒02(𝑡 − 𝑡2) 𝑒𝑥𝑝(−𝜆2(𝑡 − 𝑡2))

0

                  (20) 

Where 𝑒0𝑗  and 𝜆𝑗  are positive constants that control 

intensity and non-stationary trend of the 𝑗th acceleration 

sequence.  

The spectral density for the ground acceleration is 

defined as follows [55]: 

                   𝑆(𝛺) = 𝑆0
𝜔𝑔
4+4𝜉𝑔

2𝜔𝑔
2𝛺2

(𝜔𝑔
2−𝛺2)

2
+4𝜉𝑔

2𝜔𝑔
2𝛺2

                 (21) 

Where 𝜔𝑔is the dominant frequency of the soil, and 𝜉𝑔is 

the associated damping ratio of the soil layer.   

 

4. Modal Equations and Numerical Results 
 

To transform the partial form of the Equation (1) in the 

modal expression, let us consider the new dimensionless 

variables defined as follows: 

𝑋 =
𝑥

𝐿
, 𝑢1 =

𝑢1

𝑢𝑐
, 𝑎1 =

𝐸𝐼

𝑚𝐿4
, 𝑎2 =

𝑟2

𝐿2
(1 +

𝐸

𝑘𝑠𝐺
),          

𝑎3 =
𝐸

𝜌𝐿2𝛥𝑋2
, 𝑎4 =

𝑘𝑠𝐺𝐴

𝜌𝐼
, 𝐹(𝑋, 𝑡) =

1

𝑚𝐿
𝑓(𝑥, 𝑡), 

    𝑀∗ =
𝑀𝑎

𝑚𝐿2
, 𝑌
••

𝑔 =
𝑦
••
𝑔

𝐿
, 𝑠3 =

𝜌𝑎𝑏𝛯2𝐿𝑏5

2𝑚×𝑑𝑒𝑛
, 𝑠4 =

𝜌𝑎𝑏𝛯3𝐿
2𝑏6

2𝑚𝑢1×𝑑𝑒𝑛
, 

    𝑠5 =
𝜌𝑎𝑏𝛯0𝑢𝑐𝑢1𝑏4

𝑚𝐿×𝑑𝑒𝑛
, 𝑠6 =

𝜌𝑎𝑏𝛯1𝑏1

2𝑚×𝑑𝑒𝑛
, 𝑠7 =

𝜌𝑎𝑏𝛯3𝐿
2𝑏6

2𝑚𝑢1
2.𝑑𝑒𝑛

, 

    𝜔2 =
𝑎1𝑏3

𝑑𝑒𝑛
, 𝜂𝑗 =

𝜙′(𝑋𝑗)

𝑑𝑒𝑛
, 𝜁𝑎 =

2𝑟

𝐿
, 𝑍 =

𝑧

𝐿
, 𝛽𝐿 = 𝛽𝑎𝐿

𝑛                                              

    𝛾𝐿 = 𝛾𝑎𝐿
𝑛,  𝑑𝑒𝑛 = 𝑏1 − 𝑎2𝑏2 + 𝜁𝑎𝜇𝑚 ∑ 𝜙(𝑋𝑗)𝜙

′(𝑋𝑗)
3
𝑗=1  

    𝜇𝑚 =
𝑚𝑟

𝑚𝐿
, 𝑓𝑎 =

1

𝑚𝐿2
𝑓0, 𝛼𝑚 =

1

𝑚𝐿
𝛼𝑙, 𝐾1 =

1

𝑚𝐿
𝑘1, 

 𝐶 =  
1

𝑚𝐿
𝑐, 

 

According to the relationships between the parameters, 

these leads to rewrite the Equation (1) of the dynamic of 

the structural system under the form:  
 

𝜕2𝑌

𝜕𝑡2
+ 𝑎1

𝜕4𝑌

𝜕𝑋4
− 𝑎2

𝜕4𝑌

𝜕𝑋2𝜕𝑡2
= 𝐹(𝑋, 𝑡) − 𝑌

••

𝑔(𝑡) +
𝜕𝑀∗

𝜕𝑋
 

                                                                                  (22) 
 

It can be seen that the dimensionless expression only 

affects the spatial variable.  

By considering that the transverse deflection of the 

beam can be written in term of product of two variables in 

the following form  
 

                          𝑌 = 𝜙(𝑋)𝑧(𝑡)                                 (23) 
 

In which, the function 𝜙(𝑋) is the spatial expression, 

𝑧(𝑡)is the evolutionary displacement. Thus, the scheme for 

obtained this form has been detailed recently in reference 

[25]. In this paper, only the fundamental mode is 

considered because it contains more vibrational energy of 

the structural system.  

By taking into account the internal damping, the 

mathematical manipulation of Equations (22) and (23) 

leads to modal equation given as: 
 

𝑧
••
+ 𝛽𝑧

•
+ 𝜔2𝑧(𝑡) = 𝑠1 + 𝑠2𝑧

•
+ 𝑠3(𝑧

•
)
2
+ 𝑠4(𝑧

•
)
3
+ (𝑠5 +

𝑠6𝑧
•
− 𝑠7(𝑧

•
)
3
) 𝑢2(𝑡) − 𝜎𝑌

••

𝑔 + 𝜁𝑎 ∑ 𝜂𝑖𝐹𝑚𝑖
(𝑡)3

𝑖=1  (24) 

 

From equation (24)  it is well understood that, unlike 

seismic action, the effects of wind action on the structure 

increase the lateral deformation. Consequently, the 

mechanical system exhibits a nonlinear dynamic. This is 

due to the presence of nonlinear damping terms. 

The dimensionless damping force of the control devices 

𝐹𝑚𝑖(𝑡)can be written as follows: 
                 

𝐹𝑚𝑖(𝑡) = 𝐶 (𝑧
•
𝜙(𝑋𝑖)) 𝑧

•
𝜙(𝑋𝑖) + 𝐾1𝑧𝜙(𝑋𝑖) + 𝛼𝑚𝑍𝑏𝑖 + 𝑓𝑎 

                                   

 and  

𝑍
•

𝑏𝑖 = −𝛾𝐿|𝜙(𝑥𝑖)𝑧
•
|𝑍𝑏𝑖|𝑍𝑏𝑖|

𝑛−1 + (𝛿𝑎 − 𝛽𝐿|𝑍𝑏𝑖|
𝑛)𝜙(𝑥𝑖)𝑧

•
 

(25) 
 

The damping coefficient can be rewritten as follows: 
 

𝐶 (𝑧
•
𝜙(𝑋𝑖)) = 𝑎𝑏

∗ 𝑒𝑥𝑝 (−(𝑎𝑐
∗|𝑧
•
𝜙(𝑋𝑖)|)

𝑝
) 

To defined angular rotation the method of lines or semi-

discretization method is applied on the Equation (5).  It is 

a method is a procedure for obtaining the solution of the 

partial differential equations. This discretization approach 

is generally applied on the spatial variables.  As a result, 

the Equation (5) can be expressed as:             

𝜓
••

𝑛 = 𝑎3(𝜓𝑛+1 − 2𝜓𝑛 + 𝜓𝑛−1) + 𝑎4(𝜙
′(𝑥𝑛)𝑧(𝑡) − 𝜓𝑛)      

(26) 

The dimensionless boundary conditions can be written 

as follows: 
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 𝑋 = 0 → 𝜓𝑛 = 0,                

 𝑋 = 1 → 𝜓𝑛+1 = 𝜓𝑛−1 
 

This iteration method well-known in the literature is 

used to have the behavior of the system during the 

temporal evolution. 

The core-structure considered in this study is assumed 

to have a total height 𝐿 =300 m. Its intrinsic properties 

are: Young’s modulus 𝐸 of the material is 210 GPa, The 

shear Modulus of elasticity is 𝐺 = 81 GPa, Poisson’s ratio 

ν is 0.3. The geometric properties are: mass of the core 

is2 × 105  
𝑘𝑔

𝑚
. The cross-section corresponds to12 m ×

12 m , thickness is 0.5 m  and the shear 

coefficient 𝑘𝑠 = 0.435 . For the nonstationary ground 

acceleration, The intensities of the acceleration sequences 

at the first and second sequences 𝑆0 = 0.02 m
2/𝑠3  and 

𝑆0 = 0.015 m
2/𝑠3 , respectively. The parameters of the 

envelope functions are adopted as 𝑒01 = 0.8155𝜆1 = 0.3 

s−1 and𝑒02 = 0.9514 , 𝜆2 = 0.35 s
−1 and the separating 

time interval between the sequences is 15 s. The interval 

time of the envelope function are 𝑡1 = 25 s , 𝑡2 = 40 s , 

𝑡3 = 60 s.  

Regarding the control devices, some of parameters are 

summarized in Table 1 [44].  These MR devices are able 

to generate the larger damping force [56]. Hence, in the 

present investigation, some values of parameters 

illustrated in Table 1 will be adjusted in order to have the 

appropriate values which defines a large-scale control 

device. From such devices are able to attenuate excessive 

vibrations of the structure under the optimal conditions.  

There are other parameters which do not depend on the 

input current and are therefore given by: 
 

𝛾𝑎 = 5179.04 m−1,   𝛿𝑎 = 1377.9788,  

𝛽𝑎 = 27.1603 m
−1,  𝑝 = 0.2442,  𝑘1 = 20159.5 N/m 

 

It is interesting to indicate that the MR damper can be 

implemented in passive-off or passive-on mode. For each 

mode considered herein, the peak RMS of the shear force 

and bending-moment of the core-structure under combined 

wind and earthquake loads will be calculated to research 

to reasonable optimal location of the damper outriggers. 

Let us remind the readers that in configuration of the 

outrigger system, one cannot refer our analysis to the 

comparison of controlled and uncontrolled cases. Because 

the damper outriggers are rigidly linked to core-structure 

and perimeter columns.  
 

4.1  Passive-off 

The passive off means the input current is zero. In other 

words, the MR damper is employed as a passive option. 

To assess the dynamic response of the structural system in 

this mode, the values of the control device will be selected 

in the first row in Table 1.  

The next step is to apply the appropriate algorithm to 

numerically solve the Equations (24)-(26) . Let us consider 

four positions of the damped outriggers defined as follows: 
 

𝑂𝐿1 = (0.4; 0.6; 0.8) ; 𝑂𝐿2 = (0.2; 0.7; 0.9) ; 𝑂𝐿3 =

(0.3; 0.5; 0.9);  𝑂𝐿4 = (0.4; 0.7; 0.9).  
 

Hence, it is worth investigate how the mentioned 

various positions of damper outriggers affect the shear 

force and bending-moment. The goal is to find the optimal 

position. 

For this case, the length of an outriggers is 𝑟 = 4.0.  

Figure 3 and 5 clearly show the peak RMS of bending-

moment and shear force at each point along of the core-

structure, respectively.  It appears that its different 

positions of damped outriggers rigidly connected to the 

core-structure affect significantly the moment-bending 

and shear force. 

The results presented in Table 2 show that the bending-

moment is very low at the point 0.1 of the core-structure 

and is high at the rest of points (0.2 up to 0.9) of the beam.   

It comes out that whatever the damped outriggers the value 

of the bending-moment is important at the point 0.3 of the 

mentioned structure. Looking closely at in Table 2, it is 

observed that the bending-moment is slightly small at 

location OL4 compared to OL1, OL2 and OL3. 

The peak RMS values of the shear force in Figure 4 are 

shown in Table 3. The results indicate that the shear force 

is significantly important at the point 0.1 of the core-

structure compared to the other points. The effects of the 

OL4 of the damper outriggers are clearly weak on the core-

structure than OL1, OL2 and OL3. 

                                                                                                 

Table 1. Damper parameter at various current levels 

Current(A) 𝛼𝑙(10
8𝑁) 𝛼𝑏(10

3Ns/m) 𝑎𝑏(10
3s/m) 𝑚𝑟(10

3𝑘𝑔) 𝑛𝑜 𝑓0(10
3𝑁) 

0.0237 1.3612 4,349,000 862.03 3,000 1.000 1,465.82 

0.2588 2.2245 24,698,000 3,677.01 11,000 2.0679 2,708.36 

0.5124 2.3270 28,500,000 3,713.88 16,000 3.5387 4,533.98 

0.7625 2.1633 32,488,000 3,849.91 18,000 5.2533 4,433.08 

1.0132 2.2347 24,172,000 2,327.49 19,500 5.6683 2,594.41 

1.5198 2.2200 38,095,000 4,713.21 21,000 6.7673 5,804.24 

2.0247 2.3002 35,030,000 4,335.08 22,000 6.7374 5,126.79 
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Figure 3. Peak  RMS of bending moment at different points of the beam 

 
Figure 4. Peak RMS of shear force at different points of the beam 

 
Table 2.  Various peak values of RMS of the bending-Moment function of locations of damper outriggers. 

𝑀𝑎𝑥[𝑀2]1/2 × 108 

 

Outrigger 

location 

Point of the beam 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

OL1 6.34 24.64 25.98 25.58 24.78 23.74 22.51 21.02 17.96 

OL2 6.39 24.82 26.18 25.77 24.97 23.97 22.68 21.18 18.09 

OL3 6.42 24.93 26.29 25.88 25.08 24.03 22.78 21.27 18.18 

OL4 6.03 23.43 24.72 23.34 23.58 22.59 21.42 20.00 17.09 

  

Table 3. Different peak values of RMS of the shear force in relation to locations of damper outriggers. 

𝑀𝑎𝑥[𝑄2]1/2 × 107 

                                       

Outrigger 

location 

Point of the beam 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

OL1  36.53 3.18 0.025 0.42 0.61 0.76 0.87 1.14 3.56 

OL2 36.79 3.21 0.025 0.42 0.61 0.76 0.88 1.26 3.58 

OL3 36.96 3.22 0.025 0.42 0.62 0.77 0.89 1.16 3.60 

OL4 34.75 3.03 0.024 0.39 0.58 0.72 0.84 1.09 3.39 

 

By summarizing the data in Table 1 and the results 

presented in Table 2, one can see that the location OL4 of 

the damped outriggers is the optimal position. Because it 

provides effective damping compared to other to reduce 

the bending-moment and shear force within the structural 

system.  
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4.2 Passive-on 

One of the drawback associated with the MR damper is 

their nonlinear behaviour. It is due to its intrinsically 

characteristic that the appropriate algorithms used with 

MR damper are developed to suitable provide voltage or 

current that commands these control devices. Thus, in this 

present investigation, the fuzzy logic controller is 

employed to determine the appropriate output matched to 

inputs. According the principle of fuzzy logic, the different 

steps are: the fuzzification, the fuzzy inference associated 

with the control rules and defuzzification. The 

membership functions of the linguistic of inputs 1 (𝜅1) and 

2 (𝜅2) are divided into six variables (i=1,2): ZEi (Zero), 

SMi (Small Medium), MEi (Medium), Lai ( Large) , VLi 

(Very Large) and ELi (Extreme Large). Fuzzy variables 

defined as ZE (Zero), SM (Small Medium), ME 

(Medium), LA( Large)  and VL (Very Large) are assigned 

to the output. The triangular and trapezoid membership 

functions used for all input and output are plotted. One can 

see that the two variables have different domain interval 

but having the same variables. 

The fuzzy control rules are developed as shown in Table 

4. The considered first set defines the RMS displacement 

and second one is the RMS velocity. 

 

Table 4: Fuzzy control rules 

  𝜅1
 

 

  ZE1 SM1 ME1 LA1 VL1 EL1 

 

𝜅2 

ZE2 ZE ZE ME SM LA VL 

SM2 ZE SM SM ME ME LA 

ME2 ME SM ME LA LA SM 

LA2 ME ME LA LA VL LA 

VL2 ME LA LA LA VL SM 

 EL2 LA ME VL VL LA VL 

 
     (a)                                                    (b)                                       (c) 

Figure 5. Membership functions for (a)-(b) inputs, (c) output 

. 

 
Figure 6. Peak RMS of the bending-Moment function of various points of the beam 
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Figure 6 shows the location effects of the damped 

outriggers on the bending-moment. It can be seen that the 

results are similar to the previous analysis. That is to say 

that moment is low at the point 0.1 and large at 0.3 of the 

core-structure.  

Table 5 displays the various values of the RMS of the 

shear force. By focusing our attention on mentioned table, 

one can see that the coordinate OL4 is still the optimal 

location as indicated in the previous analysis in Table 2. 

Because in this position the values of the bending-moment 

are slightly reduced than other locations. Thus, it is clearly 

observed that at this optimal location, the peak RMS of 

bending-moment is reduced up to 27% in the core-

structure.  

Here, the various peak RMS of the shear force in  

Figure 7 are shown in Table 6. It comes out from the 

variation of locations of the damped outriggers affects the 

shear force. Thus, the comparative data indicates that the 

position OL4 of the damped outrigger further provides 

damping of the structural system. Therefore, it is more 

efficient than other position. One should be noted that the 

amplitude of reduction of the shear force can also reach the 

order of 27% in the core-structure.  

To further investigate the performance of the damped 

outrigger on the dynamical response the whole structure. . 

It is important to analyze the effects of the length of the 

outrigger on the dynamic of the structural system. 

Figure 8 and 9 present the peak RMS of the bending 

moment and shear force versus the various points along of 

the core-structure, respectively. It is observed that at the 

point 0.1 the bending-moment is low and large for the 

shear force. Although at the point 0.3 of the beam the 

bending-moment is rather large and very low for the shear 

force. 

 

 
Figure 7. Peak RMS of the shear force function various points along the beam 

 
 

Table 5. Peak RMS values of the bending-moment function to location of outriggers. 

𝑀𝑎𝑥[𝑀2]1/2 × 108 

 

Outrigger 

location 

Point of the beam 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

OL1 4.59 17.84 18.82 18.52 17.95 17.19 16.30 15.22 13.00 

OL2 5.01 19.48 20.55 20.23 19.60 18.78 17.80 16.63 14.21 

OL3 4.93 19.16 20.21 19.90 19.28 18.48 17.51 16.36 13.98 

OL4 4.38 17.01 17.95 17.67 17.12 16.40 15.55 14.52 12.41 

Table 6. Peak RMS values of the shear force function to location of outriggers. 

𝑀𝑎𝑥[𝑄2]1/2 × 107 

Outrigger 

location 

Point of the beam 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

OL1 26.45 2.3 0.022 0.3 0.44 0.55 0.64 0.83 2.58 

OL2 28.88 2.52 0.022 0.33 0.48 0.59 0.69 0.91 2.82 

OL3 28.41 2.47 0.022 0.33 0.47 0.59 0.68 0.88 2.77 

OL4 25.23 2.19 0.021 0.29 0.42 0.52 0.61 0.79 2.46 
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Figure 8. Peak RMS of the bending-moment function various points along the beam 

Figure 9. Peak RMS of the shear force function of various points along the beam with 𝑟 = 8.0 

 

Table 7 and 8 show the various peak RMS of the 

bending-moment and shear force in function locations of 

the damped outriggers, respectively. It can see that the 

increasing outrigger’s length can considerably reduce the 

bending-moment and shear force up to 45% of results from 

Table 5 Table 6.  

Figure 10 displays outrigger’s length effects on the 

traversal displacement when damped outriggers are placed 

at the point of coordinate OL4. It should be noted that at 

this position the damped outriggers are benefits and 

efficient than others. It is also observed the outrigger’s 

length considerably affects the dynamic response of the 

core-structure under combined wind and earthquake loads. 

 

Table 7: Peak RMS values of the bending-moment function to location of outriggers 

𝑀𝑎𝑥[𝑀2]1/2 × 108 

 

Outrigger 

location 

Point of the beam 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

OL1 3.47 13.49 14.24 14.02 13.58 13.02 12.34 11.52 9.84 

OL2 3.49 13.58 14.32 14.09 13.66 13.08 12.41 11.58 9.9 

OL3 4.02 15.61 16.72 16.22 15.71 15.06 14.27 13.33 11.39 

OL4 2.38 9.26 9.77 9.61 9.32 8.93 8.46 7.90 6.75 

Table 8: Peak values RMS values of the shear force function to location of outriggers 

𝑀𝑎𝑥[𝑄2]1/2 × 107 

Outrigger 

location 

Point of the beam 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

OL1 20.02 1.75 0.019 0.23 0.33 0.42 0.48 0.63 1.95 

OL2 20.13 1.75 0.019 0.23 0.33 0.42 0.49 0.63 1.97 

OL3 23.15 2.01 0.021 0.26 0.39 0.48 0.56 0.73 2.26 

OL4 13.73 1,19 0.017 0.16 0.23 0.29 0.33 0.43 1.34 
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Figure 10. Variation of outrigger’s length effects on RMS of displacement with the damped outriggers placed at the point OL4 

 

5. Discussions 
 

The main investigation is to demonstrate how, the 

optimal position of damped outriggers can provide 

additional damping by attenuating the effects of the 

bending-moment and the shear force which may occur in 

the core-structure. Thus, to explore this phenomenon, 

different modes have been analysed.  

In passive-off mode, the results show that the bending-

moment and shear force at each point along the core-

structure. It appears that this mentioned moment is 

significantly important at the point 0.1 and insignificant at 

the point 0.3 of the structure. Opposite to bending-

moment, the shear force is rather insignificant at the point 

0.1 and important at the point 0.3 of the core-structure.  As 

discussed in earlier paragraph, the combined data reveal 

that the locations of the damped outriggers at the 

coordinate OL4 further reduces the bending-moment and 

the shear force compared to other positions thus defined.  

In passive-on mode, the Fuzzy logic algorithm used 

with MR damper to command the current is explored. It is 

observed that the application of this algorithm gradually 

decreases the effects of the bending-moment and shear 

force at any point along of the core-structure. In addition, 

the analysis of location effects of different damped 

outriggers indicates that the position OL4 is better than 

OL1, OL2 and OL3.  

Note that the investigation of the attenuation of 

mentioned effects is not limited only to the two passive 

modes. An additional review of the length of the outrigger 

(geometric parameter) shows that: 

• The length of the outrigger is an influencing factor, 

since an increasing of its value of this latter gradually 

decreases the effects of the moment-bending and the 

shear force of the core-structure;  

• A significantly attenuation of the lateral deflection.  

In summary, it should be noted that the passive-on mode 

associated with variation of the length of the outrigger 

compared to passive-off mode considerably reduces the 

moment-bending and shear force effects of the core-

structure under combined wind and earthquake loads up to 

60%.  

6. Conclusion 
 

This paper investigates the effects of damped outriggers 

placed at various locations on the bending-moment and 

shear force of the core structure under combined wind and 

earthquake loads. Timoshenko theory, based on the partial 

differential equation has been explored to model the core-

structure. It has been observed that the wind loads have 

significantly introduced the nonlinear dissipative of the 

mechanical structure.  

The effects on different locations of damped outriggers 

have been analysed. The numerical results have revealed 

that;  

• In passive off mode, analysis different data of peak 

RMS has shown that the position OL4 like the optimal 

location where the damped outriggers should be 

installed on the core-structure. Since in this position, 

the damped outriggers mitigate the induced-vibration 

wind and earthquake excitation better than other 

locations;  

• In passive on mode, the dynamics of the control 

devices have really enhanced the response of the 

bending-moment and shear force in all the points of 

the core-structure. This is due to the application of the 

fuzzy logic controller 

Although the two modes are explored. The influence of 

the length of the outriggers has also been analysed. It 

comes out that a slightly increasing of its length effectively 
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strengthens the structural composition by reducing the 

bending-moment and shear force effects. It can also see 

how this positively affects the transverse displacement of 

the core-structure. Additionally, this analysis of this 

modification shows that the optimal location of outriggers 

remains unchanged.   
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Appendix 

𝑏1 = ∫ 𝜙2(𝑋)𝑑𝑋
1

0

, 𝑏3 = ∫ 𝜙′ '′ ′(𝑋)𝑑𝑋
1

0

, 𝑏4

= ∫ 𝜙(𝑋)𝑑𝑋
1

0

, 

∫ 𝑏5 = ∫ 𝜙3(𝑋)𝑑𝑋,
1

0

1

0

𝑏6 = ∫ 𝜙4(𝑋)𝑑𝑋
1

0

, 𝜎 =
𝑏4
𝑑𝑒𝑛
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