A Note on Fano Configurations in the Projective Space PG(5,2)

Ziya Akça ${ }^{1 *}$ and Abdilkadir Altıntaş ${ }^{1}$
${ }^{1 *}$ Eskişehir Osmangazi University, Faculty of Science and Letters, Department of Mathematics and Computer Science, 26480 Eskişehir, Turkey.
*Corresponding author

Abstract

Let $n \geq 2$ and let $U_{j} \mid j \in J$, with $|J|=n^{2}+n+1$, be a set of disjoint subspaces (of the same dimension) of some finite projective space $P G(N, q)$ with the property that the number of such subspaces in the span of any two such subspaces is always $n+1$ and the intersection of any two different such spans is always a subspace U_{j} (so we have a projective plane of order n with point set $U_{j} \mid j \in J$.) In this work we search for Fano configurations in $\operatorname{PG}(5,2)$ whose lines are 3 -spaces and points are lines.

Keywords: Projective spaces; Fano Plane; Fano Axiom
2010 Mathematics Subject Classification: Projective spaces; Fano Plane; Fano Axiom

1. Introduction

The smallest example of a projective plane is the Fano projective plane over the field $G F(2)$. It is denoted by $P G(2,2)$. It is known that it has seven points and seven lines, and every line has exactly three points. Hence the Fano plane consists of the points $(1,0,0),(0,1,0),(0,0,1),(1,1,0)$, $(1,0,1),(0,1,1)$ and $(1,1,1)$.
In finite geometry, $P G(3,2)$ is the smallest three-dimensional the projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. It also has the following properties:
Each point is contained in 7 lines and 7 planes.
Each line is contained in 3 planes and contains 3 points.
Each plane contains 7 points and 7 lines.
Each plane is isomorphic to the Fano plane.
Every pair of distinct planes intersect in a line.
A line and a plane not containing the line intersect in exactly one point .
Some configurations in the projective spaces are worked in [1-8].
Let $n \geq 2$ and let $U_{j} \mid j \in J$, with $|J|=n^{2}+n+1$, be a set of disjoint subspaces (of the same dimension) of some finite the projective space $P G(N, q)$ with the property that the number of such subspaces in the span of any two such subspaces is always $n+1$ and the intersection of any two different such span is always a subspace U_{j} (so we have a projective plane of order n with point set $U_{j} \mid j \in J$.)
We construct a projective plane $P G(2,2)$ in the projective space $P G(5,2)$ with four skew lines in $P G(5,2)$. We start with three theorems and we give a main result.
Theorem 1.1. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ be four skew lines in the projective space $P G(5,2)$ as in the list:

$$
\begin{aligned}
& \mathscr{L}_{1}=\{(1,0,0,0,0,0),(0,1,0,0,0,0),(1,1,0,0,0,0)\} \\
& \mathscr{L}_{2}=\{(0,0,1,0,0,0),(0,0,0,1,0,0),(0,0,1,1,0,0)\} \\
& \mathscr{L}_{3}=\{(0,0,0,0,1,0),(0,0,0,0,0,1),(0,0,0,0,1,1)\} \\
& \mathscr{L}_{4}=\{(1,0,1,0,1,0),(0,1,0,1,1,1),(1,1,1,1,0,1)\}
\end{aligned}
$$

It's possible to construct Fano plane in the projective space $P G(5,2)$ such that lines are projective 3 -spaces and points are lines of the the projective space $P G(5,2)$.

Proof. Since \mathscr{L}_{1} and \mathscr{L}_{2} are disjoint lines in $\operatorname{PG}(5,2)$ they span a 3 -space in $P G(5,2)$. \mathscr{L}_{1} and \mathscr{L}_{2} span the projective 3 -space $\mathscr{L}_{1}=$ $\left[a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}\right], a_{1}=0, b_{1}=0, c_{1}=0, d_{1}=0$. We can write $\mathscr{S}_{1}=\left[0,0,0,0, e_{1}, f_{1}\right] . \mathscr{L}_{3}$ and \mathscr{L}_{4} are disjoint lines in $P G(5,2)$
they span a 3 -space in $P G(5,2) . \mathscr{L}_{3}$ and \mathscr{L}_{4} span 3 -space $\mathscr{L}_{2}=\left[a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}\right], a_{2}=c_{2}, b_{2}=d_{2}, e_{2}=0, f_{2}=0$. We can write $\mathscr{S}_{2}=\left[a_{2}, b_{2}, a_{2}, b_{2}, 0,0\right]$.
$\mathscr{L}_{5}=\mathscr{S}_{1} \cap \mathscr{S}_{2}=\{(1,1,1,1,0,0),(1,0,1,0,0,0),(0,1,0,1,0,0)\}$
\mathscr{L}_{1} and \mathscr{L}_{3} are disjoint lines in $P G(5,2)$ they span a 3 -space in $P G(5,2)$. \mathscr{L}_{1} and \mathscr{L}_{3} span projective 3-space $\mathscr{S}_{3}=\left[a_{3}, b_{3}, c_{3}, d_{3}, e_{3}, f_{3}\right]$, $a_{3}=0, b_{3}=0, e_{3}=0, f_{3}=0$. We can write $\mathscr{S}_{3}=\left[0,0, c_{3}, d_{3}, 0,0\right] . \mathscr{L}_{2}, \mathscr{L}_{4}$ are disjoint lines in $P G(5,2)$ they span a 3 -space in $P G(5,2)$. \mathscr{L}_{2} and \mathscr{L}_{4} span 3-space $\mathscr{S}_{4}=\left[a_{4}, b_{4}, c_{4}, d_{4}, e_{4}, f_{4}\right], b_{4}=0, c_{4}=0, a_{4}=d_{4}, b_{4}=f_{4}$. We can write $\mathscr{S}_{4}=\left[a_{4}, b_{4}, 0,0, a_{4}, b_{4}\right]$.
$\mathscr{L}_{6}=\mathscr{S}_{3} \cap \mathscr{S}_{4}=\{(1,1,0,0,1,1),(1,0,0,0,1,0),(0,1,0,0,0,1)\}$
\mathscr{L}_{2} and \mathscr{L}_{3} are disjoint lines in $P G(5,2)$ they span a 3-space in $P G(5,2) . \mathscr{L}_{2}$ and \mathscr{L}_{3} span projective 3-space $\mathscr{S}_{5}=\left[a_{5}, b_{5}, c_{5}, d_{5}, e_{5}, f_{5}\right]$, $c=0, d_{5}=0, e_{5}=0, f_{5}=0$. We can write $\mathscr{L}_{5}=\left[a_{5}, b_{5}, 0,0,0,0\right] . \mathscr{L}_{1}$ and \mathscr{L}_{4} are disjoint lines in $P G(5,2)$ they span a 3 -space in $P G(5,2)$. \mathscr{L}_{1} and \mathscr{L}_{4} span 3-space $\mathscr{S}_{6}=\left[a_{6}, b_{6}, c_{6}, d_{6}, e_{6}, f_{6}\right], b_{6}=d_{6}, d_{6}+e_{6}+f_{6}=0$.
$\mathscr{L}_{7}=\mathscr{S}_{5} \cap \mathscr{S}_{6}=\{(0,0,0,1,1,1),(0,0,1,1,0,1),(0,0,1,0,1,0)\}$
\mathscr{L}_{5} and \mathscr{L}_{6} are disjoint lines in $P G(5,2)$ they span a 3-space in $P G(5,2) . \mathscr{L}_{5}$ and \mathscr{L}_{6} span projective 3 -space $\mathscr{S}_{7}=\left[a_{7}, b_{7}, c_{7}, d_{7}, e_{7}, f_{7}\right]$, $a_{6}=c_{7}=e_{7}, b_{7}=d_{7}=f_{7}$. We can write $\mathscr{S}_{7}=\left[a_{7}, b_{7}, a_{7}, b_{7}, a_{7}, b_{7}\right]$. If $a_{7}=0, b_{7}=1, \mathscr{L}_{7}$ lies on \mathscr{S}_{7}, we have $\mathscr{S}_{7}=[0,1,0,1,0,1]$.If we consider the set $\mathscr{L}=\left\{\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3} \ldots, \mathscr{L}_{7}\right\}$ as points and $\mathscr{S}=\left\{\mathscr{S}_{1}, \mathscr{S}_{2}, \mathscr{S}_{3} \ldots \mathscr{S}_{7}\right\}$ as lines, o incidence relation, $U=(\mathscr{L}, \mathscr{S}, o)$ satisfies the projective plane axioms, hence it is a Fano plane in $\operatorname{PG}(5,2)$. Incidence relation is as follows:

$$
\begin{aligned}
& \left\{\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{5}\right\} o \mathscr{S}_{1},\left\{\mathscr{L}_{3}, \mathscr{L}_{4}, \mathscr{L}_{5}\right\} o \mathscr{S}_{2} \\
& \left\{\mathscr{L}_{1}, \mathscr{L}_{3}, \mathscr{L}_{6}\right\} o \mathscr{S}_{3},\left\{\mathscr{L}_{2}, \mathscr{L}_{4}, \mathscr{L}_{6}\right\} o \mathscr{S}_{4} \\
& \left\{\mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{7}\right\} o \mathscr{S}_{5},\left\{\mathscr{L}_{1}, \mathscr{L}_{4}, \mathscr{L}_{7}\right\} o \mathscr{S}_{6} \\
& \left\{\mathscr{L}_{5}, \mathscr{L}_{6}, \mathscr{L}_{7}\right\} o \mathscr{S}_{7}
\end{aligned}
$$

$U=(\mathscr{L}, \mathscr{S}, o)$ is isomorphic to the projective plane $P G(2,2)$.
Theorem 1.2. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ be skew lines in the projective space $P G(5,2)$ as in the list:

$$
\begin{aligned}
& \mathscr{L}_{1}=\{(1,0,0,0,0,0),(0,1,0,0,0,0),(1,1,0,0,0,0)\} \\
& \mathscr{L}_{2}=\{(0,0,1,0,0,0),(0,0,0,1,0,0),(0,0,1,1,0,0)\} \\
& \mathscr{L}_{3}=\{(0,0,0,0,1,0),(0,0,0,0,0,1),(0,0,0,0,1,1)\} \\
& \mathscr{L}_{4}=\{(0,1,1,0,1,1),(1,0,1,1,0,1),(1,1,0,1,1,0)\}
\end{aligned}
$$

It's possible to construct Fano plane in the projective space $P G(5,2)$ such that lines are projective 3 -spaces and points are lines of the the projective space $P G(5,2)$.
Proof. Similar arguments work in Theorem 1.1.
Theorem 1.3. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ be skew lines in the projective space $P G(5,2)$ as in the list:

$$
\begin{aligned}
\mathscr{L}_{1} & =\{(0,0,1,0,1,0),(0,1,0,1,0,0),(0,1,1,1,1,0)\} \\
\mathscr{L}_{2} & =\{(0,0,0,0,1,0),(0,1,0,1,1,1),(0,1,0,1,0,1)\} \\
\mathscr{L}_{3} & =\{(1,0,0,1,1,0),(1,0,0,1,1,1),(0,0,0,0,0,1)\} \\
\mathscr{L}_{4} & =\{(0,0,0,1,1,0),(0,0,0,1,0,1),(0,0,0,0,1,1)\}
\end{aligned}
$$

It's not possible to construct Fano plane in the projective space $P G(5,2)$ such that lines are projective 3 -spaces and points are lines of the projective space $P G(5,2)$.

Proof. Since \mathscr{L}_{1} and \mathscr{L}_{2} are disjoint lines in $P G(5,2)$ they span a 3 -space in $P G(5,2) . \mathscr{L}_{1}$ and \mathscr{L}_{2} spans 3 -space $\mathscr{S}_{1}=\left[a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}\right]$, $c_{1}=0, e_{1}=0, f_{1}=0, b_{1}=d_{1}$. We can write 3 -space $\mathscr{S}_{1}=\left[a_{1}, b_{1}, 0, b_{1}, 0,0\right] . \mathscr{L}_{3}$ and \mathscr{L}_{4} are disjoint lines in $P G(5,2)$ they span a 3 -space in $P G(5,2) . \mathscr{L}_{3}$ and \mathscr{L}_{4} spans 3-space $\mathscr{S}_{2}=\left[a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}\right], a_{2}=0, d_{2}=0, e_{2}=0, f_{2}=0$. We can write 3-space $\mathscr{S}_{2}=\left[0, b_{2}, c_{2}, 0,0,0\right]$. $\mathscr{L}_{5}=\mathscr{S}_{1} \cap \mathscr{S}_{2}=\{(0,0,0,0,0,1),(0,0,0,0,1,0),(0,0,0,0,1,1)\}$
But \mathscr{L}_{5} and \mathscr{L}_{4} are not skew lines. They have the intersection point $(0,0,0,0,1,1)$,hence $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ in $P G(5,2)$ don't generate a projective plane in $P G(5,2)$.

2. Conclusion

Theorem 1.3 shows that it's not always possible to construct Fano configuration in the projective space $P G(5,2)$ with four skew lines. To construct Fano configuration in the projective space $P G(5,2)$ we must have extra condition; Let $P G(5,2)$ be a 5 -dimensional the projective space over $G F(2)$. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ be the set of four skew lines in $P G(5,2) . P_{1 i}, i=1,2,3$ be the points of \mathscr{L}_{1}. Similarly $P_{2 j}$, $j=1,2,3$ be the points of $\mathscr{L}_{2}, P_{3 k}, k=1,2,3$ be the points of \mathscr{L}_{3} and $P_{4 m}, m=1,2,3$ be the points of \mathscr{L}_{4}. Additionally, any four points $P_{1 i}, P_{2 j}, P_{3 k}, P_{4 m}$ form a quadrilateral, i.e. any three of them are non-collinear. Let S_{1} be 3 -space of $P G(5,2)$ spanned by \mathscr{L}_{1} and \mathscr{L}_{2}. Let S_{2} be 3 -space of $P G(5,2)$ spanned by \mathscr{L}_{3} and $\mathscr{L}_{4} . \mathscr{L}_{5}=S_{1} \cap S_{2}$. Let S_{3} be 3 -space of $P G(5,2)$ spanned by \mathscr{L}_{1} and \mathscr{L}_{3}. Let S_{4} be 3 -space of $P G(5,2)$ spanned by \mathscr{L}_{2} and \mathscr{L}_{4}. $\mathscr{L}_{6}=S_{3} \cap S_{4}$. Let S_{5} be 3 -space of $P G(5, q)$ spanned by \mathscr{L}_{2} and \mathscr{L}_{3}. S_{6} be 3 -space of $P G(5, q)$ spanned by \mathscr{L}_{1} and \mathscr{L}_{4}. $\mathscr{L}_{7}=S_{5} \cap S_{6}$. Let S_{7} be 3 -space of $P G(5,2)$ spanned by \mathscr{L}_{5} and \mathscr{L}_{6}. Now we can define the geometry U in $P G(5,2)$ as follows; the points of U are the elements of $\mathscr{L}=\left\{\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \ldots, \mathscr{L}_{7}\right\}$ and the elements of $\mathscr{S}=\left\{\mathscr{S}_{1}, \mathscr{S}_{2}, \mathscr{S}_{3} \ldots \mathscr{S}_{7}\right\}$ its lines such that the 3- dimensional subspaces spanned by any two distinct elements of $\mathscr{L} . U=(\mathscr{L}, \mathscr{S}, o)$ satisfies the projective plane axioms, hence it is a projective plane in $P G(5,2)$.

Acknowledgments

This work was supported by the Scientific Research Projects Commission of Eskişehir Osmangazi University under Project Number 2019-2542.

References

[1] A. Akpınar, İ. Doğan, E. Demirci, Z. Sena Gürel, and B. Boztemür, Some Remarks on a Class of Finite Projective Klingenberg Planes, Journal of Advances in Mathematics, vol. 14, no. 2 (2018), 7893-7902.
[2] A. Akpınar, B. Çelik, and S. Çiftçi, Cross Ratios and 6 Figures in some Moufang Klingenberg Planes, The Bulletin of the Belgian Mathematical Society-Simon Stevin, vol. 15, no. 1 (2008), 49-64.
[3] A. Bayar, Z. Akça, E. Kahriman and S. Ekmekçi, On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9, New Trends in Mathematical Sciences, vol. 4, no. 4 (2016), 266-275.
[4] J. Hirschfeld, J. A.Thas, General Galois Geometries, Springer Monongraphs in Mathematics, 2016
[5] S. Ekmekçi, Z. Akça, H. Keskin and A. Bayar, Designing a Software Application for Fibered Fano Planes, International Journal of Mathematics and Statistics Invention (IJMSI), vol. 5, no. 1 (2017), 32-35.
[6] Z. Akça, İ. Günaltılı and G. Özgür, On the Fano subplanes of the left semifield plane of order 9, Hacettepe Journal of Mathematics and Statistics, Volume 35 (1) (2006), $55-61$.
[7] Z. Akça, S. Ekmekçi and A. Bayar, On the Fano subplanes of the left Hall plane of order 9, Konuralp Journal of Mathematics, vol. 4, no. 2 (2016), 124-131.
[8] Z. Akça and İ. Günaltılı, On the $(k, 3)-\operatorname{arcs}$ of $C P G(2,25,5)$, Anadolu University Jounal of Science and Technology- B Theoretical Sciences, vol. 2, no. 1 (2012), 21-27.

