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An Application to the Existence of Solutions of the Integral Equations

Merve Temizer Ersoy

Department of Mathematics, Faculty of Science, Kahramanmaras Sutcu Imam University, 46100, Turkey.

Received: 06-02-2021 • Accepted: 23-05-2021

Abstract. Integral equations provide mathematical models of many important problems in the physical sciences
and engineering. This paper treats one class of such equations, concentrating on methods involving the use of
classical fixed point theorem. The study of integral equations in connection with nonlinear equations has a long
history, during which a variety of approaches has emerged. Here, we effectively use a strategy that derives key
properties of the solvability of integral equations from previously established results in Hölder spaces. Moreover,
our approach leads to solvability of the Fredholm integral equations.
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1. Introduction

Fredholm integral equations show up thoroughly in many scientific areas like approximation theory, computational
mathematics, physical mathematics and contact problems in the theory of elasticity. A short time since, several authors
have comprehensively studied the integral equations and the solution of the Fredholm integral equation with the fixed
point approach [1–10].

For example, J. Caballero, M. Darwish and K. Sadarangani et al. [3] study the following equation;

x(t) = p(t) + x(t)
∫ 1

0
k(t, τ)x(r(τ))dτ. (1.1)

This article concerns the entity of solutions of the a quadratic integral equation of Fredholm type,

x(t) = (T1x)(t) + (T2x)(t)
∫ 1

0
k(t, τ)x(ρ(τ))dτ, t ∈ I = [0, 1], (1.2)

where k, ρ are given functions, T1,T2 are given operators satisfying conditions specified later and x is unknown func-
tion. Notice that equation (1.1) in study [3] is a particular case of (1.2), for (T1x) (t) = p(t) and (T2x) (t) = x(t).
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2. Preliminaries

Let [a, b] be a closed interval in R, by C[a, b] we indicate the space of continuous functions defined on [a, b]
equipped with the supremum norm, i.e.,

‖x‖∞ = sup {|x(t)| : t ∈ [a, b]}

for x ∈ C[a, b]. For a fixed α with 0 < α ≤ 1, by Hα[a, b] we will indicate the spaces of the real functions x defined on
[a, b] and satisfying the Hölder condition, that is, those functions x for which there exists a constant Hα

x such that

|x(t) − x(s)| ≤ Hα
x |t − s|α (2.1)

for all t, s ∈ [a, b]. It is well proved that Hα[a, b] is a linear subspaces of C[a, b]. Also, for x ∈ Hα[a, b], by Hα
x we will

indicate the least possible stable for which inequality (2.1) is satisfied. Rather, we put

Hα
x = sup

{
|x(t) − x(s)|
|t − s|α

: t, s ∈ [a, b] and t , s
}
. (2.2)

The space Hα[a, b] with 0 < α ≤ 1 may be equipped with the norm

‖x‖α = |x(a)| + Hα
x

for x ∈ Hα[a, b]. Here, Hα
x is defined by (2.2). In [1], the authors demonstrated that (Hα[a, b], ‖ · ‖α) with 0 < α ≤ 1 is

a Banach space.

Lemma 2.1 ( [1]). For 0 < α ≤ 1 and x ∈ Hα[a, b], we have:

‖x‖∞ ≤ max (1, (b − a)α) ‖x‖α.

In particular, the inequality ‖x‖∞ ≤ ‖x‖α is satisfied for a = 0 and b = 1.

Lemma 2.2 ( [1]). For 0 < α < β ≤ 1, we have

Hβ[a, b] ⊂ Hα[a, b] ⊂ C[a, b].

Furthermore, for x ∈ Hβ[a, b], we have:

‖x‖α ≤ max
(
1, (b − a)β−α

)
‖x‖β.

Particularly, the inequality ‖x‖∞ ≤ ‖x‖α ≤ ‖x‖β is satisfied for a = 0 and b = 1.

Lemma 2.3 ( [3]). Let’s assume that 0 < α < β ≤ 1 and E is a bounded subset in Hβ[a, b], then E is a relatively
compact subset in Hα[a, b].

Lemma 2.4 ( [3]). Assume that 0 < α < β ≤ 1 and by Bβr we indicate the ball centered at θ and radius r in the space
Hβ[a, b], i.e., Bβr = {x ∈ Hβ[a, b] : ‖x‖β ≤ r}. Then Bβr is a closed subset of Hα[a, b].

Corollary 2.5 ( [3]). Assume that 0 < α < β ≤ 1 and Bβr = {x ∈ Hβ[a, b] : ‖x‖β ≤ r}. Then Bβr is a compact subset in
the space Hα[a, b].

Theorem 2.6 (Schauder’s fixed point theorem [10]). Let E be a nonempty and convex subset of a Banach space (X, ‖·‖)
and let T : E → E be a continuity mapping. Then T has at least one fixed point in E.

3. Main Result

Theorem 3.1. Assume that the following conditions (i) − (iv) are satisfied:
(i) The operators T1, T2 : Hβ[0, 1] → Hβ[0, 1] are continuous on Hβ[0, 1] with respect to the norm ‖ · ‖α. Also,

T1 and T2 hold the inequalities

‖T1x‖β ≤ f1(‖x‖β) and ‖T2x‖β ≤ f2(‖x‖β)

for any x ∈ Hβ[0, 1], where α and β are the fixed constants satisfying 0 < α < β ≤ 1 and the functions
f1, f2 : R+ → R+ are nondecreasing on R+.

(ii) k : [0, 1] × [0, 1]→ R is a continuous function such that there exists a constant kβ > 0 satisfying

|k(t, τ) − k(s, τ)| ≤ kβ|t − s|β,

for any t, s, τ ∈ [0, 1].



M.T. Ersoy, Turk. J. Math. Comput. Sci., 13(1)(2021), 115–121 117

(iii) ρ : [0, 1]→ [0, 1] is measurable function.
(iv) There exists a positive solution r0 of the inequality

f1(r) + (2K + kβ)r f2(r) ≤ r,

where the constant K is defined by

sup
{∫ 1

0
|k(t, τ)|dτ : t ∈ [0, 1]

}
≤ K.

Then the equation (1.2) has at least one solution x = x(t) belonging to space Hα[0, 1].

Proof. Let us consider x ∈ Hβ[0, 1] and the operator F defined on the space Hβ[0, 1] by the formula:

(Fx)(t) = (T1x) (t) + (T2x) (t)
∫ 1

0
k(t, τ)x(ρ(τ))dτ,

for t ∈ [0, 1]. Then for arbitrarily fixed t, s ∈ [0, 1], (t , s), in view of our assumptions we get

(Fx)(t) − (Fx)(s) = (T1x) (t) + (T2x) (t)
∫ 1

0
k(t, τ)x(ρ(τ))dτ

− (T1x) (s) − (T2x) (s)
∫ 1

0
k(s, τ)x(ρ(τ))dτ

= (T1x) (t) − (T1x) (s) + (T2x) (t)
∫ 1

0
k(t, τ)x(ρ(τ))dτ

− (T2x) (s)
∫ 1

0
k(s, τ)x(ρ(τ))

+ (T2x) (s)
∫ 1

0
k(t, τ)x(ρ(τ))dτ

− (T2x) (s)
∫ 1

0
k(t, τ)x(ρ(τ))dτ

= (T1x) (t) − (T1x) (s) + ((T2x) (t) − (T2x) (s))
∫ 1

0
k(t, τ)x(ρ(τ))dτ

+ (T2x) (s)
∫ 1

0
(k(t, τ) − k(s, τ))x(ρ(τ))dτ

and

|(Fx)(t) − (Fx)(s)|
|t − s|β

≤
| (T1x) (t) − (T1x) (s)|

|t − s|β
+
| (T2x) (t) − (T2x) (s)|

|t − s|β

∫ 1

0
|k(t, τ)| |x(ρ(τ))| dτ

+
| (T2x) (s)|
|t − s|β

∫ 1

0
|k(t, τ) − k(s, τ)| |x(ρ(τ))| dτ

≤ Hβ
T1 x + ‖x‖∞‖T2x‖β

∫ 1

0
|k(t, τ)|dτ

+‖x‖∞‖T2x‖∞

∫ 1

0

|k(t, τ) − k(s, τ)|
|t − s|β

dτ

≤ Hβ
T1 x + ‖x‖β‖T2x‖βK + ‖x‖β‖T2x‖β

∫ 1

0
kβ
|t − s|β

|t − s|β
dτ

≤ Hβ
T1 x + ‖x‖β f2(‖x‖β)K + ‖x‖β f2(‖x‖β)kβ

= Hβ
T1 x + (K + kβ)‖x‖β f2(‖x‖β). (3.1)

This demonstrates that the operator F maps Hβ[0, 1] into itself.
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Besides, for any x ∈ Hβ[0, 1], we get

|(Fx)(0)| ≤ | (T1x) (0)| + | (T2x) (0)|
∫ 1

0
|k(0, τ)| |x(ρ(τ))| dτ

≤ | (T1x) (0)| + ‖T2x‖∞‖x‖∞K

≤ | (T1x) (0)| + ‖T2x‖β‖x‖βK

≤ | (T1x) (0)| + ‖x‖β f2(‖x‖β)K. (3.2)

By the inequalities by (3.1) and (3.2), we derive that

‖Fx‖β ≤ ‖T1x‖β + (2K + kβ)‖x‖β f2(‖x‖β)
≤ f1(‖x‖β) + (2K + kβ)‖x‖β f2(‖x‖β). (3.3)

Since positive number r0 is the solution of the inequality given in hypothesis (iv), from (3.3), we conclude that the
inequality

‖Fx‖β ≤ f1(r0) + (2K + kβ)r0 f2(r0) ≤ r0 (3.4)

holds. As a results, it follows from (3.4) that F transforms the ball

Bβr0 = {x ∈ Hβ[0, 1] : ‖x‖β ≤ r0}

into itself. That is, F : Bβr0 → Bβr0 . Thus, we have that the set Bβr0 is relatively compact in Hα[0, 1] for any 0 < α < β ≤ 1.
Furthermore, Bβr0 is a compact subset in Hα[0, 1].

We will show that the operator F is continuous on Bβr0 with respect to the norm ‖ · ‖α, where 0 < α < β ≤ 1. Let
y ∈ Bβr0 be an arbitrary point in Bβr0 . Then, we get

(Fx)(t) − (Fy)(t) − ((Fx)(s) − (Fy)(s)) = (T1x) (t) + (T2x) (t)
∫ 1

0
k(t, τ)x(ρ(τ))dτ

− (T1y) (t) − (T2y) (t)
∫ 1

0
k(t, τ)y(ρ(τ))dτ

− (T1x) (s) − (T2x) (s)
∫ 1

0
k(s, τ)x(ρ(τ))dτ

+ (T1y) (s) + (T2y) (s)
∫ 1

0
k(s, τ)y(ρ(τ))dτ (3.5)

for any x ∈ Bβr0 and t, s ∈ [0, 1]. Let us take

(T3x)(τ) = x(ρ(τ)) and (T3y)(τ) = y(ρ(τ))

for the sake of shortness, then the equality (3.5) can be rewritten as:

(Fx)(t) − (Fy)(t) − ((Fx)(s) − (Fy)(s)) = (T1x)(t) − (T1y)(t) − ((T1x)(s) − (T1y)(s))

+ (T2x) (t)
∫ 1

0
k(t, τ)(T3x)(τ)dτ − (T2y) (t)

∫ 1

0
k(t, τ)(T3x)(τ)dτ

+ (T2y) (t)
∫ 1

0
k(t, τ)(T3x)(τ)dτ − (T2y) (t)

∫ 1

0
k(t, τ)(T3y)(τ)dτ

− (T2x) (s)
∫ 1

0
k(s, τ)(T3x)(τ)dτ + (T2y) (s)

∫ 1

0
k(s, τ)(T3x)(τ)dτ

− (T2y) (s)
∫ 1

0
k(s, τ)(T3x)(τ)dτ + (T2y) (s)

∫ 1

0
k(s, τ)(T3y)(τ)dτ. (3.6)
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By (3.6), we have

(Fx)(t) − (Fy)(t) − ((Fx)(s) − (Fy)(s)) = (T1x)(t) − (T1y)(t) − ((T1x)(s) − (T1y)(s))

+((T2x) (t) − (T2y) (t))
∫ 1

0
k(t, τ)(T3x)(τ)dτ

+ (T2y) (t)
∫ 1

0
k(t, τ) ((T3x)(τ) − (T3y)(τ)) dτ

−((T2x) (s) − (T2y) (s))
∫ 1

0
k(s, τ)(T3x)(τ)dτ

− (T2y) (s)
∫ 1

0
k(s, τ) ((T3x)(τ) − (T3y)(τ)) dτ. (3.7)

(3.7) yields the following equality:

((Fx)(t) − (Fy)(t)) − ((Fx)(s) − (Fy)(s)) = (T1x)(t) − (T1y)(t) − ((T1x)(s) − (T1y)(s))

+[((T2x) (t) − (T2y) (t)) − ((T2x) (s) − (T2y) (s))]
∫ 1

0
k(t, τ)(T3x)(τ)dτ

+((T2x) (s) − (T2y) (s))
∫ 1

0
(k(t, τ) − k(s, τ))(T3x)(τ)dτ

+((T2y) (t) − (T2y) (s))
∫ 1

0
k(t, τ) ((T3x)(τ) − (T3y)(τ)) dτ

+ (T2y) (s)
∫ 1

0
(k(t, τ) − k(s, τ)) ((T3x)(τ) − (T3y)(τ)) dτ. (3.8)

Since |(T3x)(τ)| ≤ ‖x‖∞ and |(T3x)(τ) − (T3y)(τ)| ≤ ‖x − y‖∞ for all x, y ∈ Bβr0 and τ ∈ [0, 1], taking into account (3.8)
and hypotheses, we can write:

|(Fx)(t) − (Fy)(t) − ((Fx)(s) − (Fy)(s))|
|t − s|α

≤
| (T1x) (t) − (T1y) (t) − ((T1x) (s) − (T1y) (s))|

|t − s|α

+
| (T2x) (t) − (T2y) (t) − ((T2x) (s) − (T2y) (s))|

|t − s|α

∫ 1

0
|k(t, τ)||(T3x)(τ)|dτ

+
| (T2x) (s) − (T2y) (s)|

|t − s|α

∫ 1

0
|k(t, τ) − k(s, τ)||(T3x)(τ)|dτ

+
| (T2y) (t) − (T2y) (s)|

|t − s|α

∫ 1

0
|k(t, τ)||(T3x)(τ) − (T3y)(τ)|dτ

+
| (T2y) (s)|
|t − s|α

∫ 1

0
|k(t, τ) − k(s, τ)||(T3x)(τ) − (T3y)(τ)|dτ

≤ ‖T1x − T1y‖α + ‖T2x − T2y‖α‖x‖∞K + ‖T2x − T2y‖∞‖x‖∞

∫ 1

0
kβ|t − s|β−αdτ

+ ‖T2y‖α‖x − y‖∞K + ‖T2y‖∞‖x − y‖∞

∫ 1

0
kβ|t − s|β−αdτ

≤ ‖T1x − T1y‖α + K‖T2x − T2y‖α‖x‖α + kβ‖T2x − T2y‖α‖x‖α
+ K‖T2y‖α‖x − y‖α + kβ‖T2y‖α‖x − y‖α

= ‖T1x − T1y‖α + (K + kβ)‖T2x − T2y‖α‖x‖α + (K + kβ)‖T2y‖α‖x − y‖α
(3.9)
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for all t, s ∈ [0, 1] with t , s. Besides, for x, y ∈ Bβr0 , we obtain following equality:

(Fx)(0) − (Fy)(0) = (T1x) (0) + (T2x) (0)
∫ 1

0
k(0, τ)(T3x)(τ)dτ

− (T1y) (0) − (T2y) (0)
∫ 1

0
k(0, τ)(T3y)(τ)dτ

= (T1x) (0) − (T1y) (0) + (T2x) (0)
∫ 1

0
k(0, τ)(T3x)(τ)dτ

− (T2y) (0)
∫ 1

0
k(0, τ)(T3x)(τ)dτ + (T2y) (0)

∫ 1

0
k(0, τ)(T3x)(τ)dτ

− (T2y) (0)
∫ 1

0
k(0, τ)(T3y)(τ)dτ

= (T1x) (0) − (T1y) (0) + ((T2x) (0) − (T2y) (0))
∫ 1

0
k(0, τ)(T3x)(τ)dτ

+ (T2y) (0)
∫ 1

0
k(0, τ) ((T3x)(τ) − (T3y)(τ)) dτ. (3.10)

By (3.10), we get that

|(Fx)(0) − (Fy)(0)| ≤ |(T1x) (0) − (T1y) (0)| + |(T2x) (0) − (T2y) (0)| |k(0, τ)|
∫ 1

0
|(T3x)(τ)| dτ

+ |(T2y) (0)| |k(0, τ)|
∫ 1

0
|(T3x)(τ) − (T3y)(τ)| dτ

≤ ‖T1x − T1y‖∞ + ‖T2x − T2y‖∞K‖x‖∞ + ‖T2y‖∞K‖x − y‖∞
≤ ‖T1x − T1y‖α + ‖T2x − T2y‖αK‖x‖α + ‖T2y‖αK‖x − y‖α. (3.11)

From (3.9) and (3.11), we have that

‖Fx − Fy‖α = |(Fx − Fy)(0)| + Hα
Fx−Fy

= |(Fx)(0) − (Fy)(0)|

+ sup
{
|(Fx)(t) − (Fy)(t) − ((Fx)(s) − (Fy)(s))|

|t − s|α
: t, s ∈ [0, 1] and t , s

}
≤ 2 ‖T1x − T1y‖α + (2K + kβ)‖T2x − T2y‖α‖x‖α

+(2K + kβ)‖T2y‖α‖x − y‖α
≤ 2 ‖T1x − T1y‖α + (2K + kβ)‖T2x − T2y‖α‖x‖β

+(2K + kβ)‖T2y‖β‖x − y‖α
≤ 2 ‖T1x − T1y‖α + (2K + kβ)‖T2x − T2y‖α‖x‖β

+(2K + kβ) f2(‖y‖β)‖x − y‖α. (3.12)

Moreover, since ‖x‖β ≤ r0 and ‖y‖β ≤ r0, we derive from (3.12) that the following inequality holds:

‖Fx − Fy‖α ≤ 2 ‖T1x − T1y‖α + (2K + kβ)r0‖T2x − T2y‖α
+(2K + kβ) f2(r0)‖x − y‖α. (3.13)

Since the operators T1,T2 : Hβ[0, 1] → Hβ[0, 1] are continuous on Hβ[0, 1] with respect to the norm ‖ · ‖α, they are
also continuous at the point y ∈ Bβr0 . Let us take an arbitrary ε > 0, then there exists the number δ satisfying

0 < δ <
ε

3(2K + kβ) f2(r0)

such that the inequalities

‖T1x − T1y‖α <
ε

6
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and
‖T2x − T2y‖α <

ε

3(2K + kβ)r0

hold for all x ∈ Bβr0 , where ‖x − y‖α < δ. Then, taking into account (3.13), we derive the following inequality:

‖Fx − Fy‖α < ε

for all x ∈ Bβr0 with ‖x − y‖α < δ. As a results, we infer that the operator F is continuous at the point y ∈ Bβr0 . Because
y was chosen arbitrarily, we deduce that F is continuous on Bβr0 with respect to the norm ‖ · ‖α. As Bβr0 is compact in
Hα[0, 1], from the classical Schauder fixed point theorem, we get the desired result. �
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