
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 345 

 
 

Gerçek Dünya Kısıtlı Optimizasyon Problemlerinin 

Çözümü için En Değerli Oyuncu Algoritmasının 
Değerlendirilmesi 

Araştırma Makalesi/Research Article 
 

 Sait Ali UYMAZ 

 
Department of Computer Engineering, Konya Technical University, Konya, Turkey 

sauymaz@ktun.edu.tr  
(Geliş/Received:06.02.2021; Kabul/Accepted:10.08.2021) 

DOI: 10.17671/gazibtd.875820 

 

Özet— Gerçek-dünya kısıtlı optimizasyon problemlerinin, karar değişkenlerine ek olarak kısıtlamaları ve yerel 

minimum noktaları vardır. Kısıtlamalar nedeniyle bu problemlerin arama alanları çok küçük olduğu için çözülmesi zor 

ve zaman alıcıdır. Son yıllarda, bu tür problemleri çözmek için birçok yeni meta -sezgisel algoritma önerilmiş ve kısıt 

işleme teknikleriyle birleştirilmiştir. Spor etkinliklerinden esinlenerek yakın zamanda önerilen bir meta -sezgisel 

optimizasyon algoritması olan En Değerli Oyuncu Algoritması (MVPA), matematiksel test fonksiyonları üzerinde test 

edilmiştir. Bu çalışmada, MVPA algoritması kısıt işleme teknikleri ve bazı modifikasyonlar ile birleştirilerek 19 kısıtlı 

gerçek dünya mühendislik optimizasyon problemi üzerinde test edilmiştir. Sonuçlar, kısıtları sağlayan uygun çözümler 

bulmada yüksek bir başarı oranı göstermiştir.  
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Evaluation of the Most Valuable Player Algorithm for 

Solving Real-World Constrained Optimization Problems 
 

Abstract— Real-world constrained optimization problems have constraints and local minimums in addition to decision 

variables. They are time consuming and difficult to solve since the search spaces of these problems are very small due 

to the constraints. In recent years, many new metaheuristic algorithms have been proposed and combined with 

constraint handling techniques to solve such problems. The most valuable player algorithm (MVPA), a recently 

proposed metaheuristic optimization algorithm, inspired by sports events, has been tested on  mathematical benchmark 

functions. In this study, the MVPA algorithm is combined with constraint handling techniques and some modifications 

and tested on 19 real-world constrained engineering optimization problems. The results showed a high success rate in  

finding feasible solutions.  

 

Keywords— constraint handling technique, engineering problems, metaheuristic, the most valuable player algorithm 

 

1. INTRODUCTION  

Due to its nature, real world optimization problems often 

have constraints involving both equality and inequality. 

The most challenging part of this type of problems is the 

process of constraint handling.  In the process of solving 

such problems, constraint handling technique is the key 

role to reach the successful results. The constraint 

(equality and inequality) functions narrow the search 

space and make the search process more difficult. The 

existence and excessive number of the constraints 

increase the complexity of the problem. Original versions 

of metaheuristic optimization methods were generally 

designed to search in unconstrained search spaces [1-3]. 

Constraint handling techniques are added to these 

optimization methods to guide the search in regions where 
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suitable solutions are available. Constrained problems can 

be formally described as to [4]: 

Minimize    f(X),   X=(x1,x2,…,xd)∈ Rd 

Subject to:  gi(X) ≤ 0,  i = 1,2,…,p 

and         hj(X) = 0, j = 1,2,…,m  (1) 

where      li ≤ xi ≤ ui, i = 1,2,…,d 

where f(X) is the objective function and d is the dimension 

of the problem. g(x) is the inequality constrained function 

and p is its number. h(x) is the equality function and m is 

the number of these functions. l and u are lower and upper 

boundaries which define the search space, respectively. 

In general, equality functions are transformed into 

inequality form same as Eq. 2 as follows: 

|hj(X)| – ϵ ≤ 0, j = 1,2,…,m   (2) 

Where, ϵ is set to a small value. 

In the literature, many different constraint handling 

techniques have been proposed to adapt algorithms to 

manage the search process in the regions where 

appropriate solutions exist [1, 2, 5-7]. Among these 

techniques, the oldest and the most widely used are the 

penalty methods [8-12]. The common ground of these 

approaches is to increase the fitness values of individuals 

in infeasible regions with penalty score calculated by the 

penalty functions [2]. Many metaheuristic optimization 

methods inspired from different disciplines have been 

proposed to solve the real-world constrained optimization 

problems [13-19]. 

The most valuable player algorithm (MVPA) proposed by 

Bouchekara [20] to solve unconstrained optimization 

problems. The performance of the algorithm has been 

proved on several benchmarks functions. MVPA has 

achieved the best overall results with lower function 

evaluation numbers. Due to its performance, it has been 

used in the solution of many different problems [21-24]. 

In this paper, the most valuable player algorithm (MVPA) 

which is inspired from the team sports events has been 

incorporated with constraint handling techniques and 

mutation strategy in order to deal with constrained real-

world engineering optimization problems. Dynamic and 

self-adaptive constraint handling techniques were used to 

handle constraints in this study. Additionally, the effect of 

the number of elite players and teams in the population on 

the performance of the algorithm was evaluated. 

2. MOST VALUABLE PLAYER ALGORITHM  

Most Valuable Player Algorithm (MVPA) is a meta -

heuristic algorithm proposed by Bouchekara [20]. MVPA 

is inspired from sport events where a group of teams 

which has a group of players compete to be champions. 

Two activities in these sport events underlie at the core of 

this algorithm. The first is the competition between teams 

to win the championship and the second is the 

competition between players to become the most valuable 

player (MVP). 

In MVPA, a player represents a solution in the search 

domain and is represented in Eq. 3. A team consists of a 

group of players (Eq. 4) and the entire population consists 

of teams (Eq. 5). 

Playeri = [xi,1, xi,2, xi,3, …, xi,D]   (3) 

Team j = [Playerj,1, Playerj,2, Playerj,3, …, Playerj,T] (4) 

Population = [Team1, Team2, Team3, …, TeamTS] (5) 

Where, D is dimension of the problems, T is the number 

of players in each team and TS is the number of teams in 

the population. 

At the beginning of the algorithm, players are randomly 

generated in the problem space. After that, players are 

grouped into teams. The number of teams in the 

population is determined by the TeamSize parameter in 

the algorithm. Each player tries to become the best player 

of their teams (franchise player) and MVP at the same 

time. After initialization, the competition phase starts with  

two different types, one between players (Individual 

competition) and the other between teams (Team 

competition) [20]. 

Players are affected by two different types of players 

when they try to improve themselves in individual 

competition as follows: 

𝑇𝑒𝑎𝑚𝑗 = 𝑇𝑒𝑎𝑚𝑗 +𝑟𝑎𝑛𝑑× (𝐹𝑟𝑎𝑛𝑐ℎ𝑖𝑠𝑒𝑃𝑙𝑎𝑦𝑒𝑟𝑗− 𝑇𝑒𝑎𝑚𝑗) +

2 × 𝑟𝑎𝑛𝑑× (𝑀𝑉𝑃 −𝑇𝑒𝑎𝑚𝑗)    (6) 

Where, rand is a  uniformly distributed random number 

between 0 and 1. 

It can be seen in Eq. 6 that improvement of players is 

performed together (as a team) as in training. 

In team competition, the selected Team j play against 

another randomly selected Team k. Which team wins is 

determined by a probability-based mechanism described 

in [20]. If Team j wins the competition, the players of 

Team j are updated as in Eq. 7, otherwise as in Eq. 8. 

𝑇𝑒𝑎𝑚𝑗 = 𝑇𝑒𝑎𝑚𝑗 +𝑟𝑎𝑛𝑑× (𝑇𝑒𝑎𝑚𝑗 − 𝐹𝑟𝑎𝑛𝑐ℎ𝑖𝑠𝑒𝑃𝑙𝑎𝑦𝑒𝑟𝑘) (7) 

𝑇𝑒𝑎𝑚𝑗 = 𝑇𝑒𝑎𝑚𝑗 +𝑟𝑎𝑛𝑑× (𝐹𝑟𝑎𝑛𝑐ℎ𝑖𝑠𝑒𝑃𝑙𝑎𝑦𝑒𝑟𝑘−𝑇𝑒𝑎𝑚𝑗) (8) 

After individual and team competition updating 

processes, greediness process is applied. Among the pre-

update and post-update populations, those with better 

objective function are selected. 
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In the elitism process, the best individuals whose number 

is determined by the ElitePlayer parameter is replaced the 

worst individuals in the same number.  

In the remove duplicate process, if two individuals in the 

population are the same, one of them is removed from the 

population and a new individual is produced in its place 

as described in Elsayed, et al. [25]. 

Pseudo code of most valuable player algorithm 

Objective function, f(x) 

Define parameters (TeamSize, ElitePlayer, 

NumberOfPlayers, MaxFEs) 

Initialize a population of players with random solutions 

and players are grouped into teams. 

Evaluate players and find Franchise Players of each 

team and MVP  

For i = 1: MaxFEs 

For j = 1: TeamSize 

Randomly select Teamk (𝑗 ≠ 𝑘 ) 

Individual Competition for Teamj by Eq. 6 

Team Competition between Teamj and Teamk by 

Eqs. 7-8 

end For 

Evaluate new players  

Determine new population with greediness process 

Elitism process 

Remove Duplicate process 

Update Franchise Players and MVP 

end For 

Output: MVP 

3. PROPOSED METHOD  

Original MVPA has been designed for unconstrained 

problems and tested on 100 mathematical benchmarks. To 

evaluate the performance of the method, the results were 

compared with 13 well-known meta-heuristic methods. 

Among these methods, MVPA achieved the best results 

[20]. 

In this paper, MVPA has been adapted for real-world 

constrained optimization problems. For this adaptation, 

two constraint handling techniques which are dynamic 

penalty and self-adaptive penalty have been added  to  the 

algorithm. In addition, due to the high complexity of the 

constrained problems, the mutation operator with 

different elite player number and team size was applied. 

3.1. Mutation Strategy 

Exploring the solution space of the constrained problems 

is important to achieve the quality results. Constraints 

make it difficult to find a feasible solution in search 

space. Therefore, exploring ability of the algorithm is of 

great importance. In this study, mutation strategy has been 

applied to improve the exploring ability of the algorithm. 

After competition phases, mutation strategy is applied to 

randomly selected players in each iteration. Mutation is 

applied in all problem dimensions and the number of 

players to be mutated is as large as the problem 

dimension. The selected players are generated randomly 

in search space as follows: 

𝑃𝑙𝑎𝑦𝑒𝑟𝑖 = 𝐿𝐵 + 𝑟𝑎𝑛𝑑 × (𝑈𝐵 − 𝐿𝐵)   (9) 

where, i is a  vector of selected players to be mutated, LB 

and UB contain minimum and maximum values of vectors 

for each dimension, respectively. 

3.2. Constraints Handling Strategy 

The solutions satisfied all the constraints are called 

feasible solutions. On the contrary, the solutions that do 

not satisfy at least one constraint a re called infeasible 

solutions. Searching strategy on constrained optimization 

problems focuses on finding feasible solutions that reach 

the global optimum. In the literature, different kinds of 

strategies have been proposed to handle constraints. In 

this study, two strategies based on penalty functions 

which are dynamic and self-adaptive penalty techniques 

were used to give the algorithm the ability to handle 

constraints. 

3.2.1. Dynamic Penalty 

In this technique, the aim is to increase (or decrease 

depending on the objective function) the fitness values of 

infeasible individuals by adding penalty values. These 

penalty values increase in proportion to the constraint 

function values. Transformed objective function values 

are calculated by Eqs. 10-11. 

In this technique, objective function and constraint 

functions are calculated separately but evaluated together 

for each individual (player). P(x) is a penalty value which 

is calculated dynamically. If an individual move away 

from the feasible areas, its penalty value increases as in 

Eq. 11 and therefore extended objective function value 

increases as in Eq.10. This causes the searching process to 

be concentrated in the feasible areas. 

∅(𝑥) = 𝑓(𝑥) + 𝑝(𝑥)    (10) 

𝑝(𝑥) = ∑ 𝑟1 ×max⁡(𝑔𝑖 (𝑥),0)
2𝑝

𝑖=1 + ∑ 𝑟2 ×𝑚
𝑗=1

(|ℎ𝑖(𝑥)| −ϵ)     (11) 

φ(x) is the extended objective function and p(x) is the 

penalty value. r1 and r2 are penalty factors. 

3.2.2. Self-Adaptive Penalty 

The self-adaptive penalty function used in this study was 

proposed in [9]. Two types of penalties are calculated 

when calculating the fitness value of individuals. The 

penalty values added are related to the number of 
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currently eligible individuals. As the number of eligible 

individuals increases, their penalty values decrease. 

Combined fitness value is calculated by Eq. 12. 

𝐹(𝑥) = 𝑑(𝑥) + 𝑝(𝑥)    (12) 

Where 𝑑(𝑥)  is the distance function and 𝑝(𝑥) is the 

penalty function. The detailed formulization of 𝑑(𝑥)  and 

𝑝(𝑥) are found in [9, 26]. 

4. EXPERIMENTS 

Experimental studies have been carried out in two stages. 

The first stage is to add constraint handling techniques to 

the algorithm to solve constrained optimization problems. 

The second stage is to examine the effects of mutation 

strategy and parameter settings. Parameter analysis 

focuses on the number of players to be applied elitism 

process and the number of teams in relation to the 

population. 

All experiments were conducted on 19 real-world 

constrained mechanical engineering problems in Table 1. 

These problems have decision variables between 2 and 

30, inequality constraints between 1 and 86, and equality 

constraints between 0 and 3 [4]. In Table 1, D is the 

number of decision variables, g is the number of 

inequality constraints and h is the number of equality 

constraints. f(x*) is the best known feasible solution. 

These problems have non-linear functions (objective and 

constraint) with many local minimum and very small 

feasible regions compared to the solution spaces [27]. 

The MATLAB codes of this 19 real-world engineering 

problems are available in “https://github.com/P-N-

Suganthan/2020-RW-Constrained-Optimization”. This 

benchmark suite has a diverse set of non-linear and non-

convex functions and constraints with different levels of 

difficulty. Objective functions, constraints, bounds, 

decision variables, constants and values of these constants 

are described and presented in Kumar et al [4].  

4.1. Experimental Settings 

All experiments have been implemented on MATLAB in 

a PC having Microsoft Windows 10 operating system 

with INTEL Core i7 CPU and 16 Gb RAM. The 

maximum number of functions evaluation numbers 

(𝑀𝑎𝑥𝐹𝐸𝑠) is determined by a rule using the number of 

decision variables of the problems as in Eq. 13. 

𝑀𝑎𝑥𝐹𝐸𝑠 = {
1 × 105 , 𝑖𝑓⁡𝐷 ≤ 10⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

2 × 105 , 𝑖𝑓⁡10 < 𝐷 ≤ 30
  (13) 

Algorithm is implemented independently 25 times for 

each engineering problem in Table 1. The population 

number was set to 100 in this study as recommended in 

[20]. Results of the proposed method for 25 runs are 

evaluated in terms of minimum, mean, median, worst and  

standard deviation values. In addition, to evaluate the 

performance of the method, three criteria which are 

important for constraint problems were adopted in this 

study as follows: 

 

Table 1. Summary of the 19 real-world constrained mechanical engineering problems 

Problem Name D g h f(x*) 

1 Weight Minimization of a Speed Reducer 7 11 0 2.9944244658E+03 

2 Optimal Design of Industrial refrigeration System 14 15 0 3.2213000814E-02 

3 Tension/compression spring design (case 1) 3 3 0 1.2665232788E-02 

4 Pressure vessel design 4 4 0 5.8853327736E+03 

5 Welded beam design 4 5 0 1.6702177263E+00 

6 Three-bar truss design problem 2 3 0 2.6389584338E+02 

7 Multiple disk clutch brake design problem 5 7 0 2.3524245790E-01 

8 Planetary gear train design optimization problem 9 10 1 5.2576870748E-01 

9 Step-cone pulley problem 5 8 3 1.6069868725E+01 

10 Robot gripper problem 7 7 0 2.5287918415E+00 

11 Hydro-static thrust bearing design problem 4 7 0 1.6254428092E+03 

12 Four-stage gear box problem 22 86 0 3.5359231973E+01 

13 10-bar truss design 10 3 0 5.2445076066E+02 

14 Rolling element bearing 10 9 0 1.4614135715E+04 

15 Gas Transmission Compressor Design (GTCD) 4 1 0 2.9648954173E+06 

16 Tension/compression spring design (case 2) 3 8 0 2.6138840583E+00 

17 Gear train design Problem 4 1 1 0.0000000000E+00 

18 Himmelblau’s Function 5 6 0 -3.0665538672E+04 

19 Topology Optimization 30 30 0 2.6393464970E+00 

 

1. Mean Constraint Violation (MV), which means 

average of constraint violation over 25 runs, is 

calculated as in Eq. 14. 

�̅� =
∑ max⁡(𝑔𝑖(𝑥 ̅),0)
𝑝
𝑖=1 +∑ max⁡(|ℎ𝑗(𝑥 ̅)|−𝜖,0)

𝑚
𝑗=𝑝+1

𝑚
 (14) 

where 𝜖 is set to 0.0001. 
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2. Feasibility Rate (FR) is the ratio of runs with feasible 

solutions to the total number of runs. FR is calculated 

as in Eq. 15. 

𝐹𝑅 = ⁡
𝑇𝑜𝑡𝑎𝑙⁡𝐹𝑒𝑠𝑖𝑏𝑙𝑒 ⁡𝑅𝑢𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 ⁡𝑅𝑢𝑛𝑠
   (15) 

3. Success Rate (SR) is the ratio of runs obtained from 

feasible solution satisfying Eq. 16 to the total number 

of runs. 

𝑓(𝑥̅) − 𝑓(𝑥̅ ∗) ≤ 10−4   (16) 

4.2. Performance Comparison   

Two-stage experiments were conducted in this study. 

Initially, standard parameters recommended by [20] were 

used to demonstrate performance of the method on 

constrained engineering problems.  

Stage 1 

- Performance of the algorithm with constraint 

handling techniques on real-world constrained 

engineering problems.  

Stage 2 

- Performance of the algorithm with and without 

mutation strategy. 

- The effect of ElitePlayer parameter on the algorithm. 

- The effect of TeamSize parameter on the algorithm. 

5. RESULTS 

The detailed results obtained from the algorithm with 

constraint handling techniques are demonstrated in this 

section. Results were analyzed in two stages. First, the 

pure algorithm was combined with the handling technique 

and the results are shown in Table 2. In the second stage, 

the effect of the mutation strategy on performance of the 

method is shown in Table 3. Table 4 and Table 5 show 

the effects of number of elite player and teams, 

respectively. The comparisons are based on the mean 

values, FR, MV and SR criteria of 25 independent runs. 

As seen in Table 2, dynamic penalty technique is 

significantly superior to self-adaptive penalty technique. 

Self-adaptive penalty technique is only better than 

dynamic penalty technique on four-stage gear box 

problem which has many constraints. In second stage 

studies, dynamic penalty technique was used because of 

its performance. 

Table 2. Performance of MVPA with constraint handling techniques 
 MVPA with Dynamic Penalty MVPA with Self-Adaptive Penalty 

Problem Mean FR MV SR Mean FR MV SR 

1 2.994E+03 1.00 0.00E+00 0.96 2.994E+03 0.92 2.34E-10 0.68 

2 1.635E-01 0.84 1.01E-02 0.24 1.503E+00 0.96 1.12E-08 0.00 

3 1.272E-02 1.00 0.00E+00 1.00 1.278E-02 1.00 0.00E+00 0.84 

4 6.410E+03 1.00 0.00E+00 0.00 6.108E+03 0.00 7.70E+00 0.00 

5 1.670E+00 1.00 0.00E+00 0.96 1.672E+00 0.88 3.80E-08 0.36 

6 2.639E+02 1.00 0.00E+00 1.00 2.639E+02 0.64 5.05E-12 0.64 

7 2.352E-01 1.00 0.00E+00 1.00 2.806E-01 1.00 0.00E+00 0.32 

8 7.689E-01 0.96 9.09E-04 0.00 6.683E-01 0.88 1.09E+04 0.00 

9 1.705E+01 1.00 0.00E+00 0.12 1.739E+01 0.00 1.18E-04 0.00 

10 3.016E+00 1.00 0.00E+00 0.00 8.210E+00 1.00 0.00E+00 0.00 

11 2.552E+03 1.00 0.00E+00 0.00 2.068E+03 0.68 5.76E+01 0.00 

12 1.123E+02 0.00 1.01E+00 0.00 8.371E+01 0.64 1.14E+01 0.00 

13 5.321E+02 1.00 0.00E+00 0.00 5.324E+02 0.00 2.20E-04 0.00 

14 1.696E+04 1.00 0.00E+00 0.00 1.698E+04 0.16 1.44E-03 0.00 

15 2.965E+06 1.00 0.00E+00 0.00 2.965E+06 0.64 2.05E-08 0.00 

16 2.699E+00 1.00 0.00E+00 0.00 2.659E+00 0.04 1.09E+03 0.00 

17 2.416E-30 1.00 0.00E+00 1.00 1.129E+00 1.00 0.00E+00 0.04 

18 -3.067E+04 1.00 0.00E+00 1.00 -3.067E+04 0.00 3.85E-06 0.00 

19 2.639E+00 1.00 0.00E+00 1.00 8.808E+01 1.00 0.00E+00 0.00 

 
Table 3 shows that, 

- According to FR metric, the rate of finding feasible 

solutions with the mutation strategy increases in 

problems 2, 8 and 12.  

- According to the SR metric, the quality of the 

feasible solutions found with the mutation strategy 

increases in problems 1, 2, 5, 9 and 11.  

- Although the FR, MV and SR values are the same in 

problems 4, 10, 13 and 17, the quality of the average 

values of the solutions increases with the mutation 

strategy. 

- When the mutation strategy was not used, FR, MV 

and SR values did not change in problems 3 and 16, 

but partial improvement was observed in the average 

values.  

- Solution qualities remained the same for 6, 7, 14, 15, 

18 and 19 problems. 
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Table 3. Results of the constrained MVPA with and without muta tion strategy 
 Without Mutation With Mutation 

Problem Mean FR MV SR Mean FR MV SR 

1 2.994E+03 1.00 0.000E+00 0.96 2.994E+03 1.00 0.000E+00 1.00 

2 1.635E-01 0.84 1.014E-02 0.24 4.936E-02 1.00 0.000E+00 0.32 

3 1.272E-02 1.00 0.000E+00 1.00 1.277E-02 1.00 0.000E+00 1.00 

4 6.410E+03 1.00 0.000E+00 0.00 6.371E+03 1.00 0.000E+00 0.00 

5 1.670E+00 1.00 0.000E+00 0.96 1.670E+00 1.00 0.000E+00 1.00 

6 2.639E+02 1.00 0.000E+00 1.00 2.639E+02 1.00 0.000E+00 1.00 

7 2.352E-01 1.00 0.000E+00 1.00 2.352E-01 1.00 0.000E+00 1.00 

8 7.689E-01 0.96 9.091E-04 0.00 7.484E-01 1.00 0.000E+00 0.00 

9 1.705E+01 1.00 0.000E+00 0.12 1.628E+01 1.00 0.000E+00 0.40 

10 3.016E+00 1.00 0.000E+00 0.00 2.810E+00 1.00 0.000E+00 0.00 

11 2.552E+03 1.00 0.000E+00 0.00 2.284E+03 1.00 0.000E+00 0.08 

12 1.123E+02 0.00 1.013E+00 0.00 1.218E+02 0.04 5.286E-01 0.00 

13 5.321E+02 1.00 0.000E+00 0.00 5.281E+02 1.00 0.000E+00 0.00 

14 1.696E+04 1.00 0.000E+00 0.00 1.696E+04 1.00 0.000E+00 0.00 

15 2.965E+06 1.00 0.000E+00 0.00 2.965E+06 1.00 0.000E+00 0.00 

16 2.699E+00 1.00 0.000E+00 0.00 2.903E+00 1.00 0.000E+00 0.00 

17 2.416E-30 1.00 0.000E+00 1.00 0.000E+00 1.00 0.000E+00 1.00 

18 -3.067E+04 1.00 0.000E+00 1.00 -3.067E+04 1.00 0.000E+00 1.00 

19 2.639E+00 1.00 0.000E+00 1.00 2.639E+00 1.00 0.000E+00 1.00 

 
Table 4. Results of constrained MVPA with mutation strategy and different number of elite players (N: Population size)  

 N/2 N/3 N/4 

Prob. Mean FR MV SR Mean FR MV SR Mean FR MV SR 

1 2.994E+03 1.00 0.00E+00 1.00 2.994E+03 1.00 0.00E+00 1.00 2.994E+03 1.00 0.00E+00 1.00 

2 4.664E-02 0.92 5.07E-03 0.28 4.936E-02 1.00 0.00E+00 0.32 1.840E+00 0.96 2.54E-03 0.08 

3 1.279E-02 1.00 0.00E+00 1.00 1.277E-02 1.00 0.00E+00 1.00 1.275E-02 1.00 0.00E+00 1.00 

4 6.091E+03 1.00 0.00E+00 0.00 6.371E+03 1.00 0.00E+00 0.00 6.371E+03 1.00 0.00E+00 0.00 

5 1.670E+00 1.00 0.00E+00 0.92 1.670E+00 1.00 0.00E+00 1.00 1.670E+00 1.00 0.00E+00 0.88 

6 2.639E+02 1.00 0.00E+00 0.96 2.639E+02 1.00 0.00E+00 1.00 2.639E+02 1.00 0.00E+00 1.00 

7 2.352E-01 1.00 0.00E+00 1.00 2.352E-01 1.00 0.00E+00 1.00 2.352E-01 1.00 0.00E+00 1.00 

8 6.882E-01 1.00 0.00E+00 0.00 7.484E-01 1.00 0.00E+00 0.00 7.791E-01 1.00 0.00E+00 0.00 

9 1.705E+01 1.00 0.00E+00 0.12 1.628E+01 1.00 0.00E+00 0.40 1.709E+01 1.00 0.00E+00 0.16 

10 2.903E+00 1.00 0.00E+00 0.00 2.810E+00 1.00 0.00E+00 0.00 2.963E+00 1.00 0.00E+00 0.00 

11 2.572E+03 1.00 0.00E+00 0.00 2.284E+03 1.00 0.00E+00 0.08 2.753E+03 1.00 0.00E+00 0.00 

12 9.999E+01 0.00 7.61E-01 0.00 1.218E+02 0.04 5.29E-01 0.00 1.027E+02 0.00 5.75E-01 0.00 

13 5.322E+02 1.00 0.00E+00 0.00 5.281E+02 1.00 0.00E+00 0.00 5.313E+02 1.00 0.00E+00 0.00 

14 1.696E+04 1.00 0.00E+00 0.00 1.696E+04 1.00 0.00E+00 0.00 1.696E+04 1.00 0.00E+00 0.00 

15 2.965E+06 1.00 0.00E+00 0.00 2.965E+06 1.00 0.00E+00 0.00 2.965E+06 1.00 0.00E+00 0.00 

16 2.903E+00 1.00 0.00E+00 0.00 2.903E+00 1.00 0.00E+00 0.00 2.699E+00 1.00 0.00E+00 0.00 

17 7.378E-25 1.00 0.00E+00 1.00 0.000E+00 1.00 0.00E+00 1.00 0.000E+00 1.00 0.00E+00 1.00 

18 -3.067E+04 1.00 0.00E+00 1.00 -3.067E+04 1.00 0.00E+00 1.00 -3.067E+04 1.00 0.00E+00 1.00 

19 2.639E+00 1.00 0.00E+00 1.00 2.639E+00 1.00 0.00E+00 1.00 2.639E+00 1.00 0.00E+00 1.00 

 
In the light of these analyzes, it has been seen that the 

mutation strategy has a successful effect on the results. 

Therefore, the method with the mutation strategy was 

used in subsequent analyzes. 

As seen in Table 4,  

- For all parameters, results are the same in six 

problems (1, 7, 14, 15, 18 and 19). 

- FR values of results with all parameter values are the 

same except for problems 2 and 12. N/3 parameter 

results are better than others in these problems. 

- In terms of quality of feasible solutions, N/3 

parameter value is slightly better than others. 

According to Table 5, 

- When the number of teams was 20, 10 and 5, feasible 

solutions were found for all runs (25 runs) in 18, 16 

and 14 problems, respectively. 

- When FR values are equal for all parameters, 

according to SR values, 20 Teams better than others 

in problems 3, 5, 6, 9 and 11. 

- In 10 problems where FR and SR values are equal for 

all team size, 20 Teams achieve better results in 

terms of mean values. 
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Table 5. The results of the constrained MVPA with mutation strategy and different number of team size  
 TeamSize=5 TeamSize=10 TeamSize=20 

Prob. Mean FR MV SR Mean FR MV SR Mean FR MV SR 

1 2.994E+03 1.00 0.000E+00 1.00 2.994E+03 0.96 2.961E-18 0.80 2.994E+03 1.00 0.000E+00 1.00 

2 1.635E-01 1.00 0.000E+00 0.16 4.617E-02 0.96 2.536E-03 0.32 4.936E-02 1.00 0.000E+00 0.32 

3 1.282E-02 1.00 0.000E+00 0.76 1.287E-02 1.00 0.000E+00 0.92 1.277E-02 1.00 0.000E+00 1.00 

4 6.410E+03 1.00 0.000E+00 0.00 6.371E+03 1.00 0.000E+00 0.00 6.371E+03 1.00 0.000E+00 0.00 

5 1.670E+00 1.00 0.000E+00 0.84 1.670E+00 1.00 0.000E+00 0.92 1.670E+00 1.00 0.000E+00 1.00 

6 2.639E+02 1.00 0.000E+00 0.88 2.639E+02 1.00 0.000E+00 0.96 2.639E+02 1.00 0.000E+00 1.00 

7 2.352E-01 1.00 0.000E+00 1.00 2.352E-01 1.00 0.000E+00 1.00 2.352E-01 1.00 0.000E+00 1.00 

8 5.900E-01 0.92 1.000E-02 0.04 6.600E-01 1.00 0.000E+00 0.00 7.484E-01 1.00 0.000E+00 0.00 

9 1.608E+01 0.96 4.752E-05 0.48 1.712E+01 1.00 0.000E+00 0.24 1.628E+01 1.00 0.000E+00 0.40 

10 2.993E+00 1.00 0.000E+00 0.00 2.876E+00 1.00 0.000E+00 0.00 2.810E+00 1.00 0.000E+00 0.00 

11 2.766E+03 0.92 1.085E-05 0.00 2.599E+03 1.00 0.000E+00 0.04 2.284E+03 1.00 0.000E+00 0.08 

12 8.252E+01 0.00 6.886E-01 0.00 9.538E+01 0.00 6.618E-01 0.00 1.218E+02 0.04 5.286E-01 0.00 

13 5.342E+02 1.00 0.000E+00 0.00 5.309E+02 1.00 0.000E+00 0.00 5.281E+02 1.00 0.000E+00 0.00 

14 1.696E+04 1.00 0.000E+00 0.00 1.696E+04 1.00 0.000E+00 0.00 1.696E+04 1.00 0.000E+00 0.00 

15 2.965E+06 1.00 0.000E+00 0.00 2.965E+06 1.00 0.000E+00 0.00 2.965E+06 1.00 0.000E+00 0.00 

16 2.903E+00 1.00 0.000E+00 0.00 2.699E+00 1.00 0.000E+00 0.00 2.903E+00 1.00 0.000E+00 0.00 

17 1.552E-26 1.00 0.000E+00 1.00 1.112E-30 1.00 0.000E+00 1.00 0.000E+00 1.00 0.000E+00 1.00 

18 -3.067E+04 1.00 0.000E+00 1.00 -3.067E+04 1.00 0.000E+00 1.00 -3.067E+04 1.00 0.000E+00 1.00 

19 2.639E+00 1.00 0.000E+00 1.00 2.639E+00 1.00 0.000E+00 1.00 2.639E+00 1.00 0.000E+00 1.00 

 
Table 6. The detailed results of the proposed method 

Problem Min Mean Median Max Std. FR MV SR 

1 2.994E+03 2.994E+03 2.994E+03 2.994E+03 0.000E+00 1.00 0.00E+00 1.00 

2 3.221E-02 4.936E-02 8.178E-01 5.935E+00 1.429E+00 1.00 0.00E+00 0.32 

3 1.270E-02 1.277E-02 1.285E-02 1.322E-02 1.562E-04 1.00 0.00E+00 1.00 

4 6.060E+03 6.371E+03 6.399E+03 7.333E+03 3.847E+02 1.00 0.00E+00 0.00 

5 1.670E+00 1.670E+00 1.670E+00 1.670E+00 1.010E-11 1.00 0.00E+00 1.00 

6 2.639E+02 2.639E+02 2.639E+02 2.639E+02 4.277E-05 1.00 0.00E+00 1.00 

7 2.352E-01 2.352E-01 2.352E-01 2.352E-01 1.133E-16 1.00 0.00E+00 1.00 

8 5.300E-01 7.484E-01 8.909E-01 2.157E+00 4.623E-01 1.00 0.00E+00 0.00 

9 1.607E+01 1.628E+01 1.653E+01 1.712E+01 4.885E-01 1.00 0.00E+00 0.40 

10 2.544E+00 2.810E+00 2.962E+00 4.866E+00 5.431E-01 1.00 0.00E+00 0.00 

11 1.625E+03 2.284E+03 2.359E+03 4.474E+03 7.123E+02 1.00 0.00E+00 0.08 

12 5.905E+01 1.218E+02 1.303E+02 2.932E+02 5.657E+01 0.04 5.29E-01 0.00 

13 5.248E+02 5.281E+02 5.284E+02 5.326E+02 2.678E+00 1.00 0.00E+00 0.00 

14 1.696E+04 1.696E+04 1.696E+04 1.706E+04 2.034E+01 1.00 0.00E+00 0.00 

15 2.965E+06 2.965E+06 2.965E+06 2.965E+06 1.781E+01 1.00 0.00E+00 0.00 

16 2.659E+00 2.903E+00 2.872E+00 3.203E+00 1.593E-01 1.00 0.00E+00 0.00 

17 0.000E+00 0.000E+00 6.299E-20 1.220E-18 2.465E-19 1.00 0.00E+00 1.00 

18 -3.067E+04 -3.067E+04 -3.067E+04 -3.067E+04 3.561E-12 1.00 0.00E+00 1.00 

19 2.639E+00 2.639E+00 2.639E+00 2.639E+00 2.209E-15 1.00 0.00E+00 1.00 

 
At the end of all the experimental studies performed, it is 

seen that, the best results were obtained using the 

dynamic penalty technique and mutation strategy. When 

effect of the number of elite player and teams in the 

population is examined, it is clear that the best parameter 

values are N/3 for the number of elite players and 20 for 

the number of teams. The detailed results of the final 

method are given in Table 6. 

As seen in Table 6, proposed method has achieved the 

feasible solutions for all independent runs except problem 

12. In problem 12, only one time has been found the 

feasible solution. According to the SR parameter, the 

quality of the feasible solutions in 8 problems is 

satisfying. In problem 2, 9 and 11, results are partly of 

good quality. 

6. DISCUSSION AND CONCLUSION 

This paper introduces a modification of MVPA designed 

for the real-world constrained engineering problems. 

Dynamic and self-adaptive penalty techniques depending 

on the value and count of constraint violation and 

mutation strategy were used for adaptation to such 

problems. Self-adaptive penalty is better than dynamic 

penalty in only one problem called Four-stage gear box 

problem. This problem is the most challenging problem in 

this set. This problem has 22 design parameters, 86 
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constraints and its feasible region is in ratio less than 

0.0001 with many local minima. Self-adaptive penalty is 

more complicated and has better explora tion ability. 

However, dynamic penalty uses the search process more 

efficiently. Additionally, the performance of the method 

was tested by setting two parameters with different 

values.  

Although the proposed method is successful and 

consistent in finding feasible solutions, the quality of the 

solutions can be further improved. Therefore, as 

recommendation for further studies, the ability of 

exploration and exploitation of the algorithm can be 

strengthened by developing different 

exploitation/exploration balance strategies for MVPA. In 

addition, various adaptive versions of the algorithm can 

be developed. 
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