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ABSTRACT. In this study, we introduce some geometric properties of quasi-hemi-slant conformal submersions from
an almost Hermitian manifold to a Riemannian manifold. We give an explicit example for this type submersions
and obtain integrability conditions for certain distributions. Lastly, we search totally geodesicity on base manifold
of the map.
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1. INTRODUCTION

The theory of Riemannian submersions between Riemannian manifolds was initially studied by O’Neill [12] and
Gray [7]. Then, this theory was expansed to almost Hermitian submersions between almost Hermitian manifolds [23].
After these studies, this theory was widely studied in [6, 19]. Sahin defined various types of Riemannian submersions
from an almost Hermitian manifold onto a Riemannian manifold such as anti-invariant submersions [15], semi-invariant
submersions [17] and slant submersions [16], see also [9,13,20]. Also, Sahin gave some main results about Riemannian
submersions and an application on robotic theory [18]. Therefore, a new vision on submersions by applying confor-
mality conditions was presented by Akyol and Sahin [2]- [4], see also [8, 14]. Riemannian submersions have many
applications as texture mapping, remeshing and simulation [10], computer graphics and medical imaging fields [21],
brain mapping research [22].

In this study, in Section 2, we give some basic notions to be used along this study. In Section 3, we define quasi-hemi-
slant conformal submersion from an almost Hermitian manifold onto a Riemannian manifold which is the expansion of
conformal semi-slant submersions [1], conformal semi-invariant submersions [3], conformal hemi-slant submersions
[8]. We introduce some geometric properties for quasi-hemi-slant conformal submersions. In Section 4, we give some
conditions for certain distributions to define totally geodesic foliation on base manifold.

Email addresses: syanan@adiyaman.edu.tr ($. Yanan)


https://orcid.org/0000-0003-1600-6522

Quasi-Hemi-Slant Conformal Submersions from Almost Hermitian Manifolds 136

2. PRELIMINARIES

In this section, we give several definitions and results to be used throughout the study for quasi-hemi-slant conformal
Riemannian submersions.

An even-dimensional Riemannian manifold (M, gy, J) is called an almost Hermitian manifold if there exists a tensor
field J of type (1, 1) on M such that J> = —I where I denotes the identity transformation of 7M and

en(X,Y) = gu(JX, JY),VX, Y € T(TM). 2.1)

Let (M, gy, J) be an almost Hermitian manifold and its Levi-Civita connection is V with respect to gy. If J is
parallel with respect to V, i.e.

(VxJ)Y =0, (2.2)

we say M is a Kdhler manifold [24].
Let®: (M,g,,) — (N, g,) be a smooth map between Riemannian manifolds. The second fundamental form of @
is defined by

N
(VO)X, ¥) = V2O.() - 0.(VyY) 2.3)

for X,Y € I'(TM). The second fundamental form V®, is symmetric [11]. Here, @, is differential map of @ from
tangent space of M at a point x € M to tangent space of N at ®(x) such that @, : T\M — TpyN.

A smooth map ® : (M™,g,) — (N",g,) between Riemannian manifolds is called a Riemannian submersion
if @ has maximal rank and the differential @, preserves the lengths of horizontal vectors. On the other hand, let
®:M,g,) — (N, g,) be a smooth map between Riemannian manifolds and p € M. Then, ® is called horizontally
weakly conformal at p if either (i) @., = 0 or (ii) ®., is surjective and there exists a number A(p) # 0 such that

gN(D@.p(X), @,y (Y)) = A(P)gm (X, Y)

for X, Y € T'((ker ®.)*). We call the point p is of type (i) as a critical point and we shall call the point p a regular point
if it satisfied the type (ii). At a critical point, rank(®.,) = 0, at a regular point, ., has rank »n and ® is a submersion.
Additionally, the positive number A(p) is called the square dilation of @ at p. The map @ is called horizontally weakly
conformal or semi conformal on M if it is horizontally weakly conformal at every point of M and it has no critical
point, then we call it as a horizontally conformal submersion [5].

If a vector field X on M is related to a vector field X' on N, we say X is a projectable vector field. If X is both a
horizontal and a projectable vector field, we say X is a basic vector field on M. From now on, when we mention a
horizontal vector field, we always consider a basic vector field [5].

Then, O’Neill’s tensor fields 7 and A for Riemannian submersions are defined as

M M
AxY = hV;xvY + vV, xhY, 2.4)

M M
TxY = hV xvY +vV xhY, (25)

for X,Y € I'(T M) with the Levi-Civita connection AVé[ of gy. For any X € I'(TM), Tx and Ay are skew-symmetric
operators on (I'(T M), g) reversing the horizontal and the vertical distributions. Also, T is vertical, Tx = T,x, and A is
horizontal, Ay = A;x. Note that the tensor field T is symmetric on the vertical distribution [12]. In addition, from (2.4)
and (2.5) we have

M

VyV = TyV+VyV, (2.6)
M M

VuX = hVyX+TyX, 2.7
M M

va = Axv + VVxV, (28)
M M

Vi¥ = hVyY +AxY 2.9)

. M
for X, Y € I'((ker®,)*) and U, V € I'(ker®,), where ViV = vV V [6].
From [5], we have the following lemma.
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Lemma 2.1. Suppose that ® : (M™, g, ) — (N", g,) is a horizontally conformal submersion. Then, we have

(VO)X,Y) = X(InD)P.(Y)+ Y(In )D.(X) — gu(X, Y)D.(grad(In 2)), (2.10)
Vo), V) = -0(TyV) (2.11)
(VOIX, V) = -O.(AxV). (2.12)

for any horizontal vector fields X, Y and vertical vector fields U,V [5]. Here, A is the dilation of ® at a point x € M
and it is a continuous function as A : M — [0, o0).

3. Quasi-HEMI-SLANT CONFORMAL RIEMANNIAN SUBMERSIONS

Firstly, we give definition of quasi-hemi-slant Riemannian submersions from almost Hermitian manifolds to Rie-
mannian manifolds.

Definition 3.1. Let ® : (M, g,,.J) — (N, g,) be a conformal submersion such that its vertical distribution ker®,
admits three orthogonal distributions D, Dy and D, which are invariant (J(D) = D), slant (the angle 6 between Dy and
J(Dy) is a constant) and anti-invariant (J(D,) C (ker®,)"), respectively, i.e.

ker®, =D@®Dy® D, . 3.D
Then, we say @ is a quasi-hemi-slant conformal submersion and the angle 6 is called the quasi-hemi-slant angle of the
map.
Here, we have some particular cases;

i) If the distribution D = {0} then the map @ is a conformal hemi-slant submersion [8].
ii) If the distribution Dy = {0} then the map @ is a conformal semi-invariant submersion [3].
iii) If the distribution D, = {0} then the map ® is a conformal semi-slant submersion [1].
Hence, quasi-hemi-slant conformal submersions are generalization of conformal hemi-slant submersions, conformal
semi-invariant submersions and conformal semi-slant submersions.
Let®:(M,g,,J) — (N, g,) be a quasi-hemi-slant conformal submersion. Then we have

TM = ker®, @ (ker®,)". (3.2)
A vertical vector field U can written as
U=PU+QU+RU (3.3)
where P, O and R are projections onto D, Dy and D, respectively. We get
JU = ¢U +yU (3.4)
where ¢U € I'(ker®,) and yU € I'((ker®,)"). From (3.3), (3.4) and Definition 3.1, we obtain yPU = 0, ¢RU = 0 and
JU = ¢PU + ¢QU + ¢ QU + yRX. (3.5)
Hence, we can write
J(ker®,) = D® ¢pDg® YDy ® J(D,). (3.6)
Using (3.6), we have
(ker®,)" = yDg® J(D.) ®u (3.7)

where y is the orthogonal complement distributions of Dy @ J(D_) in (ker®.)* and u is the invariant with respect to
J. Lastly, for a horizontal vector field X, we have

JX=BX+CX (3.8)

where BX € T(WDy & J(D,)) and CX € I'().
Here that one can easily see from (3.1) - (3.7);

¢Dy = Dy, ¢D, ={0}, ByDy= Dy, ByD, =D, ¥D = {0}, (3.9)
*+By=-I yp+Cy=0, yB+C>=-I, ¢B+BC =0 (3.10)

where I is the identity operator on the total space of ®.
Now, we give an example to understand quasi-hemi-slant conformal submersions better.
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Example 3.2. A map ® : R® — R* is defined by

X1 + X3
(x1, X2, X3, X4, X5, X6, X7, Xg) — ( ,Xs,xs,xs)-
Then, we get the horizontal distribution
1 0 0 0 0 0
ker® ) =7 = —(—+—),Zr = —,Z3s = —.,Z4 = — ¢,
(ker®.) { 1= 5 e T o BT a4 axg}
and the vertical distribution
0 0 0 0 0
ker®, =V, = — Vo= — V3= — V4= — — — .
er { ! 0XQ 2 8)64 3 6367 4 6X| 6x3}

Hence, using complex structure J = (—x», X1, —X4, X3, —Xg, X5, —Xg, X7) of R® on the distributions, we obtain

1
J(Z)) = _Z(Vl + Vo), J()=-Z3, J(Z3) =2, J(Zy)=-V3,

V2
V2 1 V2 o1
J(Vp) = —721 - §V4, J(Vy) = —721 + §V4, J(V3) =24, J(Va) =V =V
Therefore, we get D = sp{V4}, Dy = sp{V1, Va}, Dy = sp{V3}, u = sp{Zy, Z3}, J(D1) = sp{Zs} and y Dy = sp{Z,}. One

can see that @ is a quasi-hemi-slant conformal submersion with A = A% = 1 and quasi-hemi-slant angle 6 = 3

In the rest of this study, we assume that @ : (M, g,,,J) — (N, g,,) is a quasi-hemi-slant conformal submersion from
a Kihler manifold (M, g,,, J) to a Riemannian manifold (¥, g,). We have the following lemma which has the same
proof for quasi-hemi-slant submersions.

Lemma 3.3. Let®: (M, g,,,J) — (N, g,) be a slant submersion. Then,

—-¢*X = cos*6X, 3.11)
8, (60X, ¢Y) = cos” 0g,, (X, Y), (3.12)
8, (WX, ¥Y) = sin® 0g, (X, Y) (3.13)

for X, Y e I'(Dy) [16].
Throughout this section, we give necessary and sufficient conditions to be integrability for distributions.

Theorem 3.4. Let ® : (M, g,,,J) — (N, g,) be a quasi-hemi-slant conformal submersion. Then, the distribution Dg
is integrable if and only if

~ ~ A ~ ~ M ~
8 (VD)(Vo, pPE), DY V1)) = 8, (VD)(V1, $PE), D. (Y V2)) = (g, (Vv,¢PE + Ty, yRE, §V1) = g, (hV v, yRE, V)

M < A ~ <
+ g/w(hVVZIvag, lyl’Vl) - gM (VVI ¢P§ + TV1 Ir//Rf’ ¢V2)}
for Vi, Vo el'(Dg)andé eT(D@® D,).

M M
Proof. Since M is a Kéhler manifold, we have g,,(Vy, V2, &) = =g, (Vy, JE, JV,) for Vi, Vo, € I(Dg) and é e (D@ D, ).
So, we get from (2.6), (2.7), (3.3) and (3.4)

M M - M ~
-8,(VvJE,JV2) = =g, (Vy,¢PE+ Vy YRE ¢Va + §V2)

~ - - - M -
=8y (Vv @PE + Ty YRE, 9V2) — 8, (T, pPE + hVy YRE, Y V7). (3.14)
Changing the roles of V; and V; in (3.14), we have second part of g, ([V1, V2], &). Hence, from (2.11) we obtain

8 (V1. V21,8) = g, (Vy,¢PE + Ty, yRE, ¢V1) — g, (Vy, 0PE + Ty, WRE, $V>)

Mo Mo
+ 8 (hVWYURE Y V1) — g, (WVy WRE V)

1 ~ -
+ 2 8 (VOI)(V1, 6P%), @.(4V2)) = 8, (VO.)(V2, §PE), D.(Y V1)) (3.15)

The proof is completed from (3.15). O



S. Yanan, Turk. J. Math. Comput. Sci., 13(1)(2021), 135-144 139

In a similar way, we have the following theorem.

Theorem 3.5. Let ® : (M, g,,J) — (N, g,) be a quasi-hemi-slant conformal submersion. Then, the distribution D is
integrable if and only if

P(Vy, Q¢ + Ty,yé) =0
for Uy, Uy eT'(D)and é eT'(Dy® D).

Proof. Using (2.2), (2.6), (2.7) and (3.5), we have

M ~ ~ ~
-8, (Vu,00¢ + Y Q& + YRE, JU,)
~8,(Vu,00¢ + Ty, y Q& + Ty YRE, JU») (3.16)

for Uy, U, e I(D) and € € T(Dy ® D, ). Now, since ¢(OQ¢ + RE) = & and from (3.16) we obtain

M
8.(Vy, Uz, &)

£, (U1, U21,8) = g,(Vu, 0 + Ty, JUY) — 8, (Vu, ¢ O + Ty yé, JU,). (3.17)

Since D is an invariant distribution, we have JU,, JU, € I'(D). Therefore, we obtain the proof from (3.17). |

Here, integrability condition of the anti-invariant distribution D, is same as the condition for hemi-slant submersions
in [20]. In addition, we know that the vertical distribution of a submersion is always integrable. Hence, we lastly give
integrability condition for the horizontal distribution (kerd®,)*.

Theorem 3.6. Let ® : (M,g,.J) — (N,g,) be a quasi-hemi-slant conformal submersion. Then, the distribution
(ker®.,)"* is integrable if and only if

N N
& (VO.)(Z1, BZy) = (VO.)(Za, BZ1) + V3, ®.(CZ1) = Vg, ©.(CZ), .. ()

M M
= 2%g,,(Wy, BZy — vy, BZ,,¢€) + A%g, (A7, CZy — Az, CZy, $¢) — CZy(In A)g,,(Zy, YE)
+Yé(In g, (Z1,CZ) + CZi(In A)g,,(Zr, yé) — wé(n g, (2>, CZy)

for Z,,Z, € T((ker®,)*) and & € T(ker®,).

Proof. Firstly, from (2.8), (2.9), (3.4) and (3.8), we have

M M M
gM(VZIZQ,f) = gM(AZI BZQ + ]’lel CZz, lﬁé") + gM(VVZI BZZ + Azl CZz, ¢§) (318)

for Z,,7, € T'((ker®,)*) and & € I'(ker®,). Now, changing the roles of Z; and Z, in (3.18), we get

M M
8uZ1,2,),6) = g,(AzBZy + hVz CZy — Az, BZ) — hV7,CZ, &)
M M
+gM(VVZ] BZZ + AZ, CZQ - VVZZBZI - AZZCZI . ¢§) (319)

Hence, using equations (2.3), (2.10), (2.12) in (3.19) and since u is orthogonal to Dy @ J(D ), we obtain

M M 1
0 = g,(WzBZy+AzCZy —vVgz,BZ) — Az,CZy, $é) + EgN((V(D*)(Zz, BZ)) — (VO.)(Z\, BZ,), D.(y€))

1 N N
+ﬁgN(V§1 D,(CZy) — V9 ®.(CZy), ©.(yé)) — CZo(In Vg, (Z1, &) + Yé(In N)g,, (Z1,CZ)
+CZ\(In D), (Zy, &) — yé(In Dg,,(Z2, CZ)). (3.20)

One can see the proof from (3.20). m|
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4. TortaLLy GEODESICNESS ON DISTRIBUTIONS

In this section, we present conditions for certain distributions and the map ® to define totally geodesic foliations on
M.

Theorem 4.1. Let ® : (M, g,,,J) — (N, g,) be a quasi-hemi-slant conformal submersion. Then, the distribution D
defines totally geodesic foliations on M if and only if

D) g, (Vu,JU2,$0€) = ,(VO)(U1, JU2), D.(YE)),
i) g, (Vy,JUs, BZ) = g,(VO.)(U\, JU2), ©.(C2))

are provided for Uy, U, € T(D), £ e T(Dy ® D) and Z € T'((ker®,)*).
Proof. Firstly, from (2.6), (2.11) and (3.4) we have
M N
8,(Vu, U2, 8 = g, Ty, JU¥E) + g, (Vy, JUs, &)
1 .
—ﬁgN((th)(Uu JUy), ©.(6)) + 8, (Vu, JUz, &) 4.1)
for Uy, U, e T'(D) and ¢ € T'(Dy & D). On the other hand, from (2.6), (2.11) and (3.8) we have

M N
gM(VUl U2>Z) gM(TU1JU2aCZ)+gM(VU1JU25BZ)

1 .
—ﬁgN((Vq)*)(Uh JU,), @.(C2)) + g,,(Vu,JUs, BZ). (4.2)
We obtain (i) and (ii) from (4.1) and (4.2), respectively. |

Theorem 4.2. Let ® : (M, g,,,J) — (N, g,) be a quasi-hemi-slant conformal submersion. Then, the distribution Dy
defines totally geodesic foliations on M if and only if

A~ M - - -
i) —Acos® 08, (Vy,OV2,8) + g, (hV v,y OV, yRE)} = g, (VO.)(V1,E), O.(ypQV2))
+2, (VO)(Vy, ¢PE), (Y OV»)),

M 5 M ~ ~
iy g, (hVyv,upQVs,Z) + g, (hVy,yQV>,CZ)} = cos® g, (VD.)(Vi, QV2), D.(Z))
-2, (VO.)(V1, BZ), ®.(¢yQV>))
are provided for V|, V, € I(Dy), £ e (D ® D) and Z € T((ker®.)").

Proof From equations (2.6), (2.7), (2.11), (3.11) and skew-symmetry properties of T we have
(Vi Vad) = cos?lg,(Vy, 0Va,8) + 8, (T OV, &) + 8, (Ty, Y OVa, 6PE) + g, iV, yOVa, URE)
= cos? g, (T, 0V5, &) — g, (T & 0bOV2) — g, (T, 8PEYOV) + 8, (1 v,y OV, URE)
= cos? 0, (Fy, OV, &) + g, (WY, OVa, YRE)
#58, (VOIV, 6, D090V + 158, (TO)V:, 9PE), ©.(40V2) “3)
for Vi, Vs € T(Dy) and £ € [(D @ D, ). In a similar way, from (3.8) we have

M M M N ~ M ~
gM(VV] V2,Z) = COS2 GgM(VV] QVZ,Z) + gM(hVV1 lﬁ¢QV2,Z) - gM(TVl BZ, lﬁQVg) + gM(hVVllﬂQVZ, CZ)

~ M ~ 1 ~ Mo
= cos’0g,(Tv,0V2,2) + g, (hVy,y¢QV>, Z) + ﬁgN((V(D*)(VI »BZ), ©.(yQV2)) + 8,/ (hVy, Yy QV>,CZ)

1 - M N
— cos’ 058, (VO)(V1, 0V2), 0u(2) + £, (hVy, Y0V, )

1 ~ Mo
+ﬁgN((V<D*)(V1, BZ),0.(yOQV2)) + g, (hVy,y OV, CZ) (4.4)

for V1, V5 € I'(Dy) and Z € T'((ker®.)*). We obtain (i) and (ii) from (4.3) and (4.4), respectively. |
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Theorem 4.3. Let ® : (M, g,,,J) — (N, g,) be a quasi-hemi-slant conformal submersion. Then, the distribution D,
defines totally geodesic foliations on M if and only if

M -
i) =g, (hVw, JWa, y0€) = g, (VO.) (W), $), D.(JW2)),
M
i) —A%g, (hVw,CZ,JW,) = g, (VD.)(Wy, BZ), ©.(JW>))
are provided for Wy, W, € (D), £ € T(D @ Dy) and Z € T'((ker®,)™").

Proof. Since the distribution D is invariant from (3.3) and (3.4) we have J¢ = ¢& + yQ&. So, we get using skew-
symmetry properties of 7', (2.7) and (2.11)

M ~
gM(TWl JWs, ¢§) + 8y (hVW] JWa, l//Qf)
M ~
= —8,(Tw,¢&, IW2) + &, (hVyw, JW2, Y Q&)

1 M ~
= ﬁgN((VCD*)(W1 ,98), D.(IW2)) + &, (hVw, JW2, Y Q8) 4.5)
for Wi, W, e (D, ) and & € T'(D @ Dy). Similarly, from (2.6), (2.7), (3.4) and (3.8) we get

M
8y (Vw, W2,6)

M M
8, (Vw,Wr,2) -8, (Tw,BZ + hVy,CZ, JW>)

1 M
EgN((Vd)*)(Wu BZ), ®.(JW2)) + g, (hVw,CZ, JW>) (4.6)
for Wy, W, e (D) and Z € T'((ker®.,)*). We obtain (i) and (ii) from (4.5) and (4.6), respectively. |

Theorem 4.4. Let ® : (M, g,,,J) — (N, g,) be a quasi-hemi-slant conformal submersion. Then, the vertical distribu-
tion ker®., defines totally geodesic foliations on M if and only if

M » - M - N - ~ M ~
/lz{gM(hvfllﬂng + TeYyRE, CZ) — 8, (W 5 Y $ 062, Z) + 8, (Ve §PE + T Y 062 + vV YRS, BZ)}
= cos” 0, (VD.)(¢1, 06), ©.(2)) + g, (VD.)(E1, pPE), D.(CZ))
is provided for &1, &, € T(ker®.) and Z € T'((ker®,)*).

M
Proof. We calculate the case of g, (V¢ &,Z) = 0 for &1,& € T'(ker®,) and Z € I'((ker®,)*). So, (2.6), (2.7) and (3.5)
we have

M - ~ - -
8u(Ve, 9PE + 0&E + Y Q& + YRES, JZ)
~ M ~ ~
= 8,(Tg¢PE + hV Q& + T YyRE, CZ)
N - - M -
+gM(V§1 ¢P§2 + TleQfZ + vaf] ¢R§2, BZ)

Mo M B
8, (Ve, " Q&) + Ve w06, 7). 4.7)

Here, we use equations (2.11) and (3.11) in (4.7). Hence, we obtain

M
8.(Ve,&2,2)

- M ~ -
8u(Te,¢PE + WV Q& + T WRE, CZ)
N - - M -
+gM(V§1 ¢P§2 + T§1¢Q§2 + val ';DRé:Z’ BZ)
~ M ~
+cos? 0g,,(Tg, 062, Z) — 8, (hV e,y 06>, Z)

1 ~ Mo -
= —ﬁgN((VCD*)(&, $PE), ©.(CZ)) + 8, (hV e Y Q& + T, yRE>, CZ)

0

o - ~ Mo
+gM (Vrfl ¢P§2 + Tf] ‘/’sz + VV-f] lpRgZ’ BZ)

1 - M N
— cos’ 038, (V)& 06), @.(2)) = 8,1V, Y9062, 7) (4.8)

The proof is completed from (4.8). O
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Theorem 4.5. Let ® : (M,g,.,J) — (N,g,) be a quasi-hemi-slant conformal submersion. Then, the horizontal
distribution (ker®.)* defines totally geodesic foliations on M if and only if

1 M
E{gN((Vq)*)(Zu BZ,), ©.(y€)) — 8,(VO.)(Zy, ), D.(CZ))} = g,z BZy, ¢€) + CZy(In Vg, (Z1, )

-¥é(n g, (Z,,CZ)
is provided for Z,,7Z, € T'((ker®,)*) and £ € T'(ker®.,.).

Proof. Using equations (2.2), (2.8), (2.9) and (3.4), we get

M M M
gM(VzlzZ’ f) = gM(VZI BZZ + VZ] CZZ’ ¢{: + Wé:)

M M
= 8,(AzBZ + hNz CZy,y&) + 8,,(Wz BZy + Az, CZ,, $§) (4.9)

for Z,,Z, € T((ker®,)*) and & € T'(ker®,). Here, we apply (2.10), (2.12), (3.8) to (4.9) and from skew-symmetric
properties of A, we obtain

M 1
8u(V2,2,8) = —ﬁgN((VCD*)(Zl . BZy), 0.(¥€)) + CLo(In D)g,, (Z1,48) — Yé(In D)g,, (Z1,CZy)
M 1
+84 (W2, B2, 48) + 28, (VR.)(Z1, $5), ©.(CZ2)). (4.10)
The proof is completed from (4.10) O

Note that, a horizontally conformal submersion ® : (M, g,,,J) — (N, g,) is said to be horizontally homothetic if
the gradient of its dilation A is vertical, i.e., h(gradA) = 0 at regular points [19]. Hence, we have the following.

Corollary 4.6. Let @ : (M,g,.J) — (N,g,) be a quasi-hemi-slant conformal submersion. Then, the horizontal
distribution (ker®.)* defines totally geodesic foliations on M if and only if
1) @ is a horizontally homothetic map,

M
i) g,(VO.)(Z1, BZy), ©.(€)) — 8, (VD.)(Z1, ¢é), D.(CZ2)) = A°8,, (W7, BZy, )
are provided for Z,,7, € T'((ker®,)*) and & € T(ker®,).

Proof. Because of @ defines totally geodesic foliations on M, we have (4.10). Suppose that @ is a horizontally homo-
thetic map, we have from (4.10)

0 = CZL(n g, (Z1,¥€) — y&(n Vg, (Z1,CZ) (4.11)
for Zy,7, € I'((ker®,)*) and & € I'(ker®,). Here, if we take Z; = £ in (4.11) we get
0 = CZ,(In Vg, (&, ). (4.12)
In (4.12), we get 0 = CZ,(In A) and it means A is a constant on y. Similarly, if we take Z; = CZ, in (4.11) we get
0 = —y&(n g, (CZ,, CZy). (4.13)

In (4.13), we get 0 = ¥£(In A) and it means A is a constant on ¥ Dy & J(D ). Therefore, from (4.12) and (4.13) we say
that A is a constant on horizontal distribution. So, (i) is satisfied. Now, if (i) is satisfied in (4.10), we obtain

1 1
0= ——ng((VQJ WZy, BZy), ©.(y§)) + gM(szl BZ,,9¢) + gN((Vq) W2y, ¢6), D.(CZy)). (4.14)
From (4.14), (ii) is satisfied. The proof is completed. |

A horizontally conformal submersion @ : (M, g,,,J) — (N, g,) is said to be totally geodesic if second fundamental
form of the map (V®,)(X,Y) = 0 for X, Y € I'(TM) [4]. Hence, we have the next theorem.

Theorem 4.7. Let ® : (M, g,,,J) — (N, g,) be a quasi-hemi-slant conformal submersion. Then, the map ® is totally
geodesic if and only if

i) cos? 0T, Q& = thl vp0é, + C{T§, P& + thl Wér) + YV pPE + Ty piés),
i) 0= C{Az ¢é1 + hVZ,‘ﬁfl} + lﬁ{VVzlif’fl + Az pér}
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iii) @ is a horizontally homothetic map
are provided for Z,,7Z, € T'((ker®,)*) and &,,&; € T(ker®,).

Proof. Firstly, we examine (V®,)(&, &) for &,&, € T'(ker®,). Because of yQé&, + yRE, = yé, we have from (2.2),
(2.3) and (3.5)

Mo ~
(VO.)(&1,6) = O(IVgdPE + ¢QE + YEr)
for &,&, € I'(ker®..). Then, using equations (2.6), (2.7) and (3.11) have

(VO,)(&1,6) = O.(JTsdpPé + IV ¢PE)
M - M -
+®,(Ve, ¢* 06 + Vi, yp Oér)

M
+O.(JTe &z + JhV £ E2)
= O(CT;¢PE + YV pPE)

M M ~
—cos? 00,(V¢, 0&2) + . (hV s, Yy d &)
M
+O. (YT pér + ChVg yér)
~ M 2 ~
= (I)*(C{Tf1 ¢P‘§2 + hvflw‘fZ} + W{V‘f] ¢P‘f2 + Tf] sz})

~ M ~
— o8 0D, (T, 0&,) + D.(hVe, b O&y). (4.15)

We obtain (i) from (4.15). Second fundamental form of a map is symmetric. So, we have (V®.,)(&1,Z1) = (VO.)(Z, &)
for Z, € T'((ker®.)*) and &; € I'(ker®.). From (2.3), (2.8), (2.9) and (3.4) we obtain

M M
(VO )Z1,E) = O(JIVzeé + IV PEr)

M M
O, (JAz ¢&1 + Iz, ¢&1) + (JAZ Y& + JThV 7 Y&1)

M M
= O, (CAZ & +YvVz ¢é1) + O (YAZ Yé + ChV 2 yé)). (4.16)

We obtain (ii) from (4.16). Lastly, from (2.10) we have
(VO.)(Z1,Zy) = Zi(In)P.(Z2) + Zo(In VP(Zy) — gm(Zy, Zr)P.(grad(In A)) 4.17)

for Z,,2Z, € I'((ker®,)*). For Z; in (4.17) we obtain
0 = Z(Ing,(P.(Z)), D(Z1))

0 = AZ(Ind)g,(Z,,7Z)). (4.18)
In (4.18), we get Z,(In1) = 0. It means A is a constant on horizontal distribution. So, the map is horizontally
homothetic. (iii) is satisfied. The proof is completed. O
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