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Abstract  
  
We introduce a reduced-order endoreversible model of a Vuilleumier refrigerator for waste heat recovery. Based on 
the Vuilleumier cycle, in this refrigerator a working gas is alternately displaced between three subsystems that are in 
thermal contact with external heat reservoirs. Regarding refrigeration performance, very crucial components of the 
Vuilleumier machine are its two regenerators. For obtaining a sufficiently accurate model of the Vuilleumier machine, 
it is hence essential to incorporate a proper description of the regenerators. This can be achieved by using one-
dimensional continuum models, e.g. with a finite volume approach, which brings about a large number of degrees of 
freedom and significant numerical effort. As opposed to that, the model presented in this paper utilizes a novel 
modeling ansatz for the regenerators that reduces the number of degrees of freedom per regenerator to three. It leads 
to a considerable reduction in numerical effort and computation time and is hence predestined for applications like 
design and control optimizations. For an exemplary set of design parameters and operational conditions, we validate 
the model against a detailed finite volume model of the regenerators in order to work out limitations and perspectives. 
  
Keywords: Endoreversible thermodynamics; regenerator; Vuilleumier refrigerator; numerical simulation. 

  
1. Introduction 

Various types of heat engines, refrigerators and heat 
pumps utilize thermal regenerators to approach the ideal 
representation of the thermodynamic cycle they are designed 
to perform. The concept of thermal regeneration was 
invented by Robert Stirling as part of his Stirling engine 
patent from 1816 [1,2]. Thermal regenerators are usually 
made from a porous (metal) structure, referred to as matrix. 
During the thermodynamic cycle, they are periodically 
flushed by alternating hot and cold flows of working gas, so 
that a certain spatial temperature profile forms in the matrix, 
which additionally oscillates temporally over the course of 
the cycle. Essentially, regenerators serve to buffer and 
provide heat for enhancing the efficiency or other 
performance measures of the cycle. 

An ideal thermal regenerator is characterized by a 
reversible heat exchange between the flowing gas and the 
matrix with vanishing temperature difference. That is, it 
takes heat from the gas at certain temperatures during one 
phase of the cycle, and releases it to the gas at the very same 
temperatures during another phase of the cycle. Then, 
provided no pressure drop or other irreversibilities occur, no 
entropy is produced.  

As opposed to this idealized description, in real 
regenerators several different inevitable loss phenomena 
lead to the production of entropy, and correspondingly to the 
degradation of the machine’s performance. Therefore, a 
proper model of the regenerator, taking into account the most 
important loss phenomena, is a key factor for the accurate 
prediction of performance measures of the overall machine.    

Conventional modeling approaches for regenerators may 
be roughly divided into two categories. The first category 
encompasses models that describe the regenerator in an 
integral manner, using a characteristic quantity referred to as 

regenerator effectiveness [3-9]. The regenerator effective-
ness may be modeled based on analytic solutions of an 
idealized regenerator or empirical correlations. It is a 
function of the operational conditions, such as the 
temperatures of the hot and cold gas flow, which alternately 
enter the regenerator. Given the value of the regenerator 
effectiveness, the temperature differences by which the hot 
gas flow is cooled and the cold gas flow is heated in the 
regenerator can be estimated. However, the regenerator 
effectiveness approach usually requires the temperatures of 
the alternately entering hot and cold gas flows to be constant 
over time at the entrance points. This limits the applicability 
of this approach to specific technical configurations. 

A more general and detailed description of regenerators 
can be achieved by considering them as discretized continua 
[10-13], e.g. in terms of a one-dimensional finite volume 
approach, leading to a nodal model. Such models may be 
counted to the second category of regenerator modeling 
approaches. Their advantages of enhanced generality and 
accuracy are however accompanied by a large number of 
degrees of freedom and considerable numerical effort.  

In this paper, we present an endoreversible model of a 
Vuilleumier refrigerator. In this model, the regenerators are 
described in an integral manner with solely three degrees of 
freedom, while not being restricted to constant inflow 
temperatures. The regenerator modelling approach rests 
upon the abstract notion of an internally reversible 
regenerator, which internally conserves both energy and 
entropy. Generalizing this notion, internal loss phenomena 
are accounted for by introducing source terms to the entropy 
balance equation. The three degrees of freedom essentially 
correspond to the energy and entropy contained in the 
regenerator matrix as well as the particle number of the 
working gas in the dead space of the regenerator.   
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1.1 Vuilleumier refrigerator 
The Vuilleumier refrigerator [14] operates according to 

the homonymous thermodynamic cycle, in which heat is 
exchanged with three external heat reservoirs at different 
temperatures, in the following referred to as high, medium, 
and low. The Vuilleumier cycle can be considered as 
composed of two subcycles. One of them is operated 
between the high and the medium temperature external 
reservoirs and acts as an engine. This means it takes heat 
from the high temperature reservoir, rejects heat to the 
medium temperature reservoir and produces power. The 
produced power is internally provided to the second 
subcycle, which acts as a refrigerator between the medium 
and low temperature external reservoirs. In each subcycle, 
one regenerator serves to reduce entropy production and 
enhance the cycle performance.  

The technical application considered in this work is a 
Vuilleumier refrigerator for waste heat recovery on 
refrigerator trucks. Here, the goal is harnessing the residual 
exergy of the exhaust gas of the truck’s combustion engine 
so that the truck’s overall efficiency is enhanced and CO2 
emissions are reduced. The design and process parameters 
used in the following correspond to a scaled-down 
experimental setup. In Figure 1 the basic design concept of 
the Vuilleumier refrigerator considered in this work is 
shown. Both regenerators are integrated into the cylinders of 
the machine in order to obtain a compact design. The overall 
gas volume of the system is constant. The two regenerators 
separate the high, medium, and low temperature subsystems, 
where the medium temperature subsystem consists of two 
working spaces connected by transfer ports. Changes in the 
volume of the working spaces are achieved by displacing the 
two regenerators.  

Figure 1.  Basic design concept of the Vuilleumier 
refrigerator [15]. (Figure is in color in the on-line version of 
the paper.) 

The results of the reduced-order model with 
endoreversible regenerators (ERR) will be compared to the 
results of a more detailed nodal model with finite volume 
regenerators (FVR). This FVR model is based on a previous 
publication [15].  In the FVR model, each regenerator is 
discretized by 15 cells so that it features 45 degrees of 
freedom per regenerator. Since for the current work only 
minor changes have been made to the FVR model, we will 
here only include an abridged description and refer to [15].  

 
1.2 Endoreversible Thermodynamics 

The developed reduced-order regenerator model is based 
on the concept of Endoreversible Thermodynamics [16-18], 
which is a subfield of finite-time thermodynamics [19-22]. 
In Endoreversible Thermodynamics, thermodynamic 
systems are described as networks of internally reversible 
subsystems that are connected by reversible or irreversible 
interactions. The aim is to capture the system’s main loss 
mechanisms while obtaining a clear and comprehensible 

mathematical structure with low computational effort. It has 
been used in different applications, see for example [23-40], 
and in particular for Stirling engines [41-49]. In the 
following, the endoreversible notation used in the remainder 
of this paper is introduced. There are two different basic 
kinds of subsystems, which form the nodes of an 
endoreversible network: Engines and reservoirs, sche-
matically shown in Figure 2a and Figure 2b, respectively. 

 
Figure 2.  Schematics of selected endoreversible building 
blocks. Gold dashed arrows: Energy fluxes; Solid arrows: 
Extensity fluxes; Green solid arrow: Entropy flux. (Figure is 
in color in the online version of the paper.)  

A reservoir 𝑖𝑖 is characterized by a state function 𝐸𝐸𝑖𝑖(𝑋𝑋𝑖𝑖𝛼𝛼) 
that determines its energy dependent on the contained 
extensities 𝑋𝑋𝑖𝑖𝛼𝛼. Here 𝛼𝛼 identifies those extensive quantities, 
such as entropy 𝑆𝑆, particle number 𝑛𝑛, and volume 𝑉𝑉. Each 
extensity is related to a certain intensity 𝑌𝑌𝑖𝑖𝛼𝛼  via the state 
function according to 𝑌𝑌𝑖𝑖𝛼𝛼 = 𝜕𝜕𝐸𝐸𝑖𝑖/𝜕𝜕𝑋𝑋𝑖𝑖𝛼𝛼. In the case of the 
aforementioned extensities, the intensities are temperature 
𝑇𝑇𝑖𝑖 = 𝑌𝑌𝑖𝑖S, chemical potential 𝜇𝜇𝑖𝑖 = 𝑌𝑌𝑖𝑖n, and pressure -𝑝𝑝𝑖𝑖 = 𝑌𝑌𝑖𝑖V.  

In reservoirs, internal reversibility means that they are 
assumed to be in thermodynamic equilibrium at any time. 
Every flux 𝐽𝐽𝑖𝑖,𝑟𝑟𝛼𝛼  of an extensity enters or exits the reservoir at 
a contact point 𝑟𝑟 with the reservoir’s internal intensity value. 
In other words, for reservoirs 𝑌𝑌𝑖𝑖,𝑟𝑟S = 𝑌𝑌𝑖𝑖S holds. Each such 
extensity flux carries an associated energy flux 𝐼𝐼𝑖𝑖,𝑟𝑟𝛼𝛼 = 𝐽𝐽𝑖𝑖,𝑟𝑟𝛼𝛼  𝑌𝑌𝑖𝑖,𝑟𝑟𝛼𝛼 . 
Based on that, the dynamics of the reservoir is formulated in 
terms of a set of conservation equations – one equation per 
extensity considered. 

Engines, schematically shown in Figure 2a, are energy 
conversion devices. They can either operate continuously or 
cyclically. Here, we only consider continuously operating 
engines, which cannot buffer extensities and energy, but only 
pass them on. Such engines are characterized by a set of 
balance equations, one for each extensity and one for energy. 
In order to satisfy all those balance equations, the intensities 
𝑌𝑌𝑖𝑖,𝑟𝑟𝛼𝛼  generally need to differ from contact point to contact 
point of the engine. Note, that this is in contrast to the 
equality of intensities at all the contact points of a reservoir. 

Between the reservoirs and engines of an endoreversible 
system, reversible or irreversible interactions are defined, as 
schematically depicted in Figure 2c and Figure 2d, 
respectively. In this figure, examples of interactions with 
three contact points are shown. The minimum number of 
contact points that an interaction can have is two. Reversible 
interactions are visualized with straight arrows, irreversible 
interactions with wavy arrows. In reversible interactions, all 
extensities and energy are conserved. In contrast, in 
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irreversible interactions entropy is produced, whereas all 
other extensities and energy are conserved. Therefore, an 
irreversible interaction requires at least one entropy contact 
for the disposal of the produced entropy. 
 
2. Endoreversible regenerator model 

As described above, thermal regenerators are devices that 
cyclically exchange heat with the working gas in such a way 
that unnecessary entropy production is reduced. The starting 
point of the development of the presented endoreversible 
regenerator model is an internally fully reversible 
regenerator R, a device that internally conserves both energy 
and entropy. It features contact points with two different 
temperatures 𝑇𝑇R,H

  and 𝑇𝑇R,L
 . In order to obtain a description 

with few degrees of freedom, we assume that the spatial 
temperature distribution in the regenerator matrix is linear 
between those two temperatures. Furthermore, we assume 
that the temperature difference between matrix and working 
gas is very small so that the temperatures of working gas 
flowing out of the regenerator on its hot and cold side can be 
approximated by 𝑇𝑇R,H

  and 𝑇𝑇R,L
 , respectively. 

Given the matrix properties are homogeneous, energy 𝐸𝐸R  
and entropy 𝑆𝑆R  contained in the regenerator matrix can be 
expressed as functions of the contact point temperatures 𝑇𝑇R,H

  
and 𝑇𝑇R,L

 . These expressions can be approximated by 
polynomials and then inverted so that one obtains the 
functions 𝑇𝑇R,H

 (𝐸𝐸R , 𝑆𝑆R ) and 𝑇𝑇R,L
 (𝐸𝐸R , 𝑆𝑆R ) [50].  

The internal endoreversible structure of the regenerator 
model is shown in Figure 3. The regenerator R is represented 
by the large box with rounded edges that includes two heat 
reservoirs, a gas reservoir, and an engine. Each of the two 
heat reservoirs (subscripts R.h and R.l) is defined to have half 
the heat capacity of the regenerator matrix, that is 𝐶𝐶R.h =
𝐶𝐶R.l = 𝐶𝐶R/2. Then, the total energy and entropy of the 
regenerator matrix are 𝐸𝐸R = 𝐸𝐸R.h

 + 𝐸𝐸R.l
  and 𝑆𝑆R = 𝑆𝑆R.h

 +
𝑆𝑆R.l

 , respectively. The gas reservoir (subscript R.d) 
represents the dead space of the regenerator and is 
maintained at the logarithmic mean temperature 𝑇𝑇�R,H,L

  of 
𝑇𝑇R,H

  and 𝑇𝑇R,L
 . 

 
2.1 External irreversibilities 

Additionally, in Figure 3 two adjacent external gas 
reservoirs H and L are illustrated. Each of them is connected 

with the respective side of the regenerator. The 
corresponding interactions describe gas flows to and from 
the regenerator that are represented by coupled extensity 
fluxes of particles and entropy (multi-extensity fluxes 
[27,28]). The pressure at the regenerator contact points is 
defined to be equal to the pressure of the respective adjacent 
gas reservoir. As opposed to that, the temperatures 𝑇𝑇𝑖𝑖  and 
𝑇𝑇R,𝑖𝑖

  (𝑖𝑖 ∈ {H, L}) generally differ from another. Therefore, 
these external interactions are irreversible. The associated 
entropy production is considered external. To be precise, in 
the following it will be strictly discriminated from internal 
entropy production that is due to irreversibilities inside the 
regenerator.  

At the contact points 𝑖𝑖 ∈ {H, L} of the regenerator R, the 
energy and entropy fluxes are defined dependent on the flow 
direction of the working gas. For a gas flow exiting the 
regenerator (𝐽𝐽R,𝑖𝑖

n < 0) the overall energy flux is determined 
as 𝐼𝐼R,𝑖𝑖

 = 𝑐𝑐p 𝑇𝑇R,𝑖𝑖
  𝐽𝐽R,𝑖𝑖

n  and the entropy flux as 𝐽𝐽R,𝑖𝑖
𝑆𝑆 =

𝑠𝑠(𝑇𝑇R,𝑖𝑖
 , 𝑝𝑝𝑖𝑖 ) 𝐽𝐽R,𝑖𝑖

n . Here, 𝑐𝑐p is the molar isobaric heat capacity 
and the function 𝑠𝑠(𝑇𝑇, 𝑝𝑝) is the molar entropy of the working 
gas. For a gas flow entering the regenerator (𝐽𝐽R,𝑖𝑖

n ≥ 0), the 
energy flux is determined as 𝐼𝐼R,𝑖𝑖

 = 𝑐𝑐p 𝑇𝑇𝑖𝑖  𝐽𝐽R,𝑖𝑖
n  with the 

temperature 𝑇𝑇𝑖𝑖  of the adjacent gas reservoir 𝑖𝑖. The entropy 
flux entering the regenerator is 𝐽𝐽R,𝑖𝑖

𝑆𝑆 = (𝑠𝑠(𝑇𝑇𝑖𝑖 , 𝑝𝑝𝑖𝑖 )  + 𝜎𝜎) 𝐽𝐽R,𝑖𝑖
n  

with the external molar entropy production 𝜎𝜎. For an ideal 
gas and zero pressure drop we obtain  

 
𝑠𝑠(𝑇𝑇, 𝑝𝑝) = 𝑐𝑐p  ln 𝑇𝑇

𝑇𝑇g0
 − 𝑅𝑅 ln 𝑝𝑝

𝑝𝑝g0
 + 𝑠𝑠g0, (1) 

 

𝜎𝜎 = 𝑐𝑐p �ln
𝑇𝑇R,𝑖𝑖

 

𝑇𝑇𝑖𝑖
 + 𝑇𝑇𝑖𝑖

 

𝑇𝑇R,𝑖𝑖
 − 1�, (2) 

 
with the ideal gas constant 𝑅𝑅 and the molar entropy 𝑠𝑠g0 at 
reference conditions 𝑇𝑇g0  and 𝑝𝑝g0 . 
 
2.2 Contact point temperatures 

As mentioned above, the contact point temperatures 𝑇𝑇R,𝑖𝑖
  

of the regenerator are defined as functions 𝑇𝑇R,H
 (𝐸𝐸R , 𝑆𝑆R ) and 

𝑇𝑇R,L
 (𝐸𝐸R , 𝑆𝑆R ) of the energy and entropy contained in the 

regenerator matrix in approximate accordance with a linear 
spatial temperature distribution [50].  

Figure 3.  Schematics of the endoreversible regenerator R with two adjacent gas reservoirs H and L. The regenerator is 
composed of two heat reservoirs (grey filling color), a gas reservoir, and an engine. (Figure is in color in the on-line version 
of the paper.) 
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For the regenerator’s internal endoreversible structure 
presented in Figure 3, the energy contained in the regenerator 
matrix is 𝐸𝐸R = 𝐸𝐸R.h

 + 𝐸𝐸R.l
  and the entropy is 𝑆𝑆R = 𝑆𝑆R.h

 +
𝑆𝑆R.l

 . The two respective reservoir entropies, in turn, can be 
calculated as 𝑆𝑆R.h

 = 𝐶𝐶R.h
 ln(𝐸𝐸R.h

 (𝐶𝐶R.h
  𝑇𝑇R0 )⁄ ) + 𝑆𝑆R0 2⁄  and 

𝑆𝑆R.l
 = 𝐶𝐶R.l

 ln(𝐸𝐸R.l
 (𝐶𝐶R.l

  𝑇𝑇R0 )⁄ ) + 𝑆𝑆R0 2⁄ . Here, 𝑆𝑆R0  is the 
entropy of the regenerator matrix at reference temperature 
𝑇𝑇R0 . These expressions can be inserted into 𝑇𝑇R,H

 (𝐸𝐸R , 𝑆𝑆R ) and 
𝑇𝑇R,L

 (𝐸𝐸R , 𝑆𝑆R ) to obtain the contact point temperatures as 
functions of the two internal heat reservoirs’ energies [50]: 

𝑇𝑇R,H
 ≔ 𝐸𝐸R.h+𝐸𝐸R.l

𝐶𝐶R
 �1 +

𝐸𝐸R.h−𝐸𝐸R.l
|𝐸𝐸R.h−𝐸𝐸R.l|

�- 5
3

+ �
25
9

+ 20 ln (𝐸𝐸R.h+𝐸𝐸R.l)/2

�𝐸𝐸R.h
  𝐸𝐸R.l

 �, (3) 

𝑇𝑇R,L
  ≔ 𝐸𝐸R.h+𝐸𝐸R.l

𝐶𝐶R
 �1 −

𝐸𝐸R.h−𝐸𝐸R.l
|𝐸𝐸R.h−𝐸𝐸R.l|

�- 5
3

+ �
25
9

+ 20 ln (𝐸𝐸R.h+𝐸𝐸R.l)/2

�𝐸𝐸R.h
  𝐸𝐸R.l

 �. (4) 

Details on the derivation of these expressions can be found 
in [50] on pages 35 to 53. 

2.3 Regenerator dynamics 
The dynamics of the regenerator follows from the 

balance equations for energy, entropy, and particles as well 
as the requirement that the temperature of the internal gas 
reservoir is maintained at the logarithmic mean temperature 
𝑇𝑇�R,H,L

 ≔ (𝑇𝑇R,H
 − 𝑇𝑇R,L

 )/ ln(𝑇𝑇R,H
 /𝑇𝑇R,L

 ). The dynamics can be 
expressed as [50] 

�̇�𝐸R.h = 𝐼𝐼R.h =

 𝐽𝐽R,H
S   +  𝐽𝐽R,L

S   +  ΣR
S   −  𝐽𝐽R.d

S   +  𝐶𝐶R.l
 𝐸𝐸R.l

 ⁄  �𝐼𝐼R.d
   −  𝐼𝐼R,H

   −  𝐼𝐼R,L
 �

𝐶𝐶R.h
 𝐸𝐸R.h

 ⁄ − 𝐶𝐶R.l
 𝐸𝐸R.l

 ⁄
, (5) 

�̇�𝐸R.l = 𝐼𝐼R.l =

 𝐽𝐽R,H
S   +  𝐽𝐽R,L

S   +  ΣR
S   −  𝐽𝐽R.d

S   +  𝐶𝐶R.h
 𝐸𝐸R.h

 ⁄  �𝐼𝐼R.d
   −  𝐼𝐼R,H

   −  𝐼𝐼R,L
 �

𝐶𝐶R.l
 𝐸𝐸R.l

 ⁄ − 𝐶𝐶R.h
 𝐸𝐸R.h

 ⁄
, (6) 

�̇�𝑛R.d = 𝐽𝐽R.d
n = 𝐽𝐽R,H

n   +   𝐽𝐽R,L
n , (7) 

using the following definition of the fluxes to the internal gas 
reservoir: 

𝐼𝐼R.d
 = 𝑐𝑐v 𝑇𝑇�R,H,L

   𝐽𝐽R.d
n + 𝑐𝑐v 𝑛𝑛R.d 𝑇𝑇�̇R,H,L

 , (8) 

𝐽𝐽R.d
S = �𝑠𝑠�𝑇𝑇�R,H,L

 , 𝑝𝑝R.d� − 𝑅𝑅� 𝐽𝐽R.d
n +  𝑐𝑐v 𝑛𝑛R.d

𝑇𝑇�R,H,L
 𝑇𝑇�̇R,H,L

 . (9) 

S

The particle fluxes 𝐽𝐽Rn,𝑖𝑖 (𝑖𝑖  ∈ {H, L}) are in this work modeled 
dependent on the pressure differences (𝑝𝑝𝑖𝑖 − 𝑝𝑝R.d) according 
to Lu et al. [51] neglecting inertia. The term ΣR in Eqs. (5) 
and (6) is an entropy source term that introduces internal 
irreversibilities to the regenerator. This is addressed in the 
next subsection. In this work, only operational conditions are 
considered in which the temperature gradient in the 
regenerator does not approach zero so that no additional 
stabilization [50] of Eqs. (5) and (6) is required. 
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2.4 Internal irreversibilities 
In this paper, three different kinds of internal 

irreversibilities are considered. They relate to the internal 
irreversibilities included in the nodal model [15], against 
which the present model is validated. The entropy source 
term ΣRS  from Eqs. (5) and (6) can correspondingly be 
expressed as 

ΣRS = ΣR
S,Δp + ΣR

S,leak + ΣR
S,trans. (10) 

The first term accounts for the irreversibility due to the 
pressure drop across the regenerator [50]:  

ΣR
S,Δp = 𝐽𝐽R,H

n  𝑅𝑅 ln 𝑝𝑝R,H
𝑝𝑝R.d

+ 𝐽𝐽R,L
n  𝑅𝑅 ln 𝑝𝑝R,L

𝑝𝑝R.d
. (11) 

The second term describes an internal heat leak, which is 
due to heat conduction between the hot and cold side of the 
regenerator [50]:  

ΣR
S,leak ≔ 𝐾𝐾Rleak �

𝑇𝑇R,H
 

𝑇𝑇R,L
 + 𝑇𝑇R,L

 

𝑇𝑇R,H
 − 2�. (12) 

Here, 𝐾𝐾Rleak is the effective heat conductance of the 
regenerator matrix filled with gas.  

The third term describes an irreversibility that is due to a 
finite local temperature difference between working gas and 
regenerator matrix. Even though this temperature difference 
is assumed small, the associated irreversibility is significant. 
This is because of the large energy fluxes that the working 
gas exchanges with the regenerator matrix. The small 
temperature difference between working gas and regenerator 
matrix is assumed homogeneously distributed across the 
regenerator as Δ𝑇𝑇Rleak ≔ (𝐼𝐼R.h + 𝐼𝐼R.l)/𝐾𝐾Rtrans, where 𝐾𝐾Rtrans 
is the heat conductance between working gas and matrix. 
Based on that, a local entropy production density is defined 
and integrated over the regenerator for the given linear 
temperature profile. The resulting entropy source term 
is [50]: 

ΣR
S,trans ≔  𝐼𝐼R.h + 𝐼𝐼R.l

𝑇𝑇R,H
  − 𝑇𝑇R,L

  ln �𝑇𝑇R,L
  + Δ𝑇𝑇R

leak

𝑇𝑇R,H
  + Δ𝑇𝑇R

leak  𝑇𝑇R,H
 

𝑇𝑇R,L
 �. (13) 

In the FVR model, the heat conductance between matrix 
and gas is defined dependent on the gas temperature, density, 
and velocity. Hence, it varies throughout the regenerator. As 
opposed to that, in the ERR model 𝐾𝐾Rtrans is calculated with 
spatial average values. 

3. Vuilleumier refrigerator model
The structure of the reduced-order model with

endoreversible regenerators (ERR), shown in Figure 4, is 
inherited from the nodal model with finite volume 
regenerators (FVR), shown in Figure 5. The three infinite 
external heat reservoirs are depicted in the lower part of the 
figures. They have the constant temperatures 𝑇𝑇ExH, 𝑇𝑇ExM, and 
𝑇𝑇ExL. The external reservoirs are directly connected by two 
irreversible entropy interactions that describe heat 
conduction in the cylinders of the machine. Above the 
external reservoirs, slices of the cylinder heads and bases are 
represented by finite heat reservoirs with grey filling color. 

The four gas reservoirs H, MH, ML, and L stand for the 
four working spaces of the machine. The functions 𝑉𝑉H(𝑡𝑡), 
𝑉𝑉MH(𝑡𝑡), 𝑉𝑉ML(𝑡𝑡), and 𝑉𝑉L(𝑡𝑡) are defined according to the 
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control of the regenerator positions via a crank shaft with 
finite connecting rod lengths.  

Above the four working spaces there are four more solid 
reservoirs which represent parts of the regenerator 
assemblies. In the ERR model (Figure 4), the endoreversible 
regenerators RH and RL are represented by light-grey boxes 
with rounded edges. In contrast to Figure 3, in Figure 4 the 
regenerators have two additional contact points in order to 
account for the heat exchange with other regenerator 
assembly parts. However, as indicated by the labels H and L, 
the same contact point temperatures are used for them.  

In the FVR model (Figure 5) the regenerators are 
modeled in terms of a finite volume approach with 𝑁𝑁 = 15 
slices, each of which consists of a solid reservoir that 
represents a slice of the regenerator matrix as well as a gas 
reservoir representing the working gas inside this slice. 
Those reservoirs are connected by irreversible interactions 
that describe heat conduction in the regenerator, heat transfer 

between gas and matrix as well as the gas flow. More details 
on this discretization can be found in [15]. 

All design parameters and interaction definitions (other 
than those of the regenerators), are inherited from the FVR 
model presented in [15]. Additionally, in the present work an 
infinite gas reservoir is added which accounts for the volume 
of the crank case. It has the constant intensity values 𝑇𝑇case 
and 𝑝𝑝case. In the real refrigerator, this large volume is 
separated from the two medium working spaces by dynamic 
seals on the push rods moving the regenerator assemblies. 
Leakage of those dynamic seals is represented by the 
interactions that connect the infinite gas reservoir with the 
two working spaces MH and ML. The gas temperature in the 
crank case is taken to be 𝑇𝑇case = 𝑇𝑇ExM and the pressure 𝑝𝑝case 
is chosen so that it is equal to the desired mean pressure of 
the cycle. The infinite gas reservoir is also added to the FVR 
model to ensure comparability of the results.  

Figure 4.  Structure of the reduced-order model with endoreversible regenerators (ERR) of the Vuilleumier refrigerator. 
Only extensity fluxes are shown. The boxes with rounded edges represent endoreversible regenerators with an internal 
structure according to Figure 3. The blue bracketed alphabetic numbering refers to the different types of irreversibilities 
considered. (Figure is in color in the on-line version of the paper.) 

Figure 5.  Structure of the Vuilleumier refrigerator model with finite volume regenerators (FVR). Only extensity fluxes are 
shown. Each regenerator is discretized in 𝑁𝑁 = 15 slices, each of which consists of a heat reservoir representing a slice of 
the regenerator matrix as well as a gas reservoir representing the gas inside this slice. The blue bracketed alphabetic 
numbering refers to the different types of irreversibilities considered. (Figure is in color in the on-line version of the paper.) 
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4. Results
Both, the reduced-order model with endoreversible

regenerator (ERR) and the nodal model with finite volume 
regenerator (FVR) were solved numerically for the process 
parameter values presented in Table 1. The design 
parameters were taken from [15], representing a scaled-
down experimental setup.  

Table 1. Definition of process parameters. 
Parameter Symbol Value 
High external temperature 𝑇𝑇ExH 300 °C 
Medium external temperature 𝑇𝑇ExM 40 °C 
Low external temperature 𝑇𝑇ExL -10 °C
Mean pressure 𝑝𝑝case 50 bar 
Machine speed 𝑛𝑛 100 rpm … 900 rpm 

The average entropy production rate for the 
irreversibilities considered in the models are shown in 
Figure 6. The results of the ERR model are plotted with solid 
lines, those of the FVR model with dashed lines. On the left-
hand side the shown entropy production rates relate to heat 
conduction and heat transfer. On the right-hand side the 
entropy production rates associated with gas flows can be 
seen. At low machine speeds, the irreversibilities connected 
to heat conduction in the cylinders (A) and regenerators (E) 
are dominant. In contrast, for machine speeds above 
400 rpm, the pressure drop (G) across the regenerators is 
dominant regarding entropy production. The entropy 
production due to pressure drop (G) exceeds 1 W/K for 
machine speeds greater than 𝑛𝑛 ≈ 620 rpm and takes values 
of about 2.83 W/K at 𝑛𝑛 = 900 rpm for both models. The 
overall agreement of the two models is very good, especially 
for the latter irreversibility.  

Deviations that are more noticeable occur with the 
irreversibilities (F) and (H). Those irreversibilities are 
connected to the regenerator. Here, (F) considers the internal 
irreversibility due to finite heat transfer between working gas 
and regenerator matrix. In this connection, the heat transfer 
coefficient was defined as a function depending on 
temperature, density and flow velocity. In the FVR model, 
those quantities vary throughout the regenerators. Therefore, 
in the FVR model, the heat transfer coefficient is 
inhomogeneously distributed in each regenerator. As 
opposed to that, in the ERR model the respective heat 
conductance is, by definition, homogeneous and was 
determined with spatial averages of temperature, density and 
flow velocity. The irreversibility (F) due to finite heat 
transfer between working gas and matrix was approximated 
according to Eq. (13) assuming a small homogeneous 
temperature difference. Despite these simplifications, the 
deviation of the ERR model from the FVR model is less than 
10 % regarding this single irreversibility. This might be 
reduced further by adapting the approximative entropy 
source term. 

Plot (H) shows the regenerators’ external irreversibility 
due to temperature differences of the gas at the contacts of 
the regenerators and the working spaces. The other 
irreversibilities feature smaller deviations so that the sums of 
all entropy production rates of the two models differ by less 
than 3 %. 

In the left-hand subfigure of Figure 7 heating power -𝐼𝐼E̅xH  
(red), cooling power -𝐼𝐼E̅xC  (blue), and mechanical power 
consumption 𝑃𝑃� (black) are plotted against the machine 
speed. Again, the results of the ERR model are denoted by 
solid lines and those of the FVR model by dashed lines. All 

Figure 6.  Average entropy production rate and corresponding exergy destruction rate associated with different 
irreversibilities addressing heat conduction & transfer (left) and gas flow (right) according to the definition from Figure 4 
and Figure 5: (A) Heat conduction in cylinders, (B) Heat conduction in heads & bases, (C) Heat transfer heads & bases – 
gas, (D) Heat transfer regenerator assemblies – gas, (E) Heat conduction in regenerators, (F) Heat transfer gas – 
regenerator matrix, (G) Pressure drop regenerator, (H) Gas mixing regenerators – working volumes, (I) Gas mixing and 
heat transfer through transfer ports, (J) Gas leakage working volumes – crank case. Dashed lines: Nodal model with finite 
volume regenerator (FVR); Solid lines: Reduced order model with endoreversible regenerator (ERR). (Figure is in color in 
the on-line version of the paper.) 
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the three plotted energy fluxes feature a good agreement for 
the two models. In the considered range, the cooling power 
is a concave function of the machine speed that has its 
maximum at 𝑛𝑛 ≈ 600 rpm for both models. The ERR model 
predicts a maximum cooling power that underestimates the 
result of the FVR model by ca. 2 %. The heating power and 
the mechanical power consumption increase monotonically 
over the machine speed.  

For the considered temperatures, the ideal coefficient of 
performance of a Vuilleumier refrigerator is -𝐼𝐼E̅xC / -𝐼𝐼E̅xH =
(1 − 𝑇𝑇ExM/𝑇𝑇ExH)/(𝑇𝑇ExM/𝑇𝑇ExC − 1) ≈ 2.4. However, due to 
inevitable irreversibilities like the ones discussed above, this 
value cannot be achieved by a real device. Moreover, in the 
considered Vuilleumier refrigerator, not only the heating 
power, but also the mechanical power consumption 
constitute costs that have to be expended in order to achieve 
cooling. Therefore, the coefficient of performance is here 
defined as 

𝐶𝐶𝐶𝐶𝑃𝑃 ≔ -𝐼𝐼E̅xC
 

-𝐼𝐼E̅xH
 +𝑃𝑃�

 . (14) 

In the right-hand subfigure of Figure 7 the cooling power 
is plotted against the 𝐶𝐶𝐶𝐶𝑃𝑃 for varying machine speed. It can 
be seen that, starting at 𝑛𝑛 = 100 rpm the 𝐶𝐶𝐶𝐶𝑃𝑃 rises with 
increasing machine speed. At about 225 rpm the maximum 
of the 𝐶𝐶𝐶𝐶𝑃𝑃 occurs, measuring ca. 0.47 with both models. 
Afterwards the 𝐶𝐶𝐶𝐶𝑃𝑃 decreases while the cooling power is 
still increasing until its maximum value is reached at 
ca. 600 rpm measuring ca. 530 W (ERR model). The 
corresponding 𝐶𝐶𝐶𝐶𝑃𝑃 is ca. 0.29. Above 600 rpm both the 
cooling power and the 𝐶𝐶𝐶𝐶𝑃𝑃 diminish and the thermodynamic 
process collapses.  

5. Summary
We presented a novel endoreversible modeling ansatz for

the regenerators of a Vuilleumier refrigerator. The model is 

based on the notion of an internally reversible regenerator 
that conserves both energy and entropy. The two contact 
point temperatures of the regenerator are defined as functions 
of energy and entropy, presuming a linear spatial 
temperature distribution. The internal endoreversible 
structure of the regenerator model is constituted by an 
engine, two heat reservoirs, and a gas reservoir. The two heat 
reservoirs represent the regenerator matrix, and the gas 
reservoir accounts for the regenerator dead space. The gas 
reservoir’s temperature is maintained at the two regenerator 
contact points’ logarithmic mean temperature. Hence, the 
total number of degrees of freedom per regenerator is solely 
three. Generalizing the notion of an internally reversible 
regenerator, entropy source terms were introduced that 
describe internal irreversibilities due to pressure drop, finite 
heat transfer, and heat conduction. 

The new endoreversible regenerator (ERR) model was 
built into a preexisting model [15] of a Vuilleumier 
refrigerator, which used a finite volume approach to describe 
the regenerator (FVR). For an exemplary set of design and 
process parameters both, the new and the old model were 
solved for varying machine speed. The results were 
compared regarding entropy production rates associated with 
single irreversibilities as well as different performance 
measures of the refrigerator.  

Even though it features significantly fewer degrees of 
freedom and can be solved faster, in the investigated 
parameter range the ERR model provides very reliable and 
accurate approximations to the results of the FVR model. 
Due to its low number of degrees of freedom and reduced 
numerical effort, the ERR model is predestined for 
applications such as design and control optimizations.  

In future research work the ERR model’s validity will be 
investigated for a wider range of process and design 
parameters. Furthermore, it can be put to use in other 
applications, such as efficiently modeling Stirling machines. 

Figure 7.  Left: Heating power (red), cooling power (blue), and mechanical power consumption (black) plotted against the 
machine speed. Right: Cooling power plotted against the coefficient of performance. Dashed lines: Nodal model with finite 
volume regenerator (FVR); Solid lines: Reduced order model with endoreversible regenerator (ERR). (Figure is in color in 
the on-line version of the paper.) 
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Nomenclature 
Symbols: 
𝐶𝐶 heat capacity, J/K 
𝐶𝐶𝐶𝐶𝑃𝑃 coefficient of performance, - 
𝑐𝑐p isobaric molar heat capacity, J/(mol K) 
𝑐𝑐v isochoric molar heat capacity, J/(mol K) 
𝐸𝐸𝑖𝑖 energy, J 
-𝐼𝐼E̅xH  average heating power, W
-𝐼𝐼E̅xC  average cooling power, W
𝐼𝐼𝑖𝑖,𝑟𝑟𝛼𝛼  energy flux carried by extensity flux 𝐽𝐽𝑖𝑖,𝑟𝑟𝛼𝛼 , W 
𝐼𝐼𝑖𝑖,𝑟𝑟  total energy flux carried by multi-extensity flux, W 
𝐽𝐽𝑖𝑖,𝑟𝑟𝛼𝛼  extensity flux of 𝛼𝛼, [𝑋𝑋 

𝛼𝛼]/s 
𝑛𝑛,𝑋𝑋 

n particle number, mol  
𝑃𝑃� average mechanical power consumption, W 
𝑝𝑝, -𝑌𝑌 

V pressure, bar 
𝑅𝑅 ideal gas constant, J/(mol K) 
𝑆𝑆,𝑋𝑋 

S entropy, J/K  
𝑠𝑠 molar entropy, J/(mol K) 
𝑇𝑇,𝑌𝑌 

S temperature, K  
𝑈𝑈𝑖𝑖 internal energy, J 
𝑉𝑉,𝑋𝑋 

V volume, m³  
𝑋𝑋𝑖𝑖𝛼𝛼 extensity 𝛼𝛼, [𝛼𝛼] 
𝑌𝑌𝑖𝑖,𝑟𝑟𝛼𝛼  intensity related to 𝑋𝑋 

𝛼𝛼, J/[𝑋𝑋 
𝛼𝛼] 

𝜇𝜇,𝑌𝑌 
n chemical potential, J/mol 

Σ 
S entropy production rate, W/K  
𝜎𝜎 molar entropy production, J/(mol K) 

Subscripts and superscripts: 
.d internal gas reservoir 
Ex external 
g0 reference for gas 
H high temperature 
.h high temperature internal heat reservoir 
𝑖𝑖 subsystem index  
L low temperature  
.l low temperature internal heat reservoir 
M medium temperature  
R regenerator  
R0 reference for regenerator matrix  
𝑟𝑟 contact point index  
𝛼𝛼 extensity index, 𝛼𝛼 ∈ {𝑆𝑆,𝑛𝑛,𝑉𝑉}  
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