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Abstract
In this paper, we give a generalization of the reverse Hölder’s diamond-α inequality on
time scales by introducing two parameters. We note that many inequalities related to the
Hölder’s inequality can be obtained via this inequality.
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1. Introduction
Hölder’s inequality is one of the most important inequalities of pure and applied math-

ematics. It is the key for resolving many problems in social and natural sciences. Hölder’s
inequality in time scales is given in the following theorem (see [2, Theorem 1.1.11] and
[3, Theorem 6.13]).

Theorem 1.1. Let h, f, g ∈ Crd([a, b]T, [0, +∞)). If 1
p + 1

p′ = 1 with p > 1, then

∫ b

a
h(t)f(t)g(t)△t ≤

(∫ b

a
h(t)fp(t)△t

) 1
p
(∫ b

a
g(t)fp′(t)△t

) 1
p′

. (1.1)

The reverse Hölder’s inequality has been explored by a number of scientists. The famous
ones are [2], [9].

Theorem 1.2. Let p > 1, 1
p + 1

p′ = 1 and a, b ∈ T with a < b, f and g be two positive

functions defined on the interval [a, b]T if 0 < m ≤ fp(t)
gp′(t)

≤ M . Then

(∫ b

a
fp(t)∆t

) 1
p
(∫ b

a
gp′(t)∆t

) 1
p′

≤
(

M

m

) 1
pp′ ∫ b

a
f(t)g(t)∆t. (1.2)
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Theorem 1.3. Let T be a time scale, a, b ∈ T with a < b, and f and g be two positive

functions satisfying 0 < m ≤ fp(t)
gp′(t)

≤ M, on the set [a, b]. If 1
p + 1

p′ = 1 with p > 1, then

(∫ b

a
fp(t)♢αt

) 1
p
(∫ b

a
gp′(t)♢αt

) 1
p′

≤
(

M

m

) 1
pp′ ∫ b

a
f(t)g(t)♢αt. (1.3)

In 2020, Benaissa and Budak [1] give the following result:

Theorem 1.4. (Theorem 2.1, [1]) Let α, β > 0, p > 1, 1
p + 1

p′ = 1 and f, g > 0 integrable
functions on [a, b], w a weight function (measurable and positive) on [a, b]. If

0 < m ≤ fα(x)
gβ(x)

≤ M for all x ∈ [a, b], (1.4)

then(∫ b

a
fα(x)w(x)dx

) 1
p
(∫ b

a
gβ(x)w(x)dx

) 1
p′

≤
(

M

m

) 1
pp′ ∫ b

a
f

α
p (x)g

β
p′ (x)w(x)dx. (1.5)

In [10] the authors provide a version of the above inequality in time scales by the
following theorem.

Theorem 1.5. Let α ∈ [0, 1], β, λ > 0, p > 1, 1
p + 1

p′ = 1 and T is a time scale, a, b ∈ T
with a < b. Let f, g ∈ C([a, b]T, [0, +∞)), w a weight function (measurable and positive)
on [a, b]T. If

0 < m ≤ fβ(t)
gλ(t)

≤ M for all t ∈ [a, b]T, (1.6)

then(∫ b

a
fβ(t)w(t)♢αt

) 1
p
(∫ b

a
gλ(t)w(t)♢αt

) 1
p′

≤
(

M

m

) 1
pp′ ∫ b

a
f

β
p (t)g

λ
p′ (t)w(t)♢αt. (1.7)

The reverse Hölder’s inequalities play an important role in many areas of pure and
applied mathematics. A large number of generalizations, refinements, variations and ap-
plications of these inequalities have been investigated in the literature (see [1, 4, 5, 8]).

2. Preliminaries
We introduce the diamond-α dynamic derivative and diamond-α dynamic integration.

The comprehensive development of the calculus of the diamond-α derivative and diamond-
α integration is given in [6], [7]. Let T be a time scale and f(t) be differentiable on T in
the ∆ and ∇ sense. For t ∈ T, we define the diamond-α derivative f♢α(t) by

f♢α(t) = αf∆(t) + (1 − α)f∇(t).
Thus f is diamond-α differentiable if and only if f is ∆ and ∇ differentiable.

Theorem 2.1. Let 0 ≤ α ≤ 1. If f is both ∆ and ∇ differentiable at t ∈ T, then f is ♢α

differentiable at t and
f♢α(t) = αf∆(t) + (1 − α)f∇(t).

Definition 2.2. Let a, b ∈ T, and f : T → R. Then, the diamond-α integral from a to b
of f is defined by∫ b

a
f(s)♢αs = α

∫ b

a
f(s)∆s + (1 − α)

∫ b

a
f(s)∇s, 0 ≤ α ≤ 1,

provided that there exist ∆ and ∇ integrals of f on T.
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It is clear that the diamond-α integral of f exists when f is a continuous function. Let
a, b, c ∈ T, λ, β ∈ R and f, g be continuous functions on [a, b] ∩ T = [a, b]T. Then the
following properties hold:

(1)
∫ b

a
(λf(s) + βg(s)) ♢αs = λ

∫ b

a
f(s)♢αs + β

∫ b

a
g(s)♢αs.

(2)
∫ b

a
f(s)♢αs = −

∫ a

b
f(s)♢αs,

∫ a

a
f(s)♢αs = 0.

(3)
∫ b

a
f(s)♢αs =

∫ c

a
f(s)♢αs +

∫ b

c
f(s)♢αs.

(4) If f(s) ≥ 0 for all s ∈ [a, b]T, then
∫ b

a
f(s)♢αs ≥ 0.

(5) If f(s) ≤ g(s) for all s ∈ [a, b]T, then
∫ b

a
f(s)♢αs ≤

∫ b

a
g(s)♢αs.

(6) If f(s) ≥ 0 for all s ∈ [a, b]T, then f(s) = 0 if only if
∫ b

a
f(s)♢αs = 0.

Lemma 2.3. ([2, Theorem 1.1.21]). Let T be a time scale, a, b ∈ T with a < b, and h, ϕ
be two positive functions. If 1

p + 1
p ′ = 1 with p < 1, then

∫ b

a
h(τ)ϕ(τ)♢ατ ≥

(∫ b

a
hp(τ)♢ατ

) 1
p
(∫ b

a
ϕ p ′(τ)♢ατ

) 1
p ′

. (2.1)

3. Main results
In this section we give our results by using a simple proof method to generalize the

inequality (1.3).

Lemma 3.1. Let 1 < q ≤ p < ∞, 1
p + 1

p′ = 1
q + 1

q′ = 1 and ϕ, w be non-negative continuous
functions on [a, b]T. We suppose that 0 <

∫ b
a ϕs(t)w(t)♢αt < ∞, for s > 1, then

∫ b

a
ϕp(t)w(t)♢αt ≥

(∫ b

a
w(t)♢αt

) q−p
q
(∫ b

a
ϕq(t)w(t)♢αt

) p
q

, (3.1)

∫ b

a
ϕq′(t)w(t)♢αt ≥

(∫ b

a
w(t)♢αt

) p′−q′
p′

(∫ b

a
ϕp′(t)w(t)♢αt

) q′
p′

. (3.2)

Proof. If p = q, then we have equality and for p ̸= q, we use Hölder’s integral inequality
(2.1) with q

p
< 1. We get

∫ b

a
ϕp(t)w(t)♢αt =

∫ b

a

(
w

q−p
q (t)

)(
ϕp(t)w

p
q (t)

)
♢αt

≥
(∫ b

a
t(t)♢αt

) q−p
q
(∫ b

a
ϕq(t)w(t)♢αt

) p
q

.

The proof of the second inequality is similar to the first one. We have

1 < q ≤ p < ∞ =⇒ 1 < p′ ≤ q′ < ∞.

�

Theorem 3.2. Let α ∈ [0, 1], β, λ > 0, 1 < q ≤ p < ∞, 1
p + 1

p′ = 1
q + 1

q′ = 1 and T
is a time scale, a, b ∈ T with a < b. Let f, g > 0 be continuous functions on [a, b]T, w a
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weight function on [a, b]T. If

0 < m ≤ fβ(t)
gλ(t)

≤ M for all t ∈ [a, b]T, (3.3)

then (∫ b

a
f

qβ
p (t)w(t)♢αt

) 1
q
(∫ b

a
g

p′λ
q′ (t)w(t)♢αt

) 1
p′

≤ M
1

pp′ ( 1
m)

1
qq′

(∫ b

a
w(t)♢αt

) 2
q

− 2
p
(∫ b

a
f

β
p (t)g

λ
p′ (t)w(t)♢αt

) 1
p
(∫ b

a
f

β
q (t)g

λ
q′ (t)w(t)♢αt

) 1
q′

(3.4)

Proof. From the assumption (3.3) we have

f
− β

p′ g
λ
p′ ≥ M

− 1
p′

yielding

fβ ≤ M
1
p′ f

β
p g

λ
p′ .

Multiplying the above inequality by w(t) and integrating on [a, b]T, we obtain(∫ b

a
fβ(t)w(t)♢αt

) 1
p

≤ M
1

pp′

(∫ b

a
f

β
p (t)g

λ
p′ (t)w(t)♢αt

) 1
p

. (3.5)

Now we use the inequality (3.1) and putting ϕ = f
β
p , we get

∫ b

a
fβ(t)w(t)♢αt ≥

(∫ b

a
w(t)♢αt

) q−p
q
(∫ b

a
f

qβ
p (t)w(t)♢αt

) p
q

.

Hence (∫ b

a
f

qβ
p (t)w(t)♢αt

) 1
q

≤
(∫ b

a
w(t)♢αt

) p−q
pq
(∫ b

a
fβ(t)w(t)♢αt

) 1
p

. (3.6)

From the inequalities (3.5) and (3.6), we deduce that(∫ b

a
f

qβ
p (t)w(t)♢αt

) 1
q

≤ M
1

pp′

(∫ b

a
w(t)♢αt

) p−q
pq
(∫ b

a
f

β
p (t)g

λ
p′ (t)w(t)♢αt

) 1
p

. (3.7)

Similarly, from the assumption (3.3) we have

m
1
q ≤ f

β
q g

− λ
q .

Multiplying by gλ yields

m
1
q gλ ≤ f

β
q g

λ
q′ .

We deduce that(∫ b

a
gλ(t)w(t)♢αt

) 1
q′

≤ ( 1
m

)
1

qq′

(∫ b

a
f

β
q (t)g

λ
q′ (t)w(t)♢αt

) 1
q′

. (3.8)

Again we put ϕ = g
λ
q′ in the inequality (3.2). We get

∫ b

a
gλ(t)w(t)♢αt ≥

(∫ b

a
w(t)♢αt

) p′−q′
p′

(∫ b

a
g

p′λ
q′ (t)w(t)♢αt

) q′
p′

,
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which gives(∫ b

a
g

p′λ
q′ (t)w(t)♢αt

) 1
p′

≤
(∫ b

a
w(t)♢αt

) q′−p′
q′p′

(∫ b

a
gλ(t)w(t)♢αt

) 1
q′

. (3.9)

By the inequalities (3.8) and (3.9), we deduce that(∫ b

a
g

p′λ
q′ (t)w(t)♢αt

) 1
p′

≤ ( 1
m)

1
qq′

(∫ b

a
w(t)♢αt

) q′−p′
q′p′

×
(∫ b

a
f

β
q (t)g

λ
q′ (t)w(t)♢αt

) 1
q′

.

(3.10)

Finally, by multiplying the inequalities (3.7) and (3.10), we obtain the desired inequality
(3.4). �

Remark 3.3. If p = q, we obtain the reverse Hölder’s inequality (1.7) [10].

3.1. Particular cases of Theorem 3.2
If we take α = 1, we get the following inequality for the ∆-integrable.

Corollary 3.4. Let β, λ > 0, 1 < q ≤ p < ∞, 1
p + 1

p′ = 1
q + 1

q′ = 1 and T is a time scale,
a, b ∈ T with a < b. Let f, g ∈ Crd([a, b]T, [0, +∞)), w a weight function on [a, b]T. If

0 < m ≤ fβ(t)
gλ(t)

≤ M for all t ∈ [a, b]T, (3.11)

then(∫ b

a
f

qβ
p (t)w(t)∆ t

) 1
q
(∫ b

a
g

p′λ
q′ (t)w(t)∆ t

) 1
p′

≤ M
1

pp′ ( 1
m

)
1

qq′

(∫ b

a
w(t)∆ t

) 2
q

− 2
p
(∫ b

a
f

β
p (t)g

λ
p′ (t)w(t)∆ t

) 1
p
(∫ b

a
f

β
q (t)g

λ
q′ (t)w(t)∆ t

) 1
q′

.

(3.12)

If we take α = 0, we get the following inequality for the ∇-integrable.

Corollary 3.5. Let β, λ > 0, 1 < q ≤ p < ∞, 1
p + 1

p′ = 1
q + 1

q′ = 1 and T is a time scale,
a, b ∈ T with a < b. Let f, g ∈ Cld([a, b]T, [0, +∞)), w a weight function on [a, b]T. If

0 < m ≤ fβ(t)
gλ(t)

≤ M for all t ∈ [a, b]T, (3.13)

then(∫ b

a
f

qβ
p (t)w(t)∇ t

) 1
q
(∫ b

a
g

p′λ
q′ (t)w(t)∇ t

) 1
p′

≤ M
1

pp′ ( 1
m

)
1

qq′

(∫ b

a
w(t)∇ t

) 2
q

− 2
p
(∫ b

a
f

β
p (t)g

λ
p′ (t)w(t)∇ t

) 1
p
(∫ b

a
f

β
q (t)g

λ
q′ (t)w(t)∇ t

) 1
q′

.

(3.14)

If we take T = R in the above theorem, we get the following corollary.
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Corollary 3.6. Let β, λ > 0, 1 < q ≤ p < ∞, 1
p + 1

p′ = 1
q + 1

q′ = 1 and a, b ∈ R with
a < b. Let f, g ∈ C([a, b], [0, +∞)), w a weight function on [a, b]. If

0 < m ≤ fβ(t)
gλ(t)

≤ M for all t ∈ [a, b], (3.15)

then(∫ b

a
f

qβ
p (t)w(t)d t

) 1
q
(∫ b

a
g

p′λ
q′ (t)w(t)d t

) 1
p′

≤ M
1

pp′ ( 1
m

)
1

qq′

(∫ b

a
w(t)d t

) 2
q

− 2
p
(∫ b

a
f

β
p (t)g

λ
p′ (t)w(t)d t

) 1
p
(∫ b

a
f

β
q (t)g

λ
q′ (t)w(t)d t

) 1
q′

.

(3.16)

Remark 3.7. The inequality (3.16) is a new generalization with two parameters of the
weighted inequality given in Theorem 1.4 [1].

If we take β = p and λ = q′ , we get the following corollary.

Corollary 3.8. Let α ∈ [0, 1], 1 < q ≤ p < ∞, 1
p + 1

p′ = 1
q + 1

q′ = 1 and T is a time scale,
a, b ∈ T with a < b. Let f, g > 0 be continuous functions on [a, b]T, w a weight function
on [a, b]T. If

0 < m ≤ fp(t)
gq′(t)

≤ M for all t ∈ [a, b]T, (3.17)

then(∫ b

a
f q(t)w(t)♢αt

) 1
q
(∫ b

a
g p′(t)w(t)♢αt

) 1
p′

≤ M
1

pp′ ( 1
m

)
1

qq′

(∫ b

a
w(t)♢αt

) 2
q

− 2
p
(∫ b

a
f(t)g

q′
p′ (t)w(t)♢αt

) 1
p
(∫ b

a
f

p
q (t)g(t)w(t)♢αt

) 1
q′

.

(3.18)

Remark 3.9. The last inequality (3.18) is a generalization with two parameters of the
inequality given in Theorem 1.3.

If we put β = 1, g = 1 , we get the following result.

Corollary 3.10. Let α ∈ [0, 1], 1 < q ≤ p < ∞, 1
p + 1

p′ = 1
q + 1

q′ = 1 and T is a time
scale, a, b ∈ T with a < b. Let f > 0 be a continuous function on [a, b]T, w a weight
function on [a, b]T. If

0 < m ≤ f(t) ≤ M for all t ∈ [a, b]T, (3.19)
then(∫ b

a
f

q
p (t)w(t)♢αt

) 1
q

≤ M
1

pp′ ( 1
m

)
1

qq′

(∫ b

a
w(t)♢αt

) 1
p′ − 2

q′
(∫ b

a
f

1
p (t)w(t)♢αt

) 1
p
(∫ b

a
f

1
q (t)w(t)♢αt

) 1
q′

.

(3.20)

Remark 3.11. If we put p = q in the above inequality (3.20), we get for p > 1,∫ b

a
f(t)w(t)♢αt ≤

(
M

m

) 1
p′
(∫ b

a
w(t)♢αt

)1−p(∫ b

a
f

1
p (t)w(t)♢αt

)p

. (3.21)
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4. Conclusion
In the present article, we obtained Hölder’s original inverse diamond-α inequality with

two parameters. The proven inequalities generalize certain dynamic and classical inequal-
ities known in the literature.
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