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 This study presents a novel approach for addressing dynamical characteristics of fluid conveying 

axially functionally graded pipes. The variation of material properties of the pipe along axial 

direction is taken into account according to a power-law function. Owing to a unified expression 

for displacement field, the developed model can be recast into classical Euler – Bernoulli and 

Timoshenko tube models as well as a newly developed higher order shear deformable tube model; 

the latter satisfies zero-shear conditions on free surfaces, and hence yields more realistic results. 

The system of partial differential equations governing dynamics of fluid conveying axially 

functionally graded pipes is derived through utilization of Hamilton’s principle. Differential 

quadrature scheme is used to discretize the system of differential equations and generate numerical 

results. Detailed numerical investigations of the current fluid-solid interaction problem elucidate 

the effects of material gradation pattern, transverse shear deformation distribution profile along 

radial direction and fluid velocity on the natural frequencies of fluid conveying functionally graded 

pipes. The critical fluid velocity, which is a significant design parameter, can also be determined 

by means of developed procedures in this study. 
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1. Introduction 

Fluid conveying tubes/pipes are fundamental 

mechanical components which are extensively used in 

various engineering fields such as oil industries, heat 

exchangers, micro- and nano-technologies and so on. Due 

to their widespread applications, mechanical analyses of 

these elements have attracted researchers’ considerable 

attention. The stability analyses and dynamics of fluid 

conveying pipes (FCPs) are generally investigated within 

the scope of a fluid structure interaction (FSI) problem. 

Most of the recently developed models for predicting 

dynamical behavior of FCPs have their basis on a study by 

Paidoussis [1]. According to Paidoussis [1] FCPs may 

exhibit two forms of instabilities as the fluid flow velocity 

increases, namely, flutter and divergence. A conservative 

system which is supported at both ends undergoes a static 

instability via divergence and a non-conservative 

cantilever pipe loses its stability in the form large 

amplitude vibrations known as flutter. These two 

phenomena have been investigated in numerous studies 

and have raised a great deal of interest in recent years. 

In a number of studies linear [2, 3] and nonlinear [4, 5] 

free vibrations of FCPs have been studied. The aim of free 

vibration analyses is to compute natural frequencies for 

various flow velocities and boundary conditions and hence 

to examine stability of FCPs. ElNajjar and Daneshmand 

[6] investigated the possibility of improving the stability 

of vertical and horizontal FCPs by attaching one or more 

additional springs and/or masses at various points along 

the pipe. In a study by Dagli and Ergut [7], Rayleigh theory 

is used to examine the influence of nonclassical boundary 

conditions on dynamic behavior of FCPs. Abdollahi, 

Dehghani Firouz-abadi [8] focused on stability and 

flexural vibration analyses of rotating pipes undergoing 

simultaneous external and internal fluid loadings. In some 

studies, using damping devices such as eddy-current 

dampers, the effort have been made to stabilize FCPs when 

the flow velocity inside them reaches the critical value [9]. 
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In recent years, by advances in material science and 

manufacturing technologies, functionally graded materials 

(FGMs) have found wide variety of applications from 

aerospace [10] to biomedical industries [11]. FGMs belong 

to a novel class of composite materials which are 

manufactured by combining the best features of two or 

more constituents. The volume fractions of constitutional 

phases vary according to a predefined profile and in the 

desired direction. Nowadays, these advanced composites 

are manufactured in various forms such as beams, plates 

and shells and can be reinforced by smart materials [12-

15]. The superior mechanical properties of FGMs such as 

low stress concentration, high designability, enhanced 

performance in harsh and corrosive environments, and 

suitability for passive control purposes have made them an 

ideal candidate to be used in technological applications 

such a fluid conveying macro- and micro-pipes. 

Consequently, there has been a considerable focus on 

stability analyses of FCPs made of FGMs. Although there 

are large number of studies available in the literature 

focusing on mechanical behavior of radially, i.e. through-

the-thickness, functionally graded pipes [16-23], a few 

effort is made to deal with axially functionally graded 

pipes (AFGPs) conveying fluid. However, for complicated 

engineering applications and especially for control 

purposes, AFGPs are more preferable than radial ones. 

Note that modeling and analysis procedures of AFGPs are 

somewhat different from those employed for materials 

possessing through-the-thickness variations in properties. 

For example, unlike radial ones, the stiffness and inertia 

coefficients appearing in governing system of equations 

for AFGPs are functions of longitudinal coordinate which 

consequently need special treat while implementing the 

numerical technique. Further, new terms including the 

length-wise derivatives of these coefficients exist in the 

system of equations. In order to investigate the behavior of 

fluid conveying AFGPs, An and Su [24] utilized integral 

transform technique to numerically solve the system of 

governing equations. Zhou, Dai [25] studied the effects of 

longitudinal gradation of material properties on linear 

dynamics of cantilevered AFGPs aiming at enhancing 

stability of such systems. In some studies related to 

stability and dynamics of the AFGPs thermal loads [26] 

and nonlinear effects [27] are also taken into account. A 

study by Mirtalebi, Ebrahimi-Mamaghani [28] is devoted 

to dynamical stability and intelligent control of AFGPs by 

use of design flexibility of FGMs. 

In all abovementioned studies as well as most researches 

available in the literature, the displacement field of pipe 

are expressed based on classical Euler-Bernoulli or 

Timoshenko beam models. It is worth mentioning Euler-

Bernoulli model ignores transverse shear stress, and 

Timoshenko pipe model presumes it to be constant through 

the thickness. Therefore, both of these traditional theories 

use strictly simplifying assumptions. In order to properly 

express displacement field, refined beam models, which 

satisfy no-shear conditions on the free surfaces, are 

developed recently. For the beams having rectangular 

cross-sections, various refined shear deformable models 

can be found in the literature [29, 30], however, there are 

few number of studies regarding higher order annular 

tubes satisfying transverse shear conditions. In this 

respect, Zhang and Fu [31] took the shear deformation 

considerations into account and established a higher order 

pipe model (HOPM). They also carried out static, free 

vibration and wave propagation analyses using newly 

developed model and made comparisons between new 

results and those of conventional approaches. To the best 

of author’s knowledge, there is no report on the analyses 

of fluid conveying AFGPs on the basis of HOPM in the 

available technical sources. The works utilizing higher 

order pipe theory are merely restricted to pure structural 

problems of pipes/tubes. Babaei and Reza Eslami [32] 

employed HOPM in conjunction with modified couple 

stress theory to put forward a nonclassical model for 

investigating vibrations of buckled functionally graded 

tubes in thermal environment. In some studies higher order 

shear deformable pipe model is used to derive an accurate 

size-dependent system of equations for pipes based on 

nonlocal elasticity [33, 34]. In another study by Zhong, Fu 

[35] statics and dynamics of functionally graded tubes 

under thermal loads are studied based on refined pipe 

model. 

The aim of the current study is to derive governing 

equations and associated boundary conditions regarding 

free vibration problem of AFGPs conveying fluid. Owing 

to a unified expression for displacement field used in this 

study, the system can be reduced to any of conventional or 

higher order models, i.e. Euler-Bernoulli, Timoshenko, 

and higher order pipe model. The latter model, to the best 

of author’s knowledge, is used in analysis of fluid 

conveying pipes for the first time. The higher order pipe 

model satisfies shear free conditions on inner and outer 

surfaces and hence can result in more realistic prediction 

of mechanical behavior of pipes. Further, the rotary inertia 

is not neglected in the derivations. The pipe is assumed to 

be functionally graded in longitudinal direction in which 

material properties smoothly vary from upstream to 

downstream according to a power-law function. The 

current study seems to be one of the few number of 

researches investigating effects of through-the-length 

variations of constituents of FCPs. Differential quadrature 

method (DQM) is used as a numerical solution method to 

obtain natural frequencies in different fluid velocities. The 

generated results clearly elucidate the influences of fluid 

velocity, material gradation patterns, and geometrical 

dimensions upon critical flow velocity and natural 

frequencies of fluid conveying AFGPs. 
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2. Formulation 

Illustrated in Figure 1 is the configuration of an AFGP 

conveying fluid of velocity Γ with inner and outer radii 

denoted by ri and ro, respectively, and its length is 

designated by L. The volume fractions of pipe constituents 

vary smoothly from upstream, i.e. left side, to downstream, 

i.e. right side. The displacement field for the pipe domain 

at any time t can be expressed as the following unified 

form: 

 

( ) ( ) ( )
11 1 3 1 3 , 2 3 1, , , , ( , )xu x x t u x t x w f x x x t= − +  (1.a) 

( )2 1 3, , 0u x x t =  (1.b) 

( ) ( )3 1 2 3 1, , , ,u x x x t w x t=  (1.c) 

 

where u1, u2 and u3 designate the displacements of desired 

point along x1, x2 and x3 directions, respectively. u and w 

denote the displacement of any point located on mid-

surface x3 = 0, along x1 and x3 directions, respectively; “,” 

stands for partial derivative, γ is transverse shear strain of 

any hypothetical point on the neutral axis x1 and can be 

stated in terms of bending rotation ϕ as 

 

( ) ( ) ( )
11 , 1 1, , , ,xx t w x t x t = +  (2) 

 

Shape function f is utilized to delineate through-the-

thickness distribution pattern of transverse shear strain. 

Conventional pipe models, namely Euler – Bernoulli pipe 

model (EBPM), Timoshenko pipe model (TPM), as well 

as the higher order pipe model (HOPM) [31] can be 

retrieved by choosing one of the following expressions for 

f: 

 

( )2 3EBPM:     , 0f x x =  (3.a) 

( )2 3 3TPM:     ,f x x x=  (3.b) 

( )
( )

2 2 2
3

2 3 223 2
HOPM:     ,

3

o i

o i

x r r r
xf x

rr r
x

 
= +  

 + 

−



 (3.c) 

 

Note that the shear stress is neglected in EBPM; TPM 

presumes transverse shear to be constant through the 

thickness of the pipe; and a nonlinear shear strain and 

stress distribution pattern is achievable by using HOPM. 

In order to establish equations of motion and boundary 

conditions governing dynamics of the AFGP conveying 

fluid Hamilton’s principle is used. It postulates that 

 

( )
2

1

0.
t

t
K U dt − =  (4) 

 

U  and K  here are total strain energy and kinetic 

energy, respectively. Strain energy U of a pipe occupying 

a domain Ω is written as: 

( )
1

,
2

ij ijU dV 



=   (5) 

 

where ij  and ij  are components of classical stress and 

strain tensors. ij  is expressed in the form of the following 

strain-displacement relation 

 

( ), ,

1
,

2
ij i j j iu u = +  (6) 

and ij  can be evaluated by means of the following 

constitutive relation 

 

2ij ij ij kk   = +  (7) 

 

where λ and µ are Lame’s constants and can be expressed 

in terms of modulus of elasticity E and Poisson’s ratio ν as 

follows 

 

( ) ( ) ( )
,       

1 1 2 2 1

E E
 

  
= =

+ − +
 (8) 

 

The total kinetic energy comprising those of pipe 

motion and fluid flow can be written in the form 

 

p fK K K= +  (9) 

 

where Kp and Kf are kinetic energies of pipe and fluid, 

respectively and can be expresses as 

 

22 2

31 21
,

2
p

uu u
K

t t t
dV



        
= + +     

         
  (10.a) 

 

   1 1

1
.

2

1 1
. . .

2 2

f

f f f

f f f f f f f

L

f

L

fv v

A v

K dV

v m v vdx dx







=

= =



 
 (10.b) 

 

f  is the fluid domain inside the pipe; ρ and ρf denote 

mass densities of the pipe and the fluid, respectively. Af 

stands for the cross-sectional area of fluid flow, and 

f f fm A=  is the mass per unit length of the fluid. fv  is 

the fluid velocity which can be expressed as the sum of 

velocity of the pipe pv  and flow velocity Γ relative to the 

pipe 

 

f pv v = +  (11) 



 

 

 
Figure 1. Fluid conveying AFGP 

 

  here is the unit vector tangent to the pipe. The 

components of pv  are the time derivatives of 

displacement field given by Eq. (1). 

Note that, in the present study, a typical material 

property of the pipe, denoted by Z, including E, ν, μ, and 

ρ, is assumed to be axially varying from upstream, 1 0x = , 

to downstream, 1x L= , according to the following power-

law function 
 

( ) 1
1 0

0

1 1LZ x
Z x Z

Z L

    
 = + −       

 (11) 

 

α is the power-law index which characterizes the 

distribution profile of the material properties along axial 

direction of the pipe. Subscripts 0 and L designate the 

material properties of the pipe at 1 0x =  and 1x L= , 

respectively. 

Introducing expressions for U and K and associated 

relations into Hamilton’s principle yields the following 

system of governing partial differential equations:  

 

( ) ( )1
1 1

2 2

1 2 2
,

:

f

u u
A x

u
A m

t t

u

x
x x




  
 

 

 
= +

 

 (12.a) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )

( ) ( )

2 2

22 33 55 772 2
1 1

2

1 2
1 1 1

2
2

55 77 1 2
1 1

2

1

33 22 1
1

2

3 2

22 33 1 12 2
1

3 13
1

2

1

2
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2

2

s

s f

w
F I F k F F

x x

w
x

x x x

w
k F F x m

x x

w w
F I F x x A

x x t t

x c

w

x

F F x
x

F
x t

F









 

 






 
 
 

 
− − + +

 

   
− 

   

 
+ 

 
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−

= − − +


 



 

 
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+

 



 

−

−



   



+

− ( )

( )

4
2

2 2
1

3 2 2

2 2
11

1

1 2 ,

f f

f f f f f

w
I

x t

w w
c c I m m

x tx t t




−

 

  
− − + + 

   

 (12.b) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2

33 22 1 55 77 12
1

33 1 55 77 1

2

1 33 22 1 332 2
1

1

1 1

1 1

3

3 2
2

2 2
1 ,

:

s

s

f f f f f

w w
F F x k F F x

x xx

F x k F F x
x x

w
x F F x F

x t t

w
c c I c I

x t t



 


  


 



   
− − + 

   

 
+ − + 

  


= − +

  


+ − +

  

 (12.c) 

 

and the boundary conditions read 

 

( )1
1

0   o 0r   ,u A
u

x
x

 


=


=  (13.a) 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

1 33 22 1
1

1

3

2

22 33 2
1 1

55 77
1 1

2
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1
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22 33 1 1

2

3 222 2
1

3
2

2 2
1

0   or   2

2

1 1 ,

s

s f

f f f f f f

w x

x F

w

w
F I F

x x

w
k F F

x x

w
k F F m

x

F I F x x
x t t

w
c I

F x
x

x

F

t

F

c c I m
tt

w

x







 


 






 

= − −
 

 
+ + −

 


+ 




= − − −

 
 
 
 

 
−  







−

 


− − − − +

+

−



  

 (13.b) 

 

( ) ( )

( ) ( )

1

1

2

33 22

1

2
1

33 22 1

0   or   2

0,

xI

F F x

w w
F

x x

x

F 





− =



 
= + −

 

+

 (13.c) 

 

( ) ( ) ( )
2

33 2

1

1 2 133
1

2 0,

0   or

w
F F F

xx
x x




 

=


−


=+



 (13.d) 

η, If, and cf here are utilized for the sake of brevity by 
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x2
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r
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letting ( ) ( ) ( )1 1 12x x x  = + , 4 / 4f f iI r = , and 

3/fc f x=  computed at ir r= . ks is the shear correction 

factor and is taken as unity for EBPM and HOPM, and for 

Timoshenko beam model when used for annular cross-

section is given as follows [36] 

 

( ) ( )

( ) ( ) ( )

2 22

2 4 2 2

6 1 1

7 12 4 1 34 48 16
sk

 

     

+ +
=

+ + + + + +
 (14) 

 

where /i or r = . The stiffness and inertia parameters 

appeared in Eqs. (13) and (14) are as follows 

 

 




3 2 3 3 3 2 3

3 3 2 2 2 2

22 33 55 15 6

,

77 6

2 2 2 2 2 2
3 3 , , , ,

2
, ,

8

,

99 68 8,  ,  ,  ,  ,  ,

1,

, , , ,

,,  ,    , ,  , , ,

,

x x x x x x x
A

x x x x x x

A

A

F F F FI F F F F F

x x f f f f f f f

f f f d

=   (15) 

 

3. Numerical Solution 

In the present paper, differential quadrature method 

(DQM) is employed to discretize and solve the system of 

differential equations comprising governing equations and 

boundary conditions [37]. The fundamental idea of DQM 

is to approximate mth derivative of a function by a 

weighted sum of functional values at all sampling points. 

For this purpose, after dividing the domain 0 x L   by 

using number of nodes N, the mth derivative of a function 

( ),z x t  with respect to x at a desired point ix  is written as: 

 

( ) ( ) ( )
1

,
| , ,     = 1, 2, ..., 

i

m N
m

x x jijm
j

z x t
c z x t i N

x
=

=


=


 . (16) 

 

( )m

ijc  are the weighting coefficients. Utilization of 

differential quadrature technique formulated by Eq. (16) 

transforms the equations of motion and boundary 

conditions to the following form: 

 

b b

db dd db ddd d

bb bd b

db dd d

         
+      

         

   
+ =  
   

0 0 0 0d d

M M C Cd d

K K d
0

K K d

 (17) 

 

where K, C, and M are stiffness, damping, and mass 

matrices respectively. Subscripts b and d represent 

boundary and internal nodes, respectively. d is dynamic 

displacement vector defined by 

 

e ,t=d d  (18) 

  and 
*

d  in Eq. (18) represent eigenvalue and 

corresponding eigenvector, respectively. Although 
*

d  is a 

vector containing unknown amplitudes associated with u, 

w, and ϕ, in the current study, due to the following two 

reasons, axial displacement u is not taken into account in 

computations: 1) Inspecting governing equations and 

boundary conditions, it can be observed that the equations 

related to the axial displacement, i.e. Eqs. (12.a) and (13.a)

, are fully decoupled from other displacements and hence, 

it can be treated separately; 2) The magnitude of axial 

displacements are smaller than transverse ones by one 

order [1] and consequently they are less significant and can 

be neglected. Therefore, 
*

d  is comprised of unknown w 

and ϕ values at grid points 

 

    
T

T T
* * *,  ,    for  1,  2,  ...,  p pw p N= =d  (19) 

 

Substituting Eq. (18) into Eq. (17) leads to standard 

generalized eigenvalue problem as follows 

 

  *   =2
K + C + M d 0.  (20) 

 

The nontrivial solution of Eq. (20) is obtained by 

equating determinant of coefficient matrix in Eq. (20) to 

zero 

 

 det   =2
K + C + M 0.  (21) 

 

It should be noted that eigenvalues   which are 

computed through solving Eq. (21) are generally complex 

values in the form ( ) ( )Re Imi  = + . The imaginary 

and real parts of eigenvalue are related to the oscillation 

frequency and decaying rate, respectively. ( )Re 0   

indicates that the system is unstable whereas the stability 

condition exists when ( )Re 0  . 

 

4. Numerical Results 

A simply supported fluid conveying AFGP is 

considered to carry out numerical analyses. The pipe is 

assumed to be functionally graded in longitudinal direction 

made of Epoxy at the right end with following properties: 

EL = 1.44 GPa, νL = 0.38, and ρL = 1000 kg/m3. In order to 

elucidate the axial material gradation effect on dynamical 

behavior of the pipe clearly, a material with following 

constants is chosen for the left hand side: E0 / EL= 2, ν0 = 

νL and ρ0 / ρL = 2. In this study, for convenience, materials 

at the upstream and downstream ends will be called MAT1 

and MAT2, respectively. The density of fluid used in 

numerical analysis is ρf = 1000 kg/m3 which is equal to that 
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of water. Unless otherwise mentioned the geometrical 

dimensions are taken as 5or = cm, / 0.8i or r = . 

Plotted in  

Figure 2 are the distribution profiles of material 

properties along dimensionless longitudinal direction x1 / 

L, for different values of gradient index α. As it can be 

observed, a homogeneous Epoxy pipe is achieved by 

letting α = 0 while as α approaches infinity a pipe made of 

fully MAT1 can be represented. For other values of power-

law index a nonlinear pattern is seen for through-the-

length variation of material properties except for α = 1 

which indicates a linear distribution profile. Further 

inspection of  

Figure 2 reveals that at any distance x1, the higher is the 

α-value, the larger is the modulus of elasticity and density. 

In order to examine the accuracy of procedures and 

techniques employed in the current study and also conduct 

convergence analysis, critical flow velocities Γcr, at which 

instability occurs, for a homogeneous and axially 

functionally graded fluid conveying pipes are tabulated in 

Table 1. The details on how to determine Γcr are discussed 

in the subsequent paragraphs. The accuracy of the 

procedures developed can be verified by observing 

excellent conformity between the results produced in the 

present study for homogeneous pipe with those provided 

by Wang [38]. Although for homogeneous pipe the 

convergence is achieved by choosing N = 11, for an AFGP, 

17 grid points must be employed. 

Figure 3 shows first eigenvalue of fluid conveying 

AFGP versus flow velocity Γ, computed in different values 

of material power-law index α. The results are generated 

based on HOPM. In order to be able to comment on the 

results, it should be noted that when ( )Re 0   and 

( )Im 0 =  the fluid conveying pipe loses its stability due 

to static divergence which is generally the case in 

conservative pipes. The smallest flow velocity at which 

this condition occurs is called critical flow velocity Γcr. 

Thus, inspecting Figure 3, it is obvious that for the current 

conservative (supported at both ends) FSI problem the 

instability is of the divergence type. Moreover, in all 

material gradation patterns characterized by α, the trend is 

preserved. In subcritical flow region, Γ < Γcr, the pipe is 

stable. ( )Im   value computed at Γ = 0 represents natural 

frequency of a pipe with still water acting as a core 

medium where the problem is unaffected by the dynamics 

of fluid flow. An increase in fluid velocity results in 

corresponding decrease in natural frequency, i.e. 

imaginary part of eigenvalue, which causes the pipe 

configuration to approach unstable state. In order to justify 

this fact, it should be mentioned that the centrifugal force 

term 2 2 2
1/fm w x    appeared in Eq. (12.b) resembles the 

term resulting from axial compressive load in a beam 

problem. Therefore, it can be physically realized that, with 

increasing the flow velocity the stiffness of the pipe is 

diminished; in sufficiently large values of Γ the 

destabilizing centrifugal force overcomes the restoring 

flexural force and as a result divergence instability, which 

can also be simply called as buckling, occurs. In addition 

to foregoing findings, it can be seen that larger value of α 

which represents a pipe with higher stiffness, yields 

greater value of frequency and correspondingly larger Γcr. 

Moreover, it follows from Figure 3 that, the dynamic 

flutter instability occurs at velocities beyond Γcr where real 

and imaginary parts of ω are simultaneously positive. 

 

Table 1. Critical flow velocities Γcr of homogeneous and AFGP conveying fluid predicted by EBPM, L / ro = 40, ro = 100 μm. 

Gradient index α 
 Present, 

N = 9 

Present, 

N = 11 

Present, 

N = 13 

Present, 

N = 15 

Present, 

N = 17 

Present, 

N = 19 

Wang 

[38] 

α = 0.0, MAT2  45.258 45.261 45.261 45.261 45.261 45.261 45.262 

α = 2.0  76.395 76.146 76.082 76.066 76.062 76.062 - 

 

  
(a) (b) 

 

Figure 2. Through-the-length distribution of material properties of an AFGP with L / ro = 40, (a) modulus of elasticity E and (b) mass 

density ρ. 
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To study the role of geometrical parameters in the 

dynamics of fluid conveying AFGP, the results provided 

in Figure 3 are regenerated in Figure 4 by only changing 

length to outer radius ratio L / ro from 40 to 60. The same 

conclusions mentioned in the foregoing paragraph can be 

drawn from Figure 4. Comparing Figure 3 with Figure 4 

reveals that a longer pipe has smaller stiffness and hence 

possesses smaller values of natural frequencies and critical 

flow velocities. 

Plotted in Figure 5 are the real and imaginary parts of 

eigenvalues computed for a thicker fluid conveying AFGP 

with ri / ro = 0.6. It can clearly be observed that the 

frequencies are increased remarkably by increasing the 

thickness of the pipe. This fact is expectable because the 

higher the thickness is the stiffer the pipe becomes. 

To investigate the effects of shear deformation on the 

dynamical behavior of AFGP, Table 2 tabulates critical 

flow velocities predicted by different tube models, namely 

EBPM, TPM and HOPM. As it is concluded from previous 

results, Γcr is an increasing function of α. Since EBPM 

neglects transverse shear stresses, it overestimates critical 

flow velocities. HOPM considers a proper through-the-

thickness shear stresses distribution profile and hence its 

results are more accurate. Although Γcr predicted by TPM 

are close to those computed by HOPM, a slightly smaller 

critical flow velocity are obtained by HOPM. 

 
(a) 

 
(b) 

Figure 3. (a) Imaginary and (b) real parts of first eigenvalue of 

AFGP conveying fluid versus flow velocity Γ, L / ro = 40. 

 

 
(a) 

 
(b) 

Figure 4. (a) Imaginary and (b) real parts of first eigenvalue of 

AFGP conveying fluid versus flow velocity Γ, L / ro = 60. 

 

 
(a) 

 
(b) 

Figure 5. (a) Imaginary and (b) real parts of first eigenvalue of 

AFGP conveying fluid versus flow velocity Γ, L / ro = 40, ri / ro 

= 0.6. 
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Table 2. Critical flow velocities Γcr of AFGP conveying fluid predicted by different tube models, L / ro = 40 

Model  α = 0.0, MAT2 α = 0.5 α = 1.0 α = 2.0 α = ∞, MAT1 

HOPM  61.15 69.37 74.09 79.32 86.48 

EBPM  61.93 70.27 75.09 80.45 87.58 

TPM  61.25 69.51 74.22 79.46 86.62 

5. Conclusion 

A new model for dynamical analysis of AFGPs 

conveying fluid is presented by employing a unified 

displacement field. The longitudinal variations in material 

properties of FCP is taken into account by employing a 

power law function. Using the formulation and procedures 

developed in the current study, it is possible to retrieve 

pipe models based on different theories such as Euler-

Bernoulli, Timoshenko and higher order shear 

deformation. HOPM, which for the first time is employed 

in dynamics of FCPs, delineates through-the-thickness 

distribution profile of the transverse shear stress more 

realistically and therefore yields more accurate results. The 

DQM is utilized to conduct parametric analyses and hence 

to reveal the effects of geometrical and material 

parameters on system eigenvalues at different flow 

velocities. 

Power law index α determines the distribution profile of 

the material properties through the length of pipe. The 

results show that it has significant effect on dynamics of 

fluid conveying AFGPs which can be used as an important 

design parameter especially in control applications. Higher 

values of α results in improved eigenvalues and increase 

critical flow velocities for divergence instability. 

The differences observed between the eigenvalue 

results of traditional pipe models and those of HOPM 

postulates that employing a refined higher order tube 

model, which takes into account the shear deformation 

considerations properly, is indispensable for an accurate 

prediction of mechanical responses. The frequencies 

predicted by EBPM and TPM are larger than those 

generated by HOPM. EBPM yields the largest values of 

Re(ω) because it disregards transverse shear stresses. 

It is possible to capture the influences of different 

material and geometrical parameters upon dynamical 

characteristics of AFGPs conveying fluid using the 

techniques developed in the current study. Owing to the 

superior features of functionally graded materials, the 

results provided in this paper can be utilized for intelligibly 

design and control purposes. This study also aims at 

providing a foundation for futures works on mechanical 

analyses, design, control, and optimization of FSI systems. 
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