
1395

Research Article

COVID-19 Prediction from Chest X-Ray Images using Transfer

Learning

 Kaan BIÇAKCI
a
 , Volkan TUNALI

a,*

a Department of Software Engineering, Faculty of Engineering and Natural Sciences,

Maltepe University, Istanbul, TURKEY

* Corresponding author’s e-mail address: volkan.tunali@gmail.com

DOI: 10.29130/dubited.878779

ABSTRACT

The COVID-19 pandemic has been affecting our lives in many ways, not only the healthcare systems in the

countries but the whole societies worldwide. Meantime, a considerable number of studies have been conducted

and lots of medical techniques have been tried to overcome the pandemic. In this work, making use of real-world

images, we applied Convolutional Neural Networks to chest X-ray images to predict whether a patient has the

COVID-19 virus or not. Initially, we used transfer learning to fine tune a number of pre-trained ResNet, VGG, and

Xception models, which are very well-known architectures due to their success in image processing tasks. While

the achieved performance with these models was encouraging, we ensembled three models to obtain more accurate

and reliable results. Finally, our ensemble model outperformed all other models with an F-Score of 97%.

Keywords: Chest X-Ray, COVID-19, Viral Pneumonia, Deep Learning, Transfer Learning, Ensemble Learning

Transfer Öğrenme Kullanarak Göğüs Röntgeni Görüntülerinden

COVID-19 Tahmini

ÖZ

COVID-19 salgını, sadece ülkelerdeki sağlık sistemlerini değil, dünya çapında tüm toplumları birçok şekilde

etkilemektedir. Bu süreçte, pandeminin üstesinden gelmek için önemli sayıda çalışma yapılmış ve birçok tıbbi

teknik denenmiştir. Bu çalışmada, gerçek görüntülerden yararlanarak, bir hastada COVID-19 virüsünün olup

olmadığını tahmin etmek için Evrişimsel Sinir Ağlarını göğüs röntgeni görüntülerine uyguladık. Başlangıçta,

görüntü işleme alanındaki başarıları nedeniyle çok iyi bilinen mimariler olan bir dizi önceden eğitilmiş ResNet,

VGG, ve Xception modellerini elimizdeki probleme uygun olarak yeniden eğitmek üzere Transfer Öğrenme

kullandık. Bu modellerle ulaşılan performans tatmin edici olsa da daha isabetli ve güvenilir sonuçlar elde etmek

amacıyla üç ayrı modeli bir araya getiren bir topluluk modeli oluşturduk. Son olarak, topluluk modelimiz %97'lik

bir F-Skoru ile diğer tüm modellerden daha iyi performans gösterdi.

Anahtar Kelimeler: Göğüs Röntgeni, COVID-19, Viral Pnömoni, Derin Öğrenme, Transfer Öğrenme, Topluluk

Öğrenmesi

Received: 11/02/2021, Revised: 05/05/2021, Accepted: 12/05/2021

Düzce University

Journal of Science & Technology

Düzce University Journal of Science & Technology, 9 (2021) 1395- 1407

mailto:volkan.tunali@gmail.com
https://orcid.org/0000-0003-3541-2243
https://orcid.org/0000-0002-2735-7996

1396

I. INTRODUCTION

As of February 10th, 2021, there are 107,639,175 coronavirus cases which have resulted in the death of

2,358,080 people [1]. Since December 2019, the coronavirus has started to become a major problem

worldwide as a pandemic. The COVID-19 pandemic has been affecting our lives in many ways, not

only the healthcare systems in the countries but the whole societies worldwide. Meantime, a

considerable number of studies have been conducted and lots of medical techniques have been tried to

overcome the pandemic. Some studies have particularly focused on the diagnosis of COVID-19 from

medical images like X-rays and CT scans.

There are several Deep Learning systems that were developed to identify and detect patients who had

COVID-19 using their chest X-ray images. Minaee et al. tested some popular deep learning architectures

such as ResNet [2] and DenseNet [3]. Their dataset was imbalanced due to the difficulty in finding X-

rays images of COVID-19 patients. Therefore, in order to increase the size of COVID-19 X-rays, they

used image augmentation in their study [4].

In a study by Khan et al., a model based on Xception architecture [5] was able to give promising results

[6]. They also used ImageNet [7] weights of Xception model, fine tuned last layers, and achieved 90%

accuracy in 3-class classification.

In another research, Apostolopoulos et al. used pre-trained models from architectures like MobileNet

[8], Xception, and VGG [9] for the detection of COVID-19 using chest X-ray images [10]. They applied

these models to both binary and multi-class classification and achieved 95% accuracy at best.

Ozturk et al. built a CNN model for COVID-19 detection using chest X-rays [11]. Their model achieved

87% and 98% accuracies for multi and binary class classification, respectively.

In this study, we applied CNN models to chest X-ray images to predict whether a patient has the COVID-

19 virus or not. We used transfer learning to fine tune a number of pre-trained ResNet, VGG, and

Xception models, which are very well-known architectures due to their success in image processing

tasks.

The studies mentioned above were similar to our study. However, their datasets were generally very

small when compared to ours; that is, we trained our models on a relatively larger dataset. Some of the

studies consistently reported that their datasets were imbalanced in terms of class distribution having

small number of COVID-19 X-ray images while having much greater number of images from normal

patients. Our dataset, on the other hand, had a comparatively balanced class distribution. Additionally,

some of the studies applied image augmentation techniques to increase the size and variety of their

datasets as we also took a similar approach. In our study, we also used ensemble learning to enhance the

classification accuracy. Different from the previous studies, we were able to get better results using a

larger dataset and ensemble learning.

This paper is organized as follows: Section II explains the details of the datasets and deep learning

models that we experimented with. In Section III, we present our results and discuss about them. Section

IV concludes the study and provides some future directions for further research.

II. MATERIAL AND METHOD

A. DATASET

The dataset used in this study were provided by Chowdhury et al. [12]. The original dataset contains

3,886 Chest X-Ray images. The images in the dataset are divided into three categories as COVID-19,

1397

Normal, and Viral Pneumonia according to their diagnosis, and their category distribution is 1,200,

1,341, and 1,345, respectively. Some sample images from the dataset are given in Figure 1.

COVID-19 Normal Viral Pneumonia

Figure 1. Some sample images from the dataset [12].

Figure 2. Some sample images we used to augment the COVID-19 category.

1398

When we first examined the images in the original dataset, we observed that there were lots of duplicate

images, especially in COVID-19 category. Thus, we identified the duplicates using a hashing method,

and then removed them.

After the duplicate removal process, the dataset became more imbalanced than the original with 917

COVID-19, 1,339 Normal, and 1,338 Viral Pneumonia images. In order to make the dataset balanced,

we augmented the COVID-19 category by warp shifting, rotating clockwise, and adding gaussian blur

to 349 images that we picked at random. To achieve that, we used the image processing functions in

OpenCV [13] and scikit-image [14] libraries. We flipped the images neither horizontally nor vertically

because as data augmentation is performed, category labels of the images should stay the same.

However, horizontal flip would make images of Normal category to have the heart on the right hand

side of the chest which is a disease called “dextrocardia” [15]. Some sample images we used to augment

the COVID-19 category are given in Figure 2.

It is worth mentioning that the dataset contained images in variety of resolutions such as 331x331,

1024x1024, and so on. Following the common practice in deep learning studies, we resized all images

in the dataset to 224x224.

Once we obtained the final dataset, we split the dataset into train, validation, and test sets. We used 65%

of the images for training, 15% for validation, and 20% for testing, as seen in Table 1. We need to state

that we used the augmented images in COVID-19 category only for training. That is, those images did

not appear in validation and test sets.

Table 1. Distribution of image categories in the dataset over train, validation, and test sets.

Split COVID-19 Normal Viral Pneumonia

Train 874 875 826

Validation 184 224 176

Test 208 240 336

Total 1,266 1,339 1,338

B. DEEP LEARNING METHODS

B. 1. Deep Learning

Deep learning is a subset of machine learning where algorithms are inspired by the connectivity patterns

of human brain called Artificial Neural Networks (ANN). There are different deep learning architectures

that have been applied to fields such as computer vision, speech recognition, natural language

processing, and so on. Convolutional Neural Networks (CNN) is an architecture that has been used for

image feature extraction. One other architecture is Recurrent Neural Networks (RNN) which has

connections between its layers as a form of directed graph, allowing the information carried in layers to

remember. Long Short Team Memories (LSTM) are special type of an RNN, capable of remembering

long-term dependencies [16].

RNNs and LSTMs are more suitable for sequential data such as text, time series, financial data, speech,

audio, video, and so on. Therefore, they are commonly used for tasks such as natural language

processing and time series processing. CNNs, on the other hand, are best suitable to work with spatial

structures like images.

1399

Figure 3. The overall architecture of the generic Convolutional Neural Network (CNN) [17].

The overall architecture of the generic CNN is given in Figure 3. Most crucial components of this

architecture are the convolution and pooling operations. Convolution represents the direct application

of any mathematical filter to a given input that results in an activation. Repeating the same process with

the same filter results in a map of activations that is called feature maps, indicating the locations and

strength of a detected characteristic of the given input. Pooling is used for reducing the spatial

dimensions of mapped feature maps. Pooling layer operates on each feature map independently [16].

B. 2. ResNet Models

ResNet models are one of the most popular CNN (Convolutional Neural Network) models. In theory as

neural networks become deeper, the expected performance should increase. However, in practice,

performance degrades. In order to overcome this issue, ResNet architecture was introduced [2]. The key

idea in this architecture is skipping connections while providing identity shortcuts for the networks. This

makes gradient updates much easier for deeper layers. All ResNet models follow the same logic; the

only difference is the number of layers in the network.

B. 3. VGG Blocks

The VGG CNN architecture was a significant milestone in deep learning and computer vision. VGG

blocks consist of small filter sized convolutions followed by max pooling layers. The VGG blocks start

with two convolutional layers which have 64 and 128 filters respectively. Then, the third layer contains

256 filters. In the ordinary usage of VGG blocks, filters are increased with the depth of the network [9].

B. 4. Xception Model

Xception model consists of three main parts named as entry flow, middle flow, and exit flow

respectively. The entry flow has two convolution layers followed by a layer of ReLU activation function

[5]. In this model Separable convolutional layers are used as a main difference from the previous similar

architectures. There are additional “skip” connections, where two tensors are added to merge. Similarly,

the Middle flow and the Exit flow are constructed with the same principles.

B. 5. Transfer Learning

Transfer learning is a machine learning technique to re-use pre-trained models for new objectives. That

is, layers and weights of a pretrained model are used as a starting point in model creation [16]. Transfer

learning is usually used when there are insufficient number of samples to train a model from scratch. In

1400

this way, we make use of the information readily available in the parameters of a previously trained

model. In addition, training of a new model takes considerably less amount of time. For instance,

obtaining a model which was already trained on ImageNet dataset [7] which contains millions of images

can be a good starting point for any image classification task. This kind of a model can also be used for

COVID-19 detection purposes. An illustration of transfer learning can be seen in Figure 4.

Figure 4. Illustration of transfer learning: a CNN is pretrained on ImageNet and subsequently trained on X-ray

images for our research.

As the size of our dataset was small, we used transfer learning to fine tune popular pre-trained deep

learning architectures in our study. Specifically, we used pre-trained models of ResNet18, ResNet50,

ResNet101, ResNet152, VGG16, VGG19, and Xception architectures.

B. 6. Ensemble Models

A special type of classifier, called Ensemble Classifier, combines multiple base classifiers in order to

improve the total accuracy of all base classifiers for different circumstances [18]. A result acquired from

combination of several machine learning models can be more accurate than a single classifier. The main

issue here is how to generate different base classifiers that complement each other. In addition, how to

combine the outputs of base classifier for maximum accuracy is another problem [19]. There are several

ensemble classification techniques developed for combining multiple classifiers. Well known and

widely used ensemble classification techniques are Bagging [20] and Boosting [21, 22].

In this study, we took a bagging approach to combine different deep learning models to improve the

classification accuracy. That is, we particularly created two different ensemble models to combine

different deep learning models. Every output of each individual model was combined and averaged to

get better classification accuracy. We called the first model we created ENS1, which was a combination

of VGG16, ResNet101, and Xception models. The second one, ENS2, was based on VGG19, ResNet50,

and Xception models. Our choice of base models was based on the performances of the models on the

COVID-19 category. General architecture of our ensemble models can be seen in Figure 5.

Transfer Trained

Weights

67% cat

30% dog

…

0.1% plane

90% covid19

6% normal

4% vpnom

ImageNet Dataset Pretrained Convolutional Layers Predictions Fully-Connected

Layers

New Dataset Transferred Convolutional Layers Predictions Fully-Connected

Layers

1401

Figure 5. General architecture of our ensemble models.

C. MODEL TRAINING

We used GeForce GTX 1660 Ti and Tesla K80 GPUs for training all the models. Models and

architectures were generated using TensorFlow 2.5.0 [23] and Keras 2.5.0 [24] in Python 3.8.3

environment. During the training process we used random image processing feature of Keras such as

zoom_range and width_shift_range to prevent overfitting, which is done internally by Keras.

We trained all the models with slightly low learning rates. Categorical cross entropy loss was used to

minimize the score of distance between predictions and ground truth values. As pre-trained models

include various regularization techniques, we only added dropout layers with a rate of 0.4 between the

layers that we tried to fine tune and train. Models and used optimizers to minimize the loss are given in

Table 2.

Table 2. Models and their optimizer parameters for the training process.

Model Optimizer Momentum Nesterov Learning Rate

VGG16 SGD 0.9 True 0.00009

VGG19 SGD 0.9 True 0.00009

ResNet18 SGD 0.9 True 0.00009

ResNet50 SGD 0.9 True 0.00009

ResNet101 SGD 0.9 True 0.00005

ResNet152 SGD 0.9 True 0.00005

Xception SGD 0.9 True 0.00005

ENS1 Adam - - 0.00003

ENS2 Adam - - 0.0001

Unlike for the other models, we used Adam optimizer for our ensemble models rather than SGD

optimizer. Adam is an adaptive optimizer and adaptive optimizers are known to be better than SGD for

especially large-scale models and they are prefferred due to their faster convergence [25]. In addition,

during our experimental studies, we obtained slightly better performance with Adam than SGD, and

thus, we settled on Adam.

Average

Layer

VGG

Input Layer

ResNet Xception

1402

The learning rate controls how fast the gradients are updated, in other words, it controls how the model

adapts itself to the problem. Higher learning rates make the model converge faster, however, they can

cause the model to diverge. Using a low learning rate means the model is taking small steps towards

minimum point of loss function. As it takes small steps, more epochs are required. Very low learning

rate also can cause model to stuck, which means no learning takes place [16].

For our dataset, using a higher learning rate was giving rise to oscillation of validation loss as well as

the training loss. Thus, we picked reduced learning rates with momentum. Additionally, we used three

Keras callbacks to control the training process, namely, ReduceLROnPlateu, ModelCheckpoint, and

EarlyStopping. ReduceLROnPlateu reduces the learning rate when the given monitoring metric stopped

improving. We used ReduceLROnPlateu with the following parameters: factor = 0.01, patience = 4,

minimum learning rate = 5×10-8 [26]. ModelCheckpoint saves the model to a specific directory when

monitoring metric is improved at the end of every epoch. We monitored the validation loss with the

parameter save_best_only = True. Thus, we overwritten the previous saved model [24]. Early Stopping

is a callback we used as a preventive measure to overfitting. Overfitting is a common problem when the

training dataset is small in which the model memorizes the training data, and it performs quite well with

seen data but performs very poorly with unseen data. In order to prevent this and make sure that our

models were not overfitting, we used early stopping with a parameter patience = 16 while monitoring

the validation loss [27].

D. MODEL EVALUATION METRICS

In order to measure the classification performance of the selected models, we used Accuracy, Precision,

Recall, and F-Score metrics. For each of these metrics, the higher the metric value, the higher the

performance of a classifier is. We used scikit-learn [28] to generate desired metrics.

When we test a classifier, we obtain four different counts as True Positive (TP), False Positive (FP),

True Negative (TN), and False Negative (FN). Using these counts, it is possible to compute the above

metrics as given in Eqn. 1, 2, 3, and 4, respectively.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

𝐹-𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. MODEL PERFORMANCE COMPARISON

We first obtained classification performance metrics for each model with respect to each one of the three

classes COVID-19, Normal, and Viral Pneumonia. In this study, our focus was particularly on the

successful detection of COVID-19 cases. Therefore, we first present our experimental results for the

COVID-19 class in Table 3.

1403

Table 3. Model performance comparison for COVID-19 class.

Model Precision Recall F-Score

VGG16 0.99 0.85 0.92

VGG19 0.98 0.87 0.92

ResNet18 0.94 0.84 0.89

ResNet50 1.00 0.93 0.96

ResNet101 0.99 0.91 0.95

ResNet152 0.98 0.88 0.93

Xception 0.99 0.93 0.96

ENS1 1.00 0.92 0.96

ENS2 0.99 0.97 0.98

Most of the models have a high precision but lower recall rates compared to each other. If a model has

a high precision rate, then it predicts the given image as positive when it is really positive. It can be

trusted. However, with a low recall rate, if it predicts the given image as negative, it cannot be trusted

as much as the predictions of positive. There is still some probability that given sample’s label is

positive. Therefore, for a reliable classification, both high precision and high recall are expected from

the models.

When we examine the individual model performances in Table 3, we observe that VGG models almost

performed the same, as the number of layers used in the models were close to each other. ResNet50

performed better than ResNet152, which may indicate that there was a high mismatch between the high

model complexity of ResNet152 and our dataset. Xception model, on the other hand, performed closely

or better than ResNet and VGG models as expected. ENS1 model was better than ENS2 in terms of

precision. That was expected, as ENS1 included the models that had the highest precision score. When

we constructed the ENS2 model, we chose the models that obtained the highest Recall scores. As a

result, our ENS2 model outperformed all other models when it comes to the detection of whether a

patient has the COVID-19 infection or not.

As this is a multiclass classification, it is better to compare the performances of models with respect to

all classes. In Table 4, we present a comparison of model performances for all classes in terms of F-

Score.

Table 4. Model performance comparison for all classes.

Model COVID-19 Normal Viral Pneumonia Weighted Average

VGG16 0.92 0.86 0.91 0.89

VGG19 0.92 0.91 0.90 0.91

ResNet18 0.89 0.92 0.91 0.89

ResNet50 0.96 0.92 0.94 0.94

ResNet101 0.95 0.95 0.95 0.95

ResNet152 0.93 0.91 0.94 0.93

Xception 0.96 0.90 0.91 0.92

ENS1 0.96 0.93 0.94 0.94

ENS2 0.98 0.96 0.97 0.97

Whereas ENS1 was one of the best-performing models in COVID-19 prediction, it showed only an

average performance among the other models in terms of F-Score. On the other hand, ENS2 was the

best in overall prediction performance as well as in COVID-19 prediction only.

In order to demonstrate the generalization capabilities of our models, we present the accuracies of the

models on train, validation, and test splits in Table 5. When we analyze these accuracy scores, we see

that ENS2 achieved the highest level of generalization as well as the highest prediction performance.

1404

Table 5. Model accuracies for train, validation, and test splits.

Model Train Validation Test

VGG16 0.91 0.89 0.88

VGG19 0.91 0.91 0.91

ResNet18 0.90 0.88 0.89

ResNet50 0.96 0.95 0.94

ResNet101 0.95 0.94 0.95

ResNet152 0.94 0.92 0.93

Xception 0.94 0.93 0.92

ENS1 0.96 0.95 0.94

ENS2 0.97 0.97 0.97

B. PERFORMANCE DETAILS OF OUR ENSEMBLE MODEL ENS2

Our ENS2 ensemble model is made up of VGG19, ResNet50, and Xception models. The purpose of

ensembling these models was to combine the variety of models as every one of them follows a different

architecture. We picked ResNet50 instead of ResNet101 because performance scores of ResNet50 on

COVID-19 prediction were better. Prediction of each model in the ensemble is combined and averaged

to get more reliable results. Keras implementation of ENS2 model is given in Figure 6.

models = [model_xception, model_resnet, model_vgg]

model_input = tf.keras.Input(shape=(224, 224, 3))

model_outputs = [model(model_input) for model in models]

ensemble_output = tf.keras.layers.Average()(model_outputs)

ensemble_model = tf.keras.models.Model(inputs=model_input, \

 outputs=ensemble_output, name='ensemble')

Figure 6. Ensembling models in Keras.

In Table 6, we present performance scores of ENS2 model for each class in more detail. In addition, we

present the confusion matrix obtained from our experiments in Table 7.

Table 6. Performance scores of ENS2 model for each class.

 Accuracy Precision Recall F1-Score

COVID-19 0.97 0.99 0.97 0.98

Normal 0.99 0.93 0.99 0.96

Viral Pneumonia 0.95 0.99 0.95 0.97

Table 7. Confusion matrix of ENS2 model.

Predicted Classes

Actual

Classes

COVID-19 Normal

Viral

Pneumonia
Total

COVID-19 202 4 2 208

Normal 0 238 2 240

Viral

Pneumonia
3 14 319 336

Total 205 256 323 784

1405

Table 8. Confusion matrix of test samples as predicted by ENS2 model.

 Predicted Classes

Actual

Classes

COVID-19 Normal

Viral

Pneumonia

COVID-19

Normal None

Viral

Pneumonia

ENS2 model obtained a very high precision, recall, and as a result, a very high F-Score when predicting

COVID-19 class. On the other hand, precision of Normal category is not as high as other metrics. When

we examine the confusion matrix, we see that our ENS2 model misclassified some Viral Pneumonia

images as Normal. This might be because, in some cases, the images from Normal class resemble the

images from Viral Pneumonia class as seen in Figure 1. Additionally, we provide sample images from

the test set as they were predicted by ENS2 model in Table 8 in a confusion matrix form.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this study, we proposed several CNN models to predict whether a patient has the COVID-19 virus or

not from chest X-ray images. We used transfer learning to fine tune a number of pre-trained ResNet,

VGG, and Xception models, which are very well-known architectures due to their success in image

processing tasks. We trained two ensemble learning models to include a variety of the base models in

order to improve the classification accuracy. The best performing ensemble model was our ENS2 model

that outperformed the other models with 97% accuracy on the three-class classification. We also show

in this study that transfer learning is a highly effective way of creating deep learning models on new

tasks.

A major limitation of our study is that we had to use a limited number of X-ray images that depict

COVID-19 infection. As a future work, we plan to make our model more accurate and reliable by

collecting more images from both local and global public data sources.

Entire system proposed in this study was based purely on medical images of patients. Despite the

apparent success proved by our experiments, a better and more reliable system for diagnosing COVID-

19 and similar infections can possibly be developed by incorporating some other medical data of patients

into the model.

V. REFERENCES

[1] Worldometers.info. (2021, Feb. 10). Coronavirus Update (Live) from COVID-19 Virus

Pandemic [Online]. Available: https://www.worldometers.info/coronavirus/

http://www.worldometers.info/coronavirus/

1406

[2] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778.

[3] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely Connected Convolutional

Networks," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 2261-2269.

[4] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. Jamalipour Soufi, "Deep-COVID:

Predicting COVID-19 from chest X-ray images using deep transfer learning," Medical Image

Analysis, vol. 65, p. 101794, 2020.

[5] F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," in 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1800-1807.

[6] A. I. Khan, J. L. Shah, and M. M. Bhat, "CoroNet: A deep neural network for detection and

diagnosis of COVID-19 from chest x-ray images," Computer Methods and Programs in

Biomedicine, vol. 196, p. 105581, 2020.

[7] J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, "ImageNet: A large-scale hierarchical

image database," in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009,

pp. 248-255.

[8] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H.

Adam, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications," ArXiv, vol. abs/1704.04861, 2017.

[9] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image

Recognition," CoRR, vol. abs/1409.1556, 2015.

[10] I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19: automatic detection from X-ray images

utilizing transfer learning with convolutional neural networks," Physical and Engineering

Sciences in Medicine, vol. 43, pp. 635-640, 2020.

[11] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya,

"Automated detection of COVID-19 cases using deep neural networks with X-ray images,"

Computers in Biology and Medicine, vol. 121, p. 103792, 2020.

[12] M. E. H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A. Kadir, Z. B. Mahbub, K. R.

Islam, M. S. Khan, A. Iqbal, N. A. Emadi, M. B. I. Reaz, and M. T. Islam, "Can AI Help in

Screening Viral and COVID-19 Pneumonia?," IEEE Access, vol. 8, pp. 132665-132676, 2020.

[13] G. Bradski, "The OpenCV library," Dr Dobb's J. Software Tools, vol. 25, pp. 120-125, 2000

2000.

[14] S. v. d. Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E.

Gouillart, T. Yu, and t. s.-i. contributors, "scikit-image: image processing in Python," PeerJ,

vol. 2, p. e453, 2014.

1407

[15] S. W. Yusuf, J. B. Durand, D. J. Lenihan, and J. Swafford, "Dextrocardia: an incidental finding,"

Texas Heart Institute journal, vol. 36, pp. 358-359, 2009.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge: The MIT Press, 2016.

[17] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan, B. C.

Van Essen, A. A. S. Awwal, and V. K. Asari, "A State-of-the-Art Survey on Deep Learning

Theory and Architectures," Electronics, vol. 8, p. 292, 2019.

[18] F. Huang, G. Xie, and R. Xiao, "Research on Ensemble Learning," in 2009 International

Conference on Artificial Intelligence and Computational Intelligence, 2009, pp. 249-252.

[19] E. Alpaydin, Introduction to Machine Learning, 2nd ed. London, England: The MIT Press,

2010.

[20] L. Breiman, "Bagging Predictors," Machine Learning, vol. 24, pp. 123-140, 1996.

[21] R. E. Schapire, "Theoretical Views of Boosting and Applications," in 10th International

Conference on Algorithmic Learning Theory AL'99, 1999, pp. 13-25.

[22] R. E. Schapire, "A Brief Introduction to Boosting," in 16th International Joint Conference on

Artificial Intelligence IJCAI'99, 1999, pp. 1401-1406.

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,

V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: a system for large-

scale machine learning," in Proceedings of the 12th USENIX conference on Operating Systems

Design and Implementation, Savannah, GA, USA, 2016, pp. 265–283.

[24] F. Chollet. (2021, Dec. 12). Keras [Online]. Available: https://keras.io

[25] N. Keskar and R. Socher, "Improving Generalization Performance by Switching from Adam to

SGD," ArXiv, vol. abs/1712.07628, 2017.

[26] L. N. Smith, "Cyclical Learning Rates for Training Neural Networks," in 2017 IEEE Winter

Conference on Applications of Computer Vision (WACV), 2017, pp. 464-472.

[27] R. Caruana, S. Lawrence, and L. Giles, "Overfitting in neural nets: backpropagation, conjugate

gradient, and early stopping," in Proceedings of the 13th International Conference on Neural

Information Processing Systems, Denver, CO, 2000, pp. 381–387.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.

Perrot, and É. Duchesnay, "Scikit-learn: Machine Learning in Python," Journal of Machine

Learning Research, vol. 12, pp. 2825-2830, 2011.

