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Abstract

Sampling methods are important factors that can potentially limit the accuracy of predictions of

spatial distribution patterns. A 10 ha tobacco-planted field was selected to compared the

accuracy in predicting the spatial distribution of soil properties by using ordinary kriging and

cross validation methods between grid sampling and simple random sampling scheme (SRS). To

achieve this objective, we collected soil samples from the topsoil (0-20 cm) in March 2012.

Sample numbers of grid sampling and SRS were both 115 points each. Accuracies of spatial

interpolation using the two sampling schemes were then evaluated based on validation samples

(36 points) and deviations of the estimates. The results suggested that soil pH and nitrate-N

(NO3-N) had low variation, whereas all other soil properties exhibited medium variation. Soil pH,

organic matter (OM), total nitrogen (TN), cation exchange capacity (CEC), total phosphorus (TP)

and available phosphorus (AP) matched the spherical model, whereas the remaining variables fit

an exponential model with both sampling methods. The interpolation error of soil pH, TP, and AP

. was the lowest in SRS. The errors of interpolation for OM, CEC, TN, available potassium (AK) and

Article Info total potassium (TK) were the lowest for grid sampling. The interpolation precisions of the soil

NOs-N showed no significant differences between the two sampling schemes. Considering our

data on interpolation precision and the importance of minerals for cultivation of flue-cured

Received : 13.08.2015 tobacco, the grid-sampling scheme should be used in tobacco-planted fields to determine the

Accepted : 18.09.2015 spatial distribution of soil properties. The grid-sampling method can be applied in a practical and
cost-effective manner to facilitate soil sampling in tobacco-planted field.
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Introduction

Among nutrients necessary for plant growth, potassium, nitrogen and phosphorus are the most important
and sensitive for yield and quality of flue-cured tobacco. Tobacco plants receive potassium, nitrogen and
phosphorus not only from fertilizers, but also from soil minerals. However, soil is characterized by a high
degree of spatial variability because of geological and soil-forming factors that operate at different
intensities and scales (Goovaerts, 1998; Quine and Zhang, 2002). Therefore, uniform fertilizer application
likely leads to over-application in areas with high nutrient levels and under-application in areas with low
nutrient levels (Ferguson et al., 2002), which results in extremely uneven tobacco yield and quality. Variable-
rate fertilizer application, which is an efficient method of solving such problems, is possible if spatial
variation in nutrient contents across a field is known (Cahn et al.,, 1994). The spatial distribution of soil
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properties can be predicted accurately by soil spatial sampling (Zhu et al., 2005). In soil sampling, point
information is used to estimate soil fertility levels at locations where samples are not obtained. Soil sampling
schemes are important because of their effect on the quality of spatial interpolation maps, and the
corresponding values to manage such maps depend on the accuracy of predicted values (Frogbrook, 1999).
Therefore, a suitable sampling method is necessary to estimate correctly the values of soil properties in
areas of specified sizes.

An optimal and time-effective sampling method in any study should provide maximum estimation precision
with the least sample cost. The number of soil samples and sampling strategies required to represent field
variability has been extensively studied since the 1920s (Lindsley and Bauer, 1929). This requirement is
possibly based on economic values (Peck, 1990). Increased agricultural income from reduced input,
increased yield, and improved quality should offset not only the costs of characterizing soil variability but
also the technology required for variable application. Studies have indicated that appropriate sampling or a
combination of systematic is effective when the density of rare or clustered populations is estimated
(Thompson and Seber, 1996; Christman, 2000). The sample pattern and sample spacing are important
factors that affect the accuracy of the kriging interpolation (Wollenhaupt et al., 1994; Gotway et al., 1996),
which is a technology for estimating the soil property values in nonsampled areas and generating the spatial
distribution (Goovaerts, 2000). Few previous studies evaluated the effect of sample design and intensity on
the accuracy of assessment (McBratney et al., 1999; Caeiro et al., 2002; Zhu and Stein, 2006; Brus et al,,
2006; Li et al.,, 2007; Kumar,2009; Liu et al., 2010). That research provides a starting point in developing a
sampling strategy for analyzing effectively the spatial variability of soil properties in tobacco-planted field.

Furthermore, sampling strategies should be carefully selected to represent fields in which known sources of
variability are considered. Field observation has been traditionally based on discrete sampling procedures
by using either grid sampling or SRS (Li et al., 2007). A grid pattern is commonly an optimum sampling
scheme to ensure that an entire field is represented. However, sampling with a grid pattern can be laborious
if large areas are examined (Li et al.,, 2007). Therefore, the present study compared kriging interpolation
precision between the grid sampling method and the SRS.

There are more than one million ha of agricultural soil for flue-cured tobacco plantation that serve as an
important source of income for tobacco growers as well as local administration in China. In order to improve
the quality of flue-cured tobacco, the Tobacco Company of China has requested that farmers adopt variable-
rate fertilizer application. The objectives of this study were: (i) to quantify the spatial variability of soil
properties across flue-cured tobacco (Nicotiana tabacum) plantation fields, (ii) to identify the appropriate
sampling scheme for nine soil properties in order to minimize cost and maximize evaluation accuracy, and
(iii) to provide a theoretical basis for establishing a reasonable sampling scheme in tobacco-planting fields.

Material and Methods
Study site

The study was performed at an agricultural experiment station in Southeast Pengshui County
(29°8'14'4672"N, 107°57'3081"E) of Chongqing City in Southwest China in 2012. The site is characterized
by a subtropical moist monsoon climate with an average annual temperature of 17.5 °C, a mean annual
potential evapotranspiration of 950.4 mm, and an annual precipitation of approximately 1104.2 mm. The
main soil type at this site ranges from light clay (80.6%) to heavy loam (3.5%), and the remaining 15.9% is
medium clay. In addition, the soil is slightly acidic (pH = 5.87).

Soil sampling and laboratory analysis

A 10-hectare area was selected for soil sampling, and the overview of the boundary of the study site is
illustrated in Figure 1. This area is surrounded by a hill and the field was bare at the time of observation. Soil
samples were collected in March 4, 2012. All of the samples were taken from the topsoil (0-20 cm), and a
real-time kinematic global positioning system (GPS) survey was used to identify sampling locations. At each
point, the values were recorded by differential GPS (DGPS) and then converted to coordinates (X, y; Fig. 1).
The soil samples of the grid sampling scheme were collected using an approximately 32 m grid sampling
design (n=115, Fig. 1). The soil samples of the regular simple random sampling scheme were regularly taken
from spaces that ranged between approximately 16 m and 32 m (n=115, Fig. 1).
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Figure 1. Soil sample distribution under two sampling schemes (a: grid sampling scheme, b: simple random sampling
scheme) in the 10-ha area.

Soil samples were packed in plastic bags, air-dried, divided, and ground to a sufficient size to pass through a
2 mm sieve before analysis was conducted. The soil pH of the samples was subsequently measured using a
pH meter with a glass electrode (soil-H;O ratio = 1:2.5, W-V). The organic matter (OM) content was analyzed
using the wet oxidation method of Walkley and Black (Nelson and Sommers, 1982). Cation exchange
capacity (CEC) was determined by extraction using neutral sodium acetate (Chapman, 1965). Total nitrogen
(TN) was determined using the Kjeldahl method (Bremner and Mulvaney, 1984). Nitrate nitrogen (NO3-N) of
a fresh sample was determined using a continuous flowing analyzer (Paramasivam et.al, 2002). Total
phosphorus (TP) was then determined by sulfate-perchlorate acid heating digestion-MoSb colorimetry (Lu,
1999). Available phosphorus (AP) was determined using the Olsen extraction method with alkaline sodium
bicarbonate as an extractant at a ratio of 20:1 (Olsen et al., 1954). Total potassium (TK) was analyzed by
inductively coupled plasma-atomic emission spectroscopy. Available potassium (AK) was determined using
the neutral ammonium acetate method (Richards, 1954).

Evaluation method

In order to evaluate the accuracy of our estimates, 36 sites were selected by probability sampling for
external validation. The interpolation values of these 36 points were compared with the actual
measurements.

As an alternative method of evaluating the accuracy of our estimates, we determined the performance of
each interpolation obtained using the two sampling methods. Deviations of the estimates from the measured
data were then compared by cross-validation (Webster and Oliver, 2001). Comparison of performance of the
two sampling methods was done using the following statistics:

In order to evaluate the accuracy of the estimates, the performance of each interpolation under different
intervals was assessed by comparing the deviation of estimates from the measured data through cross-
validation (Webster and Oliver, 2001). Comparison of performance between the two sampling schemes was
done using the following statistics: mean absolute error (MAE), mean error (ME), mean square error (MSE),
average standardized error (ASE), root mean square error (RMSE), and root mean square standardized error
(RMSSE). The ME was used to determine the degree of bias in the estimates; MSE provided a measure of the
size of MSE; ASE was used to identify the degree of ASE; RMSE provided a measure of the error size that it is
sensitive to outliers; and RMSSE was used to determine the degree of RMSSE. The five error statistics of
predictions were used in the cross-validation analysis. The equations are as follows (Johnston et al., 2001):
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where Z(Xi) is the predicted value, Z(X;) is the observed value, n is the number of values, and o is the

standard error for location i .

The criteria for cross-validation were as follows. ME and MSE indicate the degree of bias in the model
prediction, and should be approximately zero. RMSE and ASE indicate the precision of prediction. Their
values should be as small as possible. RMSSE compares the error variance with the kriging variance. RMSSE
should be approximately 1. If RMSE equals ASE, then all errors are of small If ASE>SRMSE or RMSSE<1, the
model-predicted values are larger than the actual values (Tang and Yang, 2006). MAE indicates the precision
of prediction, such that low MAE values indicate more accurate point-by-point predictions.

The measured variables in the data set were analyzed using descriptive statistical methods to obtain the
mean, S.D., minimum, median, maximum, skewness, kurtosis, and coefficient of variation (CV) using SPSS
17.0 software. Distributions of these variables were evaluated to determine normality using Kolmogorov-
Smirnov statistics. Semi-variance calculation, semi-variogram function model fitting, and cross validation
were performed using the geostastistical software ArcGIS 9.3 for Windows.

Results

Descriptive statistics

Summary statistics of soil parameters is shown in Table 1. Distributions of all variables were only slightly
skewed (skewness < 1), and their median values were close to their mean values. In addition, results showed
that all data were normally distributed (Kolmogorov-Smirnov test, P > 0.05; Table 1).

Table 1. Descriptive statistics of soil properties (n = 289) in the topsoil (0-16cm) at different sampling dates.

Skewne
Soil properties Min. Median Mean Max. S.D. FCV % ss Kurtosis Py
pH 5.00 5.85 5.87 7.00 0.45 7.67 0.32 -0.25 0.59
OM, gkg! 14.26 25.00 25.24 39.34 5.01 19.85 0.32 -0.11 0.59
CEC, cmol kg! 6.23 17.19 17.65 31.09 5.34 30.25 0.35 -0.34 0.21
TN, g kg 0.34 0.79 0.81 1.35 0.20 24.69 0.09 -0.4 0.63
NOs3-N, mg kg1 137.3 174.3 177.33 2213 16.79 9.47 0.52 -0.23 0.08
TP, g kg! 0.35 0.75 0.79 1.33 0.22 27.85 0.61 -0.12 0.01
AP, mg kg1 13.54 19.95 20.46 29.51 3.42 16.72 0.57 -0.48 0.01
TK, gkg! 10.85 17.26 17.22 24.57 2.93 17.02 0.27 -0.32 0.52
AK, mg kg! 62.41 202.31 199.78  374.11 65.76 32.92 0.22 0.56 0.16

# CV, coefficient of variation (%).
* K-S Test, Kolmogorov-Smirnov test was used to test the significance level of normality, all variables were normally
distributed (P > 0.05).
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The greatest variability was observed in AK (32.92%), whereas the least variability was found in pH
(7.67%). The variability in pH and NO3-N were low (CV < 15%), whereas all of the other soil variables
exhibited moderate variation (CV: 15%-50%). AK also exhibits a localized pattern of enrichment according
to the National Soil Survey Office (1993). In conclusion, the soil possesses high variability, which results in
extremely uneven tobacco yield, quality, and agricultural benefits, which suggests that variable-rate
fertilization application is necessary for improving tobacco quality in this area.

Geostatistical analysis

Semi-variograms were calculated to identify the possible spatial structure of different soil variables. Cross-
validation was performed to compare the prediction performances of geostatistical interpolation algorithms
with a particular sampling method. Cross-validation indicators and additional model parameters (nugget,
sill, and range) helped determine the optimal model of the prediction maps for each soil property (Issaks
and Srivastava, 1989). In this study, the optimal model that could describe specific spatial structures was
identified. The result of the geostatistical analysis is shown in Table 2. In this analysis, several spatial
distribution models were fitted, which revealed different spatial dependence levels of the soil variables
based on the cross-validation model.

Our results suggested that NOs3-N, TK, and AK ideally matched an exponential model, whereas the remaining
variables suitably fit the spherical model with the two sampling methods. The coefficient of determination
(R2) of all variables, except for NO3-N and AK, was greater than 0.90, indicating good fits. The spatial
variability of soil nutrients may be affected by extrinsic (soil management practices such as fertilization and
cultivation) and intrinsic factors (soil formation factors, such as soil parent materials). The strong spatial
dependence of soil variables can typically be attributed to extrinsic factors (Cambardella et al., 1994). The
value nugget % was used to qualitatively define spatial dependence values. Our results showed that pH, OM,
CEC, TN, and NO3-N exhibited <25% except NO3-N in the SRS, which suggested strong spatial dependence.
Rodriguez et al. (2009) found that spatial dependence of NO3-N was high in sandy and loam soils. All of the
other soil variables were moderately spatially dependent with nugget % ranging from 33.33% to 57.14%.
This range could be interpreted as the zone of influence diameter. This result represented the average
maximum distance at which the soil properties of the two sampling points are related. The ranges of spatial
dependences exhibited large variation (from 95.78 m for OM of grid sampling to 558.41 m for AK of SRS, as
shown in table 2).

Accuracy of validation samples

The spatial distributions of nine soil properties were completed with the optimal models using the two
sampling schemes in the study area. The predicted values of evaluation samples (115 points) and validation
samples (36 points) were obtained using the two sampling schemes.

The scatter diagrams, in which the predicted values are on the vertical axis and the measured values are on
the horizontal axis, were constructed and a trend line was subsequently added (Fig. 2). The trend line was
closer to the 45-degree line, indicating a more accurate prediction than other lines (Li et al., 2008). In the
scatter diagram, the prediction accuracies of pH, TP, and AP in the SRS were bigger than that of the grid-
sampling scheme, while the prediction accuracy of soil OM, CEC, TN, NO3-N, TK and AK in the grid-sampling
scheme was bigger than that of the SRS.

Analysis of interpolation results for SRS and Grid sampling

Results of cross-validation from the 115 points arranged in the SRS are shown in Table 3. These data may be
more useful in comparing prediction errors. ME was always nearly equal to MSE, ASE was almost equal to
RMSE, and RMSSE values were always close to 1. Consequently, kriging was shown to be accurate for soil pH,
TP and AP by the five statistical criteria in the SRS, while the interpolation results of soil OM, CEC, TN, TK
and AK in the SRS were poor than that in the grid-sampling scheme. The difference in accuracy of the soil
NO3-N between the two sampling schemes was not markedly significant.

For pH, TP, and AP, the absolute values of ME and MSE were slightly greater than zero, whereas the absolute
value of RMSE was remarkably close to and less than that of ASE, and the RMSSE values were less than one,
indicating that they were underestimated in the SRS. The absolute values of ME, RMSE, ASE, and MSE of TN
and AK were very close to zero, and RMSE > ASE, RMSSE > 1, suggesting that they were slightly
overestimated at the grid sampling scheme. However, it was underestimated by kriging for OM and TK in the
grid sampling scheme (RMSE < ASE, RMSSE < 1).
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Thus, the results of cross-validation of soil OM, CEC, TN, TK and AK indicate that the interpolation results of
the grid-sampling scheme were better than the regular simple random sampling scheme, and soil pH, TP and
AP provided worse interpolation results in grid-sampling scheme. The interpolation results of soil NO3-N
have no markedly significant in the two sampling schemes.

Table 3. Results of cross-validation (ME, MSE, ASE, RMSE and RMSSE) from the 115 points, respectively, in the simple
random sampling scheme and grid sampling scheme

Item pH oM CEC TN NO3-N TP AP TK AK

ME 0002 0039 0057 0004 -0.010 0001 0023 -0.001 0671
Simple  MsE 0003 0008 0010 0019  -0.001 0004 0006  0.000  0.009
Zgrr;d;?lg ASE 0378 4882 4274 0195 13370 0142 2748 2921  68.900
scheme . RMSE 0376 4870 4350 0198  14.350 0.130 2635 2863  66.690

RMSSE 0996 0997  1.017 1015  1.071 0892 0907 0981  0.968

ME -0.005  -0.033 -0.018 0002 0187  -0.001 0010  -0.005 -0.016
Grid MSE 0010  -0.003  -0.002  0.010  0.009  -0.001  0.004  -0.006 -0.001
sampling ASE 0421 4859 4410 0179 14770 0145 2757 2537 56.180
scheme  RySE 0397 4857 4252  0.184 14680 0130 2496 2474 56300

RMSSE 0.944 0.998 0.969 1.028 0.999 0.914 0.966 0.978 1.006

Interpolation Maps

Kriging interpolation was performed to obtain a filled contour map using ArcGIS 9.3 with the two sampling
methods to determine the spatial distribution and status of soil properties. The contour maps of the soil
properties are shown in Figure 3. For each of the soil properties, the spatial distribution trend was similar
using the two sampling schemes. Analysis of distributions of soil nutrients revealed that TP and AP have
similar spatial distributions. High levels of TP and AP were detected at the east section and low distribution
was observed in the southwest sections of the study area. The contour map of TK content showed the
highest positional similarity with the krigged AK map. The distributions of pH, OM, and CEC were consistent
with high values in the middle section of the field.

Discussion

Coefficients of variation (CVs) were very different among the variables, ranging from approximately 7.67%
(pH) to nearly 32.92% (AP), indicating large heterogeneity in soil properties. Nitrogen (N), phosphorus (P)
and potassium (K), which are the major minerals needed for tobacco growth and development. In addition,
they had particularly high CVs in this study area. This is consistent with the findings of Wang et al. (2009).
Our results differed from those reported by Gupta et al. (1999), who showed that soil NO3-N exhibits
moderate variation. This is mainly because of different planting patterns, uneven crop growth and non-
uniform management practices, resulting in marked changes in topsoil over small distances. Therefore, site-
specific management of nutrients may be necessary to achieve maximum economic and environmental
benefits (Jiang et al., 2010). However, classical statistics do not show the spatial distribution of soil
properties. The spatial distribution maps of soil nutrients based on geostatistical analysis provide a basis for
variable-rate application.

It is important to determine the spatial dependence of soil properties because soil properties with strong
spatial dependence are more readily managed (Jiang et al., 2010). The nugget-sill ratio can be used to classify
the spatial dependence of soil properties (Jiang et al.,, 2011). The lower ratios for pH, OM, CEC, and TN were
less than 25, indicating that the four soil variables had strong spatial dependence and the structural factors
strongly influenced the spatial variability of these properties (Cambardella et al., 1994). Consistent with
other reports, the spatial dependence of pH, TN, OM, and CEC were fairly strong (Jiang et al., 2010; Liu et al,,
2008). Meanwhile, all other soil variables, except for NO3-N of grid sampling, were moderately spatially
variable, with the nugget/sill ratios ranging from 33.33% to 42.60%. Ranges of spatial dependence that
varied from 95.78 m for OM of grid sampling to 558.41 m for AK of SRS were larger than the smallest
sampling distance (16 m), suggesting that the two sampling schemes can satisfy the requirement of spatial
variability structure analysis of soil properties in the study. Knowledge of the range of influence for various
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soil variables allows for construction of independent data sets that can be used for classical statistical
analysis. A small range indicated that a small sampling interval is required for OM.
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Figure 3. Smoothed contour maps produced by kriging for pH, OM, CEC, TN, TP, TK, NO3-N, AP, AK under two sampling
methods in the 10-ha area (a: grid sampling scheme, b: simple random sampling scheme).

For the same soil properties, the nugget-sill ratios of pH, CEC and NOs-N of grid sampling were lower than
those of SRS (Table 2). The other soil properties were just the opposite. Results of cross-validation of the soil
properties indicated that a reasonable sampling scheme of pH, CEC and NOs-N at the site was SRS, whereas
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that for the remaining soil properties was grid sampling. Therefore, we can speculate that the sampling
scheme with bigger nugget-sill ratio was optimal within a certain range of nugget-sill ratio. However,
whether this is applicable to other soil properties or other fields must be verified further.

Variable-rate fertilizer application is only possible if the spatial variation in nutrient status across a field is
known (Cahn et al., 1994). Geostatistics is an important tool for characterizing the spatial variability of soil
properties, and it has been widely used in variable-rate fertilizer application. The accuracy of kriging
interpolation also depends on the sample pattern and sample spacing (Gotway et al., 1996). Sampling design
is also very important when the objective is to interpolate in an optimal fashion and to generate spatial
distribution maps for soil properties within a region (Haining, 1990). Results of the present study revealed
that the interpolation errors of soil OM, CEC, TN, TK and AK were the lowest with the grid sampling scheme.
On the other hand, interpolation error of soil pH, TP, and AP was the lowest with the SRS. The interpolation
results of soil TN, CEC, AK, and TK obtained by grid sampling were better than SRS, while the interpolation
accuracy of soil NO3-N was no markedly significant in the two sampling scheme. Our results differ from the
findings reported by Mallarino and Wittry (2004), which found that grid sampling was the most effective for
phosphorus, potassium, pH, and organic matter. Discrepancy between these results and those reported in
previous studies may be attributed to inconsistencies in agricultural experimental treatments among
different studies.

Potassium is one of the major minerals needed for tobacco growth and development (Liu, 2003). The
potassium content of tobacco leaves is highly correlated to tobacco leaf quality and cigarette safety, and
potassium content is an important index for measuring tobacco leaf quality (Yang et al., 2007). Potassium
deficiency is the most common problem in tobacco planting fields in China, and is seen as a major constraint
for improving tobacco quality. In this study, we found that the interpolation errors of soil potassium data in
the topsoil layer were lowest in the grid sampling scheme. Similarly, It should be noted that the grid-
sampling scheme has previously been shown to be more effective for potassium (Mallarino and Wittry,
2004). Thus, it can be deduced that the optimal spatial sampling scheme is grid sampling if the land was
previously planted with flue-cured tobacco. Additionally, plants derive nitrogen and phosphorus, which are
important for tobacco plant growth and development, not only from fertilizers, but also from soil minerals.

Our results clearly showed that the prediction accuracies of soil OM, CEC, TN, TK, and AK were smaller in
grid-sampling scheme than SRS. The pH, TP, and AP had the smallest kriging errors in the SRS, the
interpolation errors of NO3-N were not markedly different between the two sampling schemes. We instead
found that the grid sampling method is optimal for tobacco planting fields because soil properties, which are
important for tobacco quality, are predicted with better accuracy, and an accurate site-specific fertilization
scheme for precision farming can be more easily developed using this method.

This study provides a theoretical basis for the practice of precision agriculture in tobacco-planted field. For
tobacco production, examining the distribution and abundance and shortage situation of key-nutrients is
necessary, especially for the nutrient crucial for tobacco such as potassium (Liu, 2003). If we continue to use
the experience based homogenization fertilization management, the variability of tobacco yield and quality
will increase. Therefore, the key-nutrient must be closely considered by the producer when determining the
sampling scheme. From the analytical results of this study, the interpolation error of AK and TK were the
smallest, revealing that the best sampling scheme was grid sampling. In actual production, the grid-sampling
scheme could be used as the basis for site-specific fertilizer management because potassium, which is key-
nutrient for tobacco quality, is predicted with better accuracy. In the future, a reasonable sampling scheme
should be selected in accordance with spatial autocorrelation, trend effect, anisotropy effect of soil
properties, and the restrictions of monetary, time, workforce.

Conclusion

Classical statistical analysis showed considerable spatial variability of all soil properties. Soil pH and NO3-N
had low variation (CV, <15%), whereas all other soil properties exhibited medium variation (CV, 15%-15%).
Geostatistical analysis of soil properties indicated that pH, OM, TN, CEC, TP and AP ideally matched the
spherical model, whereas the remaining variables suitably fit the exponential model with two sampling
methods. Classical statistical analysis and geostatistical analysis of soil properties revealed considerable
spatial variability in the study area, suggesting that variable-rate fertilizer application is required. In
addition, interpolation error analysis revealed that soil OM, CEC, TN, TK and AK had the smallest kriging
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errors in the grid sampling scheme. The smallest interpolation error for pH, TP, AP was obtained by SRS.
Moreover, the interpolation precisions of NO3-N were not markedly different between the two sampling
schemes, while the SRS was slightly better for soil pH, TP, AP, and grid sampling was slightly more
appropriate for all other soil properties. Therefore, considering the fact that potassium is one of the major
minerals needed for tobacco, the grid sampling scheme should be used for variable-rate fertilizer application
to improve the quality of flue-cured tobacco.
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