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Abstract  
 
In this paper, we have considered the Caputo fractional order model for convective fins of rectangular profile with 
temperature-dependent thermal conductivity. The fractional order energy balance equation is solved by using 
homotopy perturbation method (HPM). This method is one of the effective tools to solve the fractional order 
nonlinear diffusion equation with thermosensitive conductivity it requires less computer memory and reduces the 
computation time. The fin efficiency and the fin effectiveness appeared as a function of thermo-geometric fin 
parameters. The stresses are solved using stress-displacement relation. The results obtained are illustrated 
graphically for temperature distribution, efficiency, effectiveness and thermal stresses. The phenomena reveal that 
the selection of the order of fractional derivative remarkably influences the outcomes. However, careful review of 
the existing literature reveals that hardly few results of thermal stresses in fins with the energy balance equation of 
integer order are available. Hence this result may be the novel contribution to the field.  
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1. Introduction  

The heat transfer is a very attractive field in various 
branches of engineering and has huge applications in 
mechanical engineering. The process of heat transfer can be 
improved by using the extended surface which is called fin. 
The rate of heat dissipation can be increased exposing the 
fin to cool or heat with the high thermal conductivity. 
Various methods had been empowered to solve the heat 
transfer problem of the fins. Aziz and Huq [1] used 
perturbation method to calculate the closed form solution 
for a straight convective fin with thermosensitive thermal 
conductivity. Besides that, the Fourier series method 
approach used to investigate a two-dimensional rectangular 
fin with arbitrary variable heat transfer coefficient on the 
fin surface [2]. The obtained solutions show that the 
temperature distribution with three different boundary 
conditions at the fin tip. Further investigation leads towards 
parametric study of horizontal fin arrays, the three-
dimensional elliptic governing equations solved using a 
finite computational fluid dynamics code [3]. The obtained 
results showed that it is not possible to obtain optimum 
performance in terms of heat transfer by only 
concentrating on one or two parameters. Mokheimer [4] 
investigated the performance of annular fins of different 
profiles subject to locally variable heat transfer 
coefficient. The divergence between the fin efficiency 
calculated based on constant and variable   heat transfer 
coefficient, has been estimated and presented for all fin 
profiles with different radius ratios. More theory came 
forward which showed the effect of the fin arrays 
geometries and also the fin tip-to-shroud clearance on the 

heat transfer, the fluid flow and the pressure drop 
characteristics of longitudinal rectangular-fin arrays 
[5]. Chiu and Chen [6] applied Adomian's decomposition 
method and discussed fin efficiency. Arslanturk [7] 
analysed fin efficiency of convective straight fins with the 
help of decomposition method. The analysis to the fin 
theory extended to calculate the rate of entropy 
generation of pin fins of circular and elliptical cross flow of 
air. Coskun and Atay [8] operated the variational iteration 
technique to examine the convective straight and radial fins. 
The study shows that the competition between enhanced 
thermal contact and fluid friction is settled when the heat 
transfer irreversibility and the fluid friction irreversibility 
add [9]. Domairry and Fazeli [10] also determined the fin 
efficiency with the help of Homotopy analysis method. 
Cuce and Cuce [11] applied Homotopy perturbation method 
to discuss fin efficiency and its effectiveness in straight fin. 
The profile of the extended surface varies as the thermal 
behaviour of the system also changes. Moreover, [12] 
illustrated the thermodynamics optimization of a Y shaped 
fin profile to study the latent heat thermal storage system. 
The result represents the detailed thermodynamics 
optimization of a system involving an unsteady process. 
Furthermore, Huang et. al [13] obtained the solution to 
improve ventilation with cold air from below the fin base 
by introducing the  perforations through the fin base. 
Mallick et. al [14] determined analytically the thermal 
stresses in an annular convective-conductive fin of 
hyperbolic profile with steady state energy balance equation 
in the form of integer order derivatives.  
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The generalization of the derivatives and integrations of 
non-integer orders are called Fractional derivatives and 
integrations [15]. Due to the non-local property of 
fractional derivatives the researchers are using it in various 
fields of physical sciences such as Electromagnetism, 
quantum mechanics and fluid dynamics. In the field of 
thermoelasticity, the heat diffusion process in 
heterogeneous and non-regular materials the transport 
processes do not obey the law of classical mechanics. 
Hence, it becomes necessary to consider the diffusion 
equation with fractional order derivatives. Although 
Fractional order theory has been studied in great detail, 
Caputo derivative [16,17,18] achieves more importance  as 
it  easily assembles to heat conduction equations of 
nonlinear order. This new method is adopted to solve the 
thermoelastic problem related to the field of mechanics 
[19,20,21,22].  Srinivas [23] considered the finite 
rectangular parallelepiped subjected to conducting heating 
with time fractional order heat conduction equation of 
Caputo derivative form. The effect of time fractional 
parameters on temperature distribution, deflection, stress 
resultants and thermal stress distribution has been observed. 
Further theory has been extended to study the theory of fin 
with fractional order. Patel and Meher [24] studied the 
variation of temperature distribution, efficiency and 
effectiveness of porous fin for different fractional order, 
porous parameter and convection parameter by using 
Adomian Decomposition Sumudu Transform 
Method(ADSTM). Patra and Saha Ray [25] used 
Homotopy Perturbation Method to analyse fin efficiency 
using fractional order energy balance equation. These 
researchers analysed the fin efficiency of convective 
straight fin.  Devendra [26] employed the HPM coupled 
with Laplace transform method to obtained the solution of 
fractional order  problem for convective straight fins with 
temperature-dependent thermal conductivity associated 
with Caputo-Fabrizio fractional derivative.  

In this paper, we have considered the Fourier law in the 
form of fractional order derivatives to study the efficiency 
and effectiveness of a rectangular fin.  The temperature 
distribution is determined using the HPM and thermal 
stresses are obtained simplifying stress-displacement 
relation. The results obtained are illustrated graphically for 
better understanding the effect of thermal geometric fin 
parameter, thermal conductivity on temperature 
distribution, thermal stresses for different fractional 
parameters and also fin efficiency and effectiveness with 
respect to thermal geometric fin parameter. However, 
careful review of the existing literature reveals that hardly 
few results of thermal stresses in fins are available with the 
energy balance equation of integer order. Hence this result 
may be the novel contribution to the field.  

2. Problem Formulation of Heat Transfer
We have considered a rectangular fin with constant

cross-sectional area cA , perimeter P , length b and heat
flows in x direction.  The fin is subjected to base surface 
temperature T and extended into the fluid at ambient 
temperature aT  (see in Figure 1). The tip of the fin is
assumed to be insulated. The heat flow enters the fin is 

QQin =  and flow out of fin is dx
dx
dQQQout += , 

while some heat flows due to convection is 
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)( aTTPdxh − , where h is heat transfer coefficient from 
surface to surrounding and x is the spatial variable. The 
steady state energy balance performed on this elementary 
area is given by [4,27] 

Figure 1. Representation of the rectangular fin. 

)( aoutin TTpdxhQQ −+=       (1) 

Introducing cqAQ =  in equation (1) reduces to 

0)( =−+ ac TTph
dx
dqA     (2) 

Using the non-local generalizations of the Fourier Law as in 
[28] 

α

α

dx
TdTKq )(−=  (3) 

The thermal conductivity )(TK  of the fin is taken as 
temperature dependent 

( )[ ]aa TTkTK −+= λ1)(   (4) 

where λ  is a parameter defining the variation of the 
thermal conductivity, ak  is the thermal conductivity at the
ambient fluid temperature of the fin.  
Substitute the equation (3) in (2), its leads to fractional 
order energy balance equation for rectangular fin 

0)()( =−−







ac TTph

dx
TdTKA

dx
d

α

α

100 ≤<≤≤ αbx       (5) 
For simplicity the non-dimensional parameters are defined 
as 

,),(,
ab

a
ab TT

TT
TT

b
x

−
−

=−== θλβξ









=

ca Ak
hPbα

φ 2    (6) 

where β  is a non-dimensional thermal conductivity 

parameter, φ  is thermo-geometric fin parameter and bT is
the fin base temperature. 
By introducing dimensionless quantities (6) in energy 
balance equation (5) one obtains, 
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In order to determine temperature distribution the following 
boundary conditions are considered 

0;0 ==
ξ
θξ

d
d

     (8) 

1;1 == θξ       (9) 

3. Essentials of Fractional Calculus
Fractional calculus has achieved the tremendous rise in

the field of physics and engineering as it supports the 
fractional order differential and integral equation. The vast 
 literatures are available for definitions of fractional 
derivatives. In this work, we are using Caputo fractional 
derivative as it allows traditional initial and boundary 
conditions in the formation of the problem and it also 
shows the derivative of constant is zero. 

The Caputo definition of fractional derivatives of ( )ξθ
of order α  is defined by [29] 

( ) ( )ξθξθ αα nn
C DID −=

( ) ( ) ( )
∫ −−−

−Γ
=

ξ

α
α ξθξ

α 0

11 dt
dt

dt
n

n
n

 nn <<−> αξ 10    (10) 

where 
ξd
dD =  is the derivative operator, n  is a positive 

integer. If ( ) γξξθ =  then Caputo definition leads to

( )
( ) 1

1
1

−>
+−Γ

+Γ
= − γξ

αγ
γξ αγγαD     (11) 

Linearity property of integer order differential equation is 

( ) ( )( ) ( ) ( )θθθθ ααα grDfzDrgzfD +=+     (12)

Where ( ) ( )θθ gf ,  are derivative terms of θ  and rz,  are

constant integers. The fractional integrals of a function γξ  
is 

( )
( ) 01

1
1

>−>
++Γ

+Γ
= +− αγξ

αγ
γξ αγγαD    (13) 

In particular, if 0=γ , the fractional integral of a constant 

C  of order α  is 

( ) 0
1

>
+Γ

=− αξ
α

αα CCD    (14) 

4. Homotopy Perturbation Method To Heat Transfer
HPM is used to obtain approximate analytic solution of
nonlinear differential equation as in [30],[31],[32]. We have
considered a non-linear differential equation of the form

( ) ( ) 0=− ξθ fA (15) 

where ( )ξf  an analytic known function and A is separated
into two parts as 

( ) ( ) ( )θθθ NLA +=    (16) 

where ( )θL  is a linear part and ( )θN is non-linear part of
the differential equation. By homotopy technique one can 
construct a homotopy ( )sH ,θ  which satisfies:

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 01, 0 =−+−−= ξθθθθ fAsLLssH
  (17) 

From this equation (17) we can have the condition, where 
]1,0[∈s  is an embedding parameter and 0θ  is the first

approximation of equation (15) that satisfies the boundary 
conditions. Hence, we have 

( ) ( ) ( ) 00, 0 =−= θθθ LLH    (18) 

( ) ( ) ( ) 01, =−= ξθθ fAH    (19) 

As s  changes from zero to unity the quantity of ( )s,ξθ
changes from ( )ξθ0  to ( )ξθ . This process is known as

deformation and ( ) ( )0θθ LL −  and

( ) ( ) ( )ξθθ fNL −+  are the homotopy. Applying 

classical perturbation technique we assume the solution θ  
of equation (17) as a power series 

++++== ∑
=

3
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2
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i
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i
    (20) 

In this method the values of 3210 ,,, θθθθ  are 
evaluated by the function obtained from (17),(18) and (19). 
Finally, the approximation for solution can be obtained by 

∑
=

→
=

l

i
i

i

s
s

01
lim θθ    (21) 

This series converges very rapidly. Applying homotopy 
perturbation method, the  linear and non-linear parts of (7) 
are termed as 
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The insulated boundary condition (8) gives us θ  as an 
arbitrary constant at 0=ξ . Hence this boundary condition 
can be rewrite as 

0=
ξ
θ

d
d  at ;0=ξ       C=θ    at 0=ξ    (23) 

Inserting (20) into (22) and then in (17) and then from 
obtained results equating the coefficients of power of s , 
we get 

0: 1
0

1
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with 00 =
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Thus, proceeding in the same manner by equating 
coefficients of powers of s we get differential equations for 
remaining components 432 ,, θθθ . The desired 
accuracy can be obtained by increasing the number of terms 
sufficiently in the series solution. 
Solving the differential equation (24)-(28) for 

43210 ,,,, θθθθθ  and letting 1→s , we have obtained 

the solution ( )ξθ as
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   (29) 
where C represents the temperature at the fin tip which can 
be determined by using boundary condition (9). 

5. Fin Efficiency and Effectiveness

Fin efficiency is defined as the ratio of the rate of actual
heat transfer aq from the fin surface to the rate of ideal heat 

transfer iq from the fins: 

i

a

q
q

=η    (30) 

where the heat dissipation from the fin surface is evaluated 
by Newton's law of cooling as 

dxTTPq
b

aa ∫ −=
0

)(    (31) 

and ideal heat transfer rate is given by 
( )abi TTPbq −=    (32) 

Taking eqs. (31) and (32) in considerations, the fin 
efficiency given in equation (30) takes the dimensionless 
form according to (6)  as 

( ) ξξθη d∫=
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The effectiveness of an fin can be determined by [27] 
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In dimensionless form fin effectiveness becomes 

( ) ξξψφω d∫=
1

0
   (35) 

where bq  is the rate of heat loss from the fin base, t  is the
thickness of the fin which is assume to be smaller than the 

width W of the fin and .2
t
b

=ψ

6. Thermal Stress

The stress-displacement relations for axisymmetric case
[33],[34] are 
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 (36) 
where yyxx σσ , are stress components, u  is the 

displacement component in x direction, Ta  is the 
coefficient of linear thermal expansion, E denotes the 
Young’s modulus and η  is the Poisson’s ratio. The 
equilibrium equation in absence of body force along x
direction is 

0=
dx

d xxσ
   (37) 

The eqs. (36) and (37) yield the equation of equilibrium in 
terms of the displacement field 
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with boundary conditions: 
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And ( ) ( ) ( )yyxx
T

yyxx
Ea

σσνσσ ,21, −
= are the non-

dimensional components to modify the stress-displacement 
relation in new form 
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where non-dimensional boundary conditions are 
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at  ,1=ξ  ( ) ( )
a
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Ea

−
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The approximate solution for the stress field is employed 
from (41), where the constant is estimated from (42). 

Table 1: The comparative study of non-dimensional 
temperature distribution of fin for different values of 
fractional order α  at 1=β and .1=φ . 

7. Numerical Calculation And Discussion

The approximate solution for the thermal stresses in the
isotropic material for rectangular profile fins is calculated. 
The results are obtained by using HPM for the fractional 
order of α . This method provides a solution as a 
polynomial expression and the main advantage of the 
method is that it reduces the computation time. Table 1. 
show the non-dimensional distribution of temperature with 
ξ for different values of fractional order α . It is observed 
that the temperature of the fin increases with rise in 
fractional order. Thus the cooling or heating of fin can be 
managed by selectingα .

(a) α  = 0.25
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(b) α  = 0.5

(c) α  = 0.75

(d) α  = 1
Figure 2: Dimensionless Temperature distribution with 
space variable ξ  for different values of thermal 
conductivity parameter β   and fractional order α . 

(a) α  = 0.25

(b) α  = 0.5

(c) α  = 0.75

(d) α  = 1
Figure 3: Dimensionless Temperature distribution with 
space variable ξ  for different values of thermal 
conductivity parameter β  and fractional order α . 

Figure 4: Dimensionless fin efficiency for different values 
of thermo-geometric fin parameters φ and fractional order
α . 
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(a) 1=β

(b) 1,1 == αβ
Figure 5: Dimensionless fin effectiveness for different 
values of (a) fractional order α  and (b)  fin length/fin 
thickness ratio .ψ  

(a) α  = 0.25

(b) α  = 0.5

(c) α  = 0.75

(d) α  = 1
Figure 6: Dimensionless Stress distribution with space 
variable ξ  for different values of thermo-geometric fin 
parameters φ and fractional order α . 

(a) α =0.25
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(b) α  = 0.5

(c) α  = 0.75

(d) α = 1

Figure 7: Dimensionless Stress distribution with space 
variable ξ  for different values of thermal conductivity 
parameter β and fractional orderα . 

(a) 

(b) 
Figure 8: Effect of various fraction order parameters α  
on (a) dimensionless temperature distribution (b) 
dimensionless Stress distribution with space variable .ξ  

 Figure 2a-2d, shows that the temperature distribution of 
rectangular fin with respect to space variable ξ  for 
different values of thermo-geometric parameter 

4,3,2,1=φ and with various fractional orders 
1,75.0,5.0,25.0=α by keeping convection parameter β  

fixed at 1. From the graphs it is found that the fractional 
order α represents the point of convergence for the given 
range of intervals between 0 to 1. Figure 3a-3d represents 
the temperature distribution with ξ for various thermal 
conductivity parameters 3,2,1,5.0=β  keeping φ  value 
constant at 1. It is noted that for higher convection 
parameters the gradual drop of temperature is experienced 
and the fin suddenly reaches the surrounding temperature. It 
is also observed that as the value of fractional order α  
increases the temperature of fins goes on increasing. In 
Figure 4 the fin efficiency with thermo-geometric fin 
parameter φ  for different values of fractional order 

1,75.0,5.0,25.0=α  has been studied by keeping 
,1=β  then the retarded drop in fin efficiency is observed 

with the rise of fractional order parameterα . The similar 
observations made for fin effectiveness with thermo-
geometric fin parameter φ for different parameter values of 
α  by taking constant value 1,1 == ψβ  in Figure 5a. 
Whereas in Figure 5b we plotted fin effectiveness with 
thermo-geometric fin parameters 1,1 == αβ  and 
varying different values of fin length/fin thickness ratio

4,3,2,1=ψ .  Figure 6a-6d shows that as the thermo-
geometric fin parameter increases the stress decreases while 
from Figure 7a-7d it is observed that as the thermal 
conductivity and fractional parameters increase the stresses 
reduced. Figure 8a-8b shows the effect of fractional order 
α  on temperature and stresses. Here remaining parameters 
are constant 1=φ  and 5.0=β . We have observed that 
as the α  rises the temperature increases and stresses 
decreases. 

8. Concluding Remarks
In this work, the fractional order energy balance

equation has been introduced to study the thermal stresses 
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in a rectangular profile fin with temperature dependent 
thermal conductivity. HPM is used to obtain the solution in 
thermal domain. This method is based on perturbation 
iterative technique, a useful method to obtain the solution of 
non-linear fractional equations. This method does not 
provide an exact analytic solution as it contains infinite 
power series terms but the obtained results are enough to 
come to a conclusion about the efficiency of the method. 
The motivation behind the consideration of the fractional 
theory is that it predicts retarded response to physical 
stimuli. It is concluded that for different values of the 
fractional order parameter α   the propagation of the wave 
changes. The fractional parameter seems to be directly 
proportional to the temperature distribution of the material 
(see in Table 1). The phenomena reveal that the selection of 
the order of fractional derivatives remarkably influences the 
outcomes. Mathematical modeling is provided for the non-
dimensional thermal stress in fins that leads to a new 
approach in investigation of the extended surface base 
problems. The results of this investigation may be very 
helpful for engineers dealing with the thermal stress 
problems of linear or nonlinear nature.  
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