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Series Solution of Modelling the Pollution

Nurettin Doğan
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Abstract. In this article, an approximate analytical series solution of Modeling the pollution of a lake system is
given. Laplace-Adomian decomposition method (LADM) was used for the serial solution. LADM with different
input values has been used for the solution. The solutions obtained by LADM were compared with the results
obtained by Fourth Order Runge Method. In addition, the results are compared with residual errors. These compar-
isons show that LADM is a powerful method for obtaining approximate solutions to the problem of modeling the
pollution of a lake system.
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1. Introduction

Water is a source of life for all living things.Therefore the correct use of water resources is one of the most important
problems of today. Modern life is threatening wildlife and water resources. Water pollution occurs as a result of
discharging wasted water without any treatment process. Throughout the planet, water contamination impacts drinking
water, waterways, reservoirs and oceans. Human wellbeing and the nature are subsequently affected by this. It leads
cause of deaths and diseases worldwide.Therefore, studies related to water pollution are very important.

The simulation of multiple systems is represented by ordinary non-linear differential equations. Mathematical
modeling and numerical simulations of these models are very important in recent researches. In recent years modeling
the pollution of a system of lakes draw attention . Biazar at al. solved a system of three lakes contamination model
in [2], linked by channels flowing between them. Fig. 1 shows this model of system.

Each lake is called a wide compartment in this model and the interconnecting channel is considered to be pipes
between the compartments. In the channels or pipes, the direction of flow is illustrated by the arrows in the diagram. In
the first pool, a pollutant is added, where p(x) denotes the rate at which the pollutant per unit time reaches the lake. The
function p(x) may be constant or may change over time. It is really important to know the amount of contamination in
each lake at any moment.

In this model yi(x) denotes the amount of the pollutant in lake i at any time x ≥ 0, where i = 1, 2, 3. The pollutant
in each lake is believed to be spread evenly across the lake by some mixing mechanism and the amount of water Vi in
lake i remains unchanged for each of the lakes.

So in lake i, the concentration of the contaminant is given at any time by

ci (x) =
yi (x)

Vi
.
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Figure 1. System of three lakes with interconnecting channels. A pollutant enters the first lake at the
indicated source [2].

Each lake is initially assumed to be clean, so yi(0) = 0 for each i = 1, 2, 3. The flow rate from lake i to lake j, for
modelling the lake system’s dynamic behavior is denoted by constant F ji. Direction of the pollutant flow from lake i
into lake j is characterized by

r ji (x) = F ji . ci (x) =
F ji

Vi
yi (x)

at any time x. We’re going to observe that

Pollutant change rate = input rate − output rate.

The following system of first-order equations, the application of this principle to each lake is obtained. [2]:
dy1

dx
=

F13

V3
y3 (x) + p (x) −

F31

V1
y1 (x) −

F21

V1
y1 (x) , (1.1)

dy2

dx
=

F21

V1
y1 (x) −

F32

V2
y2 (x) ,

dy3

dx
=

F31

V1
y1 (x) +

F32

V2
y2 (x) −

F13

V3
y3 (x) .

The rate of inflow and outflow of the lake must be the same. Therefore, the volume of each lake stays constant. So we
have the following criteria :

Lake 1: F13 = F21 + F31,

Lake 2: F21 = F32,

Lake 3: F31 + F32 = F13.

To investigate the suggested model in literature, many techniques have been used. To solve this problem, He’s
Variational Iteration Method [10], Homotopy Perturbation Method [11] and Variational Iteration Method [3] have
been used. The aim of this paper is to extend the use of LADM [1, 4–9, 12] in order to obtain estimated solution of the
pollution model.

2. Solution Procedure

We apply the LADM to the pollution model in this section. We remember that the Laplace transform of y′i(x) is
defined by x

L
{
y′i
}

= s.L {yi} − yi (0) ; i = 1, 2, · · · , n
to solve this pollution model by using the LADM. The following system is produced by applying the Laplace transform
to both sides of (1.1).
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L {y1 (x)} =
y1(0)

s + 1
s L {p (x)} + F13

V3

1
s L {y3 (x)} − F31

V1

1
s L {y1 (x)} − F21

V1

1
s L {y1 (x)} ,

L {y2 (x)} =
y2(0)

s + F21
V1

1
s L {y1 (x)} − F32

V2

1
s L {y2 (x)} ,

L {y3 (x)} =
y3(0)

s +
F31
V1

1
s L {y1 (x)} + F32

V2

1
s L {y2 (x)} − F13

V3

1
s L {y3 (x)} .

(2.1)

If we substitute y1 =

∞∑
k=0

y1k, y2 =

∞∑
k=0

y2k and y3 =

∞∑
k=0

y3k in (2.1) we obtain the followings

L

 ∞∑
k=0

y1k

 =
y1(0)

s + 1
s L {p (x)} + F13

V3

1
s L

 ∞∑
k=0

y3k

 − F31
V1

1
s L

 ∞∑
k=0

y1k

 − F21
V1

1
s L

 ∞∑
k=0

y1k

 ,
L

 ∞∑
k=0

y2k

 =
y2(0)

s + F21
V1

1
s L

 ∞∑
k=0

y1k

 − F32
V2

1
s L

 ∞∑
k=0

y2k

 ,
L

 ∞∑
k=0

y3k

 =
y3(0)

s +
F31
V1

1
s L

 ∞∑
k=0

y1k

 +
F32
V2

1
s L

 ∞∑
k=0

y2k

 − F13
V3

1
s L

 ∞∑
k=0

y3k

 .
Using the LADM, we get the following process.

L {y10} =
y1(0)

s + 1
s L {p (x)} , L {y1k+1} =

F13
V3

1
s L {y3k} −

F31
V1

1
s L {y1k} −

F21
V1

1
s L {y1k} ,

L {y20} =
y2(0)

s , L {y2k+1} = F21
V1

1
s L {y1k} −

F32
V2

1
s L {y2k} ,

L {y30} =
y3(0)

s , L {y3k+1} =
F31
V1

1
s L {y1k} +

F32
V2

1
s L {y2k} −

F13
V3

1
s L {y3k} .

(2.2)

yi0 is given by applying the inverse Laplace transform to the first part of (2.2). The use of yi0 helps one to evaluate yi1 .
The determination of yi0 and yi1 leads to the determination of yi2 , and so on. Proceeding in this way, the components
of yik, k ≥ 0 are completely determined upon using the second part of (2.2). Immediately after using the equations

y1 =

∞∑
k=0

y1k, y2 =

∞∑
k=0

y2k and y3 =

∞∑
k=0

y3k, the series solution follows.

3. Applications

There are three different mathematical models proposed for the pollution of a lake. These models are used to
estimate the contamination that may occur in reality very closely. The impulse, step and sinusoidal input are the input
models [2].

3.1. Impulse Input. For pollutants that have immediately been released into the lake, the impulse input model is used.
There is a spike of impulse input functions and everywhere else equals zero. The time during which the contaminant
was dumped is seen by the spike. At time zero, assuming the impulse is always, after some time has passed, the
model shows the level of contamination. The key points are that the lake continues with an initial accumulation of
contaminants, and that no pollutant reaches the lake until the model has finished [2].

The dumping of one barrel of gasoline into a lake at time zero would be an example. One quick strong waste
dumping, without any response to the lake. Therefore, input p(x) is equal to 100 units for a period of 10 units of time,
see Fig. 2.

V1 = 2900 mi3, V2 = 850 mi3, V3 = 1180 mi3,

F21 = 18 mi3/year , F32 = 18 mi3/year, F31 = 20 mi3/year, F13 = 38 mi3/year
So the System (1.1) would be [2]

dy1

dx
=

38
1180

y3 (x) + 100 −
20

2900
y1 (x) −

18
2900

y1 (x) , (3.1)

dy2

dx
=

18
2900

y1 (x) −
18
850

y2 (x) ,

dy3

dx
=

20
2900

y1 (x) +
18
850

y2 (x) −
38

1180
y3 (x) ,

y1 (0) = 0, y2 (0) = 0, y3 (0) = 0.



Series Solution of Modelling the Pollution 84

Figure 2. Impulse input graph [2].

Table 1 provides the results of the solution (3.1) and shows the absolute errors obtained by using the fourth-order
approach of Runge Kutta and LADM with just 10 terms. With LADM, we obtained a reasonable approximation .

Table 1
Absolute errors obtained by the fourth order method of
Runge Kutta and LADM for the impulse input model.

i xi |y1 (xi) − RKM| |y2 (xi) − RKM| |y3 (xi) − RKM|
0 0 0 0 0
1 0.01 3.279322702E-9 1.771872540E-9 1.507450477E-9
2 0.02 6.558182220E-9 3.543234768E-9 3.014947435E-9
3 0.03 9.835210868E-9 5.313439606E-9 4.521771394E-9
4 0.04 8.192236223E-9 4.425516560E-9 3.766719502E-9
5 0.05 8.189531719E-9 4.423805971E-9 3.765724466E-9
6 0.06 8.186788136E-9 4.422072136E-9 3.764715709E-9
7 0.07 8.184046330E-9 4.420338772E-9 3.763707081E-9
8 0.08 8.181989308E-9 4.419039538E-9 3.762950857E-9
9 0.09 8.179783961E-9 4.417644289E-9 3.762138656E-9
10 0.10 8.177499566E-9 4.416201359E-9 3.761298576E-9

To see the solution’s accuracy, the residual error for the model is defined as

resy1 =
dỹ1

dx
−

(
38

1180
ỹ3 (x) + 100 −

20
2900

ỹ1 (x) −
18

2900
ỹ1 (x)

)
,

resy2 =
dỹ2

dx
−

(
18

2900
ỹ1 (x) −

18
850

ỹ2 (x)
)
,

resy3 =
dỹ3

dx
−

(
20

2900
ỹ1 (x) +

18
850

ỹ2 (x) −
38

1180
ỹ3 (x)

)

where the LADM solutions for y1, y2 and y3 are ỹ1, ỹ2 and ỹ3, respectively. Table 2 presents the residual errors with just
10 terms.
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Figure 3. Step input graph [2].

Table 2
Residual errors in the impulse input model obtained by LADM.
i xi resy1 resy2 resy3

0 0 0 0 0
1 0.01 6.38031E-45 1.49229E-45 4.88802E-45
2 0.02 1.30669E-41 3.0562E-42 1.00107E-41
3 0.03 1.13025E-39 2.64354E-40 8.65899E-40
4 0.04 2.6761E-38 6.2591E-39 2.05019E-38
5 0.05 3.11538E-37 7.28655E-38 2.38673E-37
6 0.06 2.31476E-36 5.41397E-37 1.77336E-36
7 0.07 1.2616E-35 2.95074E-36 9.66522E-36
8 0.08 5.48064E-35 1.28186E-35 4.19878E-35
9 0.09 2.00221E-34 4.68295E-35 1.53391E-34
10 0.10 6.38031E-34 1.49229E-34 4.88802E-34

3.2. Step Input. For contaminants that enter the lake at a steady concentration and rate, the step input model is used
and continues indefinitely in the same way. At time zero, there is no pollutant concentration. The important points for
the step input are that the input suddenly increases at time zero and that after time zero, essentially the input remains
constant. The graph in Fig. 3 represents the p(x) graph [2].

For instance, when a factory starts production at time zero, waste discharge begins at a fixed rate and concentration
(the pollutant is not reacting with the lake). We now assume p(x) = 100.x, so

dy1

dx
=

38
1180

y3 (x) + (100x) −
20

2900
y1 (x) −

18
2900

y1 (x) ,

dy2

dx
=

18
2900

y1 (x) −
18

850
y2 (x) ,

dy3

dx
=

20
2900

y1 (x) +
18

850
y2 (x) −

38
1180

y3 (x) ,

y1 (0) = 0, y2 (0) = 0, y3 (0) = 0.

will be the system (1.1) with parameters defined in the Impulse Input Section [2] . Table 3 provides the results of the
Step Input solution and shows the absolute errors obtained by using LADM with just 10 terms and the Runge Kutta
solution. With LADM, we obtained a reasonable approximation . The residual errors are given in Table 4 for the Step
Input Model.
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Table 3
Results for Model Step Input.
i xi |y1 (xi) − RKM| |y2 (xi) − RKM| |y3 (xi) − RKM|
0 0 0 0 0
1 0.01 9.527303321E-10 5.442136859E-9 6.047305602E-9
2 0.02 1.692552535E-8 3.027378594E-9 3.361434626E-9
3 0.03 1.693817476E-8 3.034303813E-9 3.367158827E-9
4 0.04 1.695126052E-8 3.041463734E-9 3.373084669E-9
5 0.05 1.696432304E-8 3.048610545E-9 3.379000384E-9
6 0.06 1.695281782E-8 3.042485136E-9 3.373620621E-9
7 0.07 1.694677859E-8 3.039312809E-9 3.370753598E-9
8 0.08 1.694347002E-8 3.037615796E-9 3.369142118E-9
9 0.09 1.694016538E-8 3.035920854E-9 3.367532322E-9
10 0.10 1.693686258E-8 3.034227400E-9 3.365923171E-9

Table 4
The residual errors obtained by LADM for step input model
i xi resy1 resy2 resy3

0 0 0 0 0
1 0.01 5.31692E-48 1.24357E-48 4.07335E-48
2 0.02 2.17781E-44 5.09367E-45 1.66845E-44
3 0.03 2.82563E-42 6.60885E-43 2.16475E-42
4 0.04 8.92032E-41 2.08637E-41 6.83395E-41
5 0.05 1.29808E-39 3.03606E-40 9.94471E-40
6 0.06 1.15738E-38 2.70698E-39 8.8668E-39
7 0.07 7.35931E-38 1.72126E-38 5.63804E-38
8 0.08 3.65376E-37 8.54576E-38 2.79919E-37
9 0.09 1.50166E-36 3.51221E-37 1.15043E-36
10 0.10 5.31692E-36 1.24357E-36 4.07335E-36

3.3. Sinusoidal Input. For pollutants periodically added to the lake, the sinusoidal input model is used for (see Fig. 4).
For an overall concentration, pollution reaches the system and then varies regularly across the average. Sinusoidal input
changes p(x) to a more useful one

p (x) = pi.

(
1 + a. sin

(
2π.x

X

))
.

For the sinusoidal model, the additional variables are defined as follows:

a the normalize amplitude (always in-between 0 and 1),
X the period of fluctuations,
pi the average input concentration of pollutant.

pi(1 + a) for the peaks and pi(1 − a) for the valleys are the actual amplitude of the term. The normalized amplitude
should stay in-between zero and one; otherwise, the concentration of input is negative and make no sense. For a
sinusoidal model, the key argument is that over time the concentration increases, that the change in input concentration
must be periodic, and that this change should be presented to the average concentration by a sinusoidal function. See
Fig. 4 [2].

An example would be a dumping waste processing plant generating more production due to hours of service during
the day than at night; thus a periodic input. Eventually, the lake concentration converges to the contaminant’s average
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Figure 4. Sinusoidal input graph [2].

input concentration. If p(x) = 1 + sin(x) is replaced in (1.1) the following system in [2] obtained as

dy1

dx
=

38
1180

y3 (x) + [1 + sin(x)] −
20

2900
y1 (x) −

18
2900

y1 (x) ,

dy2

dx
=

18
2900

y1 (x) −
18
850

y2 (x) ,

dy3

dx
=

20
2900

y1 (x) +
18
850

y2 (x) −
38

1180
y3 (x) ,

y1 (0) = 0, y2 (0) = 0, y3 (0) = 0.

Table 5 provides the results of the sinusoidal input solution and shows the absolute errors achieved by using LADM
with just 10 terms and the Runge Kutta solution respectively. With LADM, we obtained a reasonable approximation .
The residual errors are shown in Table 6 for sinusoidal input model.

Table 5
Results for Sinusoidal input model
i xi |y1 (xi) − RKM| |y2 (xi) − RKM| |y3 (xi) − RKM|
0 0 0 0 0
1 0.01 1.374177553E-9 4.999656610E-10 5.601765325E-10
2 0.02 3.683751231E-9 9.988435393E-10 1.119230613E-9
3 0.03 6.825411250E-9 1.497171754E-9 1.677759968E-9
4 0.04 5.876943036E-9 1.246767404E-9 1.397327097E-9
5 0.05 6.291624402E-9 1.245941687E-9 1.396536622E-9
6 0.06 6.705999082E-9 1.245056395E-9 1.395681601E-9
7 0.07 7.120030579E-9 1.244119763E-9 1.394769420E-9
8 0.08 6.910662459E-9 1.243513596E-9 1.394192161E-9
9 0.09 6.840454439E-9 1.242847674E-9 1.393555594E-9
10 0.10 6.838823896E-9 1.242144063E-9 1.392880581E-9
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Table 6
The residual errors obtained by LADM for sinusoidal input model
i xi resy1 resy2 resy3

0 0 0 0 0
1 0.01 3.08149E-33 0 0
2 0.02 0 0 0
3 0.03 3.08149E-33 7.70372E-34 0
4 0.04 0 0 0
5 0.05 3.08149E-33 7.70372E-34 0
6 0.06 3.08149E-33 7.70372E-34 3.08149E-33
7 0.07 0 0 3.08149E-33
8 0.08 0 0 3.08149E-33
9 0.09 0 0 0
10 0.10 0 0 3.08149E-33

4. Conclusion

With reliable results, the LADM, which was used to solve the pollution of a lake system model, appears to be quite
simple to use. The numerical results obtained by LADM compared with the solution of the Fourth Order Runge Kutta
Method. Furthermore residual errors are given for showing the accuricy. In particular, the current approach offers
exceptional precision for small time values x. The results show that the LADM is an efficient mathematical method
for solving the pollution of a lake system model. Mathematica 7 was used to do all of the computations in the present
study.
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Part of this article was presented as a summary with Ömer AKIN at the 13th Mathematics Symposium in 2015. I
would like to thank the referees for their contribution in eliminating the typos in this article.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this article.

References

[1] Babolian, E., Biazar, J., Vahidi, A.R., A new computational method for Laplace transforms by decomposition method, Applied Mathematics
and Computation, 150(2004), 841–846.

[2] Biazar, J., Farrokhi, L., Islam, M.R., Modeling the pollution of a system of lakes, Applied Mathematics and Computation, 178(2006), 423–430.
[3] Biazar, J., Shahbala, M., Ebrahimi, H., VIM for Solving the Pollution Problemof a Systemof Lakes, Hindawi Publishing Corporation, Journal of

Control Science and Engineering, 2010(2010), Article ID 829152, 6 pages, doi:10.1155/2010/829152.
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