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Abstract: In exploratory factor analysis, although the researchers decide which 

items belong to which factors by considering statistical results, the decisions 

taken sometimes can be subjective in case of having items with similar factor 

loadings and complex factor structures. The aim of this study was to examine the 

validity of classifying items into dimensions with exploratory graph analysis 

(EGA), which has been used in determining the number of dimensions in recent 

years and machine learning methods. A Monte Carlo simulation was performed 

with a total number of 96 simulation conditions including average factor 

loadings, sample size, number of items per dimension, number of dimensions, 

and distribution of data. Percent correct and Kappa concordance values were used 

in the evaluation of the methods. When the findings obtained for different 

conditions were evaluated together, it was seen that the machine learning 

methods gave results comparable to those of EGA. Machine learning methods 

showed high performance in terms of percent correct values, especially in small 

and medium-sized samples. In all conditions where the average factor loading 

was .70, BayesNet, Naive Bayes, RandomForest, and RseslibKnn methods 

showed accurate classification performances above 80% like EGA method. 

BayesNet, Simple Logistic and RBFNetwork methods also demonstrated 

acceptable or high performance under many conditions. In general, Kappa 

concordance values also supported these results. The results revealed that 

machine learning methods can be used for similar conditions to examine whether 

the distribution of items across factors is done accurately or not. 

1. INTRODUCTION 

Exploratory factor analysis (EFA) is frequently used in scale development or adaptation studies 

(Fabrigar et al., 1999; Floyd & Widaman, 1995; Kline, 1994). There is a wide acceptance in the 

literature that EFA can be used in the process of searching evidence for construct validity 

(Nunnally & Bernstein, 1994). For this reason, the correct use of this frequently used method 

becomes important in terms of the correctness of decisions made by the researchers (Kılıç & 

Koyuncu, 2017; Koyuncu & Kılıç, 2019). 
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While performing EFA, it should be examined whether the data set meets the assumptions or 

not. The assumptions of EFA are the fact that the variables need to have a multivariate normal 

distribution, the sample size should be sufficient, there must be a linear relationship between 

the variables, and there need to be no extreme values in the data set, and no multicollinearity 

and singularity among the variables (Tabachnik & Fidell, 2012). After the data sets are analyzed 

in terms of assumptions, some methods are used to decide the number of factors. These methods 

include parallel analysis (Horn, 1965; Timmerman & Lorenzo-Seva, 2011), scree plot (Cattell, 

1966), Minimum Average Partial (MAP) analysis (Guadagnoli & Velicer, 1988), and K1 

(Kaiser, 1960) rule. After deciding on the number of factors by using several of these methods, 

the distribution of the items to the factors is examined. It is suggested that the factor loadings 

of the items should be above .30 (Costello & Osborne, 2005), .32 (Tabachnik & Fidell, 2012), 

or .40 (Howard, 2016). In this case, using different rotation methods in multi-dimensional 

structures, the items are to be placed in the dimensions in a meaningful way. 

There are both vertical and oblique rotation methods used in multidimensional structures in 

placing the items to the dimensions. Oblique rotation methods are used if there is a relationship 

between factors, and vertical rotation methods are used if there is no relationship (Osborne, 

2015). However, because there are many rotation methods and different rotation methods give 

different results, researchers may have difficulty in interpreting factor structures. At this stage, 

whether the revealed factor structure is compatible with the relevant literature or not is 

evaluated. On the other hand, it becomes difficult to decide which item will be included in 

which dimension, especially in cases with overlapping factor loadings. At this point, 

establishing a mainstay in placing items into dimensions will make it easier for researchers to 

have accurate decisions. Machine learning methods do not prevent cross loadings; however, 

they can be used to give researchers an idea about placing the items having cross loadings into 

the accurate dimension. Therefore, the primary purpose of this study is to use machine learning 

methods to classify items. However, in the related literature (e.g. Belvederi Murri et al., 2020; 

Fischer & Alfons Karl, 2020; Kjellström & Golino, 2019; Panayiotou et al., 2020), it is seen 

that EGA (Golino & Epskamp, 2017) is also used to reveal the relationships between the items.  

To this end, this study aimed to compare the results of machine learning methods, whose 

purpose is to make classification, with the EGA, which was developed to explain the 

relationships between items. Therefore, whether machine learning and EGA would give valid 

results in the classification of items to the dimensions was examined in this particular study.  

EGA is a technique of estimating the number of dimensions and classification of items based 

on network psychometrics. Network psychometrics is a field that was developed to model 

networks in psychological data and at the same time, it has undergone advances that allow 

examining relationships between items (Golino & Epskamp, 2017). EGA makes estimates 

using the Gaussian graphic model. The Gaussian graphical model predicts the common 

distribution of variables using the inverse of the variance-covariance matrix. As a result of the 

estimation, nodes and edges connecting these nodes are obtained. In factor analysis, nodes 

correspond to items, while edges correspond to factor loadings (Golino & Epskamp, 2017; 

Golino et al., 2020). As a result of EGA, both the number of factors and those items grouped 

together are obtained. Golino and Epskamp (2017) and Golino et al. (2020) compared EGA 

with the methods of determining the number of dimensions (such as parallel analysis, K1 rule, 

and MAP analysis) and reported EGA as the method that gave the most accurate results when 

sample size was 5000, the factor structure was four-dimensional, and the correlation between 

dimensions was .70. Moreover, there are also many researchers who use the EGA in their 

studies in terms of examining individual differences (Fischer & Alfons Karl, 2020), relationship 

between observed and latent variables (Belvederi Murri et al., 2020), estimating the number of 

latent variables (Kjellström & Golino, 2019), and exploring the dimensionality of the social 

skills (Panayiotou et al., 2020). 
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Since the focus of this study was the classification of scale items, the performance of machine 

learning methods seeking answers to classification problems was evaluated. Machine learning 

methods mostly focus on classification, estimation, and clustering problems. Machine learning 

which is used to analyze a variety of data structures is one of the fastest developing technical 

areas of today. This technique, located in the center of artificial intelligence and data science, 

is at the intersection of computer science and statistical machine learning methods are used in 

many fields (Jordan & Mitchell, 2015). In this study, whether scale items were correctly 

classified into the dimensions or not was investigated. For this purpose, some frequently used 

machine learning methods (Pu et al., 2020) given under the titles Bayes, functions, lazy and 

trees in the Waikato Environment for Knowledge Analysis (WEKA) software (Hall et al., 2009) 

were compared. The reason for selecting many methods that are frequently used in the machine 

learning is based on the fact that different methods are effective for different data structures in 

the related literature (see Barker et al., 2004; Romero et al., 2013). Summary information about 

the algorithms used is given in Table 1. 

Table 1. Machine learning algorithms used in the study. 

Title Algorithm Explanations 

B
ay

es
 BayesNet 

Classifies with the method of Bayesian networks. Outputs for network 

structure, conditional probability distributions, and Bayesian networks are 

obtained. Various search algorithms and quality measures are used (Hall 

et al., 2009). 

NaiveBayes 

The main purpose of this algorithm that is used in supervised learning is 

to predict classification probabilities based on estimated class 

probabilities (John & Langley, 1995). 

fu
n
ct

io
n
s RBFNetwork 

Uses the normalized Gaussian Radial Basis Function network. Its main 

function is the k-mean clustering method, while training is performed by 

logistic or linear regression. Standardizes all numerical variables to 0 

mean and unit variance (Hall et al., 2009). 

SimpleLogistic 

It is a classifier that generates linear logistic regression models. 

LogitBoost, which uses simple logistic regression functions, is used to fit 

logistic models (see Landwehr et al., 2006; Sumner et al., 2005). 

la
zy

 

KStar 

It differs from other instance-based algorithms in terms of being entropy-

based. This method enables the classification of the tested objects 

according to their proximity to similar objects in the learning data, based 

on some proximity functions (Hall et al., 2009). Detailed information on 

the technical structure and usefulness of the method was provided by 

Cleary and Trigg (1995). 

RseslibKnn 

This k-closest neighborhood classifier with many distance criteria finds 

fast neighborhoods in large samples and can be applied to numerical and 

categorical data (see Wojna & Latkowski, 2018; Wojna et al., 2019). 

tr
ee

s J48Consolidated 

With or without pruning, C4.5 creates a consolidated decision tree. 

Consolidated Tree Construction (CTC) creates a single decision tree 

based on subsets (see Pérez et al., 2007). A new method has been added 

to this algorithm to determine the number of clusters to be used in the 

consolidation process (see Ibarguren et al., 2015). 

RandomForest 
It is a classifier based on the generation of random decision trees (see 

Breiman, 2001). 

BayesNet and NaiveBayes given in Table 1 are algorithms based on Bayes theorem. Bayesian 

methods, which make inferences based on probabilistic estimates, have been an important 

alternative to usual methods in machine learning such as decision trees and artificial neural 

networks (John & Langley, 1995). Naive Bayes algorithm, which is frequently used in machine 

learning field as well as decision trees and neural networks, can perform in estimation and 
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predictions as well. The fact that the method has conditional independence assumption caused 

it to be described as 'naive' (Han et al., 2011). Similarly, BayesNet makes a graphical 

classification process, which makes estimations according to network structures obtained based 

on conditional probability distributions (Alpaydin, 2010; Bouckaert, 2008). Generally, a Bayes 

classifier assigns an instance with the highest value to the class after selecting that class with 

the highest probability in the model having the least error according to the Bayes rule (Alpaydin, 

2010; John & Langley, 1995). 

In logistic regression models, the probability of a data set belonging to the last class is estimated 

by subtracting the sum of the probabilities of belonging to each class from the value 1 

(Landwehr et al., 2006; Sumner et al., 2005). Radial basis functions (RBF), one of the artificial 

neural network models, work similarly to perceptron models, but use the gauss function as the 

threshold function (Akpınar, 2014). RBF network (Hall et al., 2009), whose basic function is 

obtained with the k-mean clustering method and training with logistics or linear regression (Hall 

et al., 2009), is generally used in classification problems, modeling and system control fields, 

and time series analysis. The nearest neighborhood methods that belong to the family of 

instance-based classification algorithms perform analysis based on distance measures and have 

many types (Aha et al., 1991). In this mathematics-based method, the instances in the test data 

are classified according to their positions in the training data in a multidimensional space 

(Larose & Larose, 2014). KStar algorithm differs from other object-based algorithms in terms 

of using entropy-based functions (Cleary & Trigg, 1995). RseslibKnn algorithm, which can 

find fast neighborhoods in large samples, is a method that includes different distance metrics 

for different types of attributes (see Wojna & Latkowski, 2018; Wojna et al., 2019). 

While the classification algorithms based on decision trees are very diverse, J48 and random 

forest methods are among the most frequently used machine learning methods (Pu et al., 2020). 

With the addition of new options to the J48 algorithm, the J48 Consolidated algorithm, which 

creates a single decision tree based on subsets, has been developed as a robust method for 

classification problems with its high performance (Ibarguren et al., 2015; Pérez et al., 2007). 

This algorithm generates a consolidated C4.5 decision tree (Quinlan, 1993) with or without 

pruning (Hall et al., 2009). The random forest classifier (Breiman, 2001) has become one of the 

most popular machine learning techniques used in such fields as mining, archeology, 

engineering and wine (Li et al., 2019) in recent years, due to its highly reliable and interpretable 

results in complex data and its performance comparable with other frequently used machine 

learning techniques (Zhang & Yang, 2020). In addition, random forests have many advantages 

such as high classification performance in many data types, handling dimensionality, being 

capable of variable importance analysis, highy adaptability and time efficiency (Li et al., 2019).  
The random forest method is a mixture of tree estimators in which each tree has the same 

distribution for every other tree in the forest and each tree is autonomously dependent on the 

values of the random vector sets (Breiman, 2001). 

Although there are many studies on the effectiveness a wide variety of machine learning 

techniques on different data types in different fields such as education (e.g. Baker, 2010; Berens 

et al., 2019; Bulut & Yavuz, 2019; Güre et al., 2020; Hamalainen & Vinni, 2006; Koyuncu , & 

Gelbal, 2020; Romero & Ventura, 2013), health sciences (e.g. Beleites et al., 2013; Chu et al., 

2012; Figueroa et al., 2012; Shao et al., 2013), engineering sciences (e.g. Brain & Webb, 1999; 

Hegde & Rokseth, 2020; Reich & Barai, 1999), economics (e.g. Azqueta-Gavaldón, 2017; Mele 

& Magazzino , 2020; Mullainathan & Spiess, 2017), politics (Grimmer, 2015; Guess et al., 

2019), environmental sciences (e.g. Heydari & Mountrakis, 2018; Zhang, & Yang, 2020; Mele 

& Magazzino, 2020). However, in the relevant literature, studies on how machine learning 

methods can bring solutions to problems in the field of scale development are limited (e.g. 

Auerswald & Moshagen, 2019: Baldi & Hornik, 1989; Chattopadhyay et al., 2011; Goretzko & 



Koyuncu & Kilic

 

 932 

Bühner, 2020; Tezbaşaran, & Gelbal, 2018). Therefore, there is a need to examine how the use 

of machine learning methods in scale development studies will bring solutions to existing 

problems. This study, in line with this need, has examined whether machine learning methods 

and EGA can be a solution to the problems encountered in placing the items in the dimensions. 

When studies on exploratory factor analysis using machine learning methods are examined, it 

can be seen that such studies generally focus on factor retention (e.g. Goretzko & Bühner, 2020; 

Iantovics et al., 2019). As a result of these studies, it has been reported that machine learning 

methods can generally be used with traditional methods. In the study conducted by Goretzko 

and Bühner (2020), it was stated that the ranger and xgboost algorithm were the most accurate 

methods for 3204 conditions in determining the number of factors. However, these studies do 

not seek answers to the research problem of correctly classifying the scale items into the factors 

that the current study deals with. Therefore, it is important to examine whether machine learning 

methods, which provide solutions to classification problems, can be used in scale development 

and adaptation studies. In addition, researchers can evaluate the accuracy of their decisions by 

using these methods in cases where their correct classification percentages are high. For 

example, such methods let the researchers place the items on a two-dimensional scale as a result 

of their EFA. In this case, according to the characteristics of the data set, it can be checked 

whether the items are correctly classified to the dimensions by machine learning methods or 

EGA. Hence, an evidence related to decision validity can be obtained. For this reason, this study 

is important in terms of its contribution to the relevant literature and the convenience it will 

provide to researchers. This study is also important in terms of allowing practitioners to test the 

correct classification of the items into their dimensions by using machine learning methods. 

Therefore, this study seeks answers to the following research problems: 

Under different simulation conditions for EGA and machine learning methods: 

1) What are the correct classification percentage values? 

2) How are Kappa concordance values for confusion matrices? 

2. METHOD 

This study is a Monte Carlo simulation since it was carried out to compare the classification 

performances of machine learning methods in different factor structures. In Monte Carlo 

simulation studies, sample data are generated in accordance with the desired distribution 

characteristics (Bandalos & Leite, 2013). In this study, the data sets were generated as 5-point 

likert type scale. The skewness of data was adjusted as left-skewed, normal, and right-skewed. 

2.1. Simulation Conditions 

In the present study, in order to examine the performance of different methods, a set of 

simulation conditions were determined. These conditions included average factor loadings (.40 

and .70), sample siz (100, 200, 500 and 1000), number of items per dimension (5 and 10), and 

number of dimensions (2 and 3). In addition, distribution of data (left-skewed, normal, and 

right-skewed) conditions were investigated. In the study, a total of 2 x 4 x 2 x 2 x 3 = 96 

simulation conditions were studied and 100 replications were made. 

The conditions for the average factor loadings were manipulated to be .40 and .70. In addition 

to the researchers who state that the factor loadings of the items in the scales should be at 

least .30 (Costello & Osborne, 2005), there are also researchers who state that it should be at 

least .32 (Tabachnik & Fidell, 2012). Besides, Howard (2016) states that this value should be 

at least .40. For this reason, in this study, data sets were produced with an average factor loading 

of .40 by taking the average factor loadings. On the other hand, .70 was added as another factor 

loading condition in order to examine how the increase in the average factor loadings affects 

the performance of the methods. 
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The conditions for sample size were manipulated to be 100, 200, 500, and 1000. The sample 

size is frequently selected as 200, 500, and 1000 in factor analysis studies and is defined as 

small, medium, and large (Beauducel & Herzberg, 2006; Li, 2016b; West et al., 1995). In 

addition, Gorsuch (1974) suggested that the sample size should be at least 200. On the other 

hand, since this study investigated the classification performance of machine learning methods, 

samples with 100 instances were also added to the sample size conditions in order to examine 

the classification performance in smaller samples. For example, in educational data, it is 

possible to have data for 50 or even fewer students. Therefore, in this study, small sample sizes 

were preferred in order to examine the performances of methods at the same time. 

The conditions for the number of items per dimension were manipulated to be 5 and 10. In 

classification methods, imbalanced or balanced distribution of class variable can cause different 

results (Sun et al., 2006). For this reason, only a balanced distribution (the same number of 

items per dimension) was examined in this study. Although it is suggested that a dimension 

should be defined with at least 3 items, it is stated that more items would increase the reliability 

of the dimension (Brown, 2015). For this reason, 5-item conditions for one dimension were 

added to the study. In addition, 10-item condition was also added to the study to examine the 

effect of increasing the number of items on the performance of the methods. 

The conditions for the number of dimensions were manipulated to be 2 and 3. 2-dimension 

condition was investigated because there had to be a dependent variable with at least two 

categories to make the classification. In addition, 3-dimensional condition was also included to 

examine how the increase in the number of dimensions would affect the performance of the 

methods. Since the interfactor correlations in the real data sets were mostly between .20 and .40 

(Li, 2016a), it was fixed to .30, the value in the middle of this interval in the present study. 

The conditions for the distribution of the data were manipulated to be left-skewed, normal, and 

right-skewed. This condition was added to the study in order to examine how the change in the 

distribution of data would affect the performance of methods. Since it was stated that the 

skewness coefficient can be considered normal for the interval [-2, 2] (Chou & Bentler, 1995; 

Curran et al., 1996; Finney & DiStefano, 2013), data was categorized in such a way that the 

coefficient of skewness was 2.5 for a right-skewed distribution and -2.5 for a left-skewed 

distribution. The data was first generated to show a continuous normal distribution and then it 

was categorized according to threshold values. 

2.2. Data analysis 

The lavaan (Rosseel, 2012) package included in the R software (R Core Team, 2020) was used 

to generate the data. EGAnet (Golino & Christensen, 2020) package was used for exploratory 

graphic analysis. There are two different methods when performing EGA. These are the 

graphical least absolute shrinkage and selection operator (GLASSO), and triangulated 

maximally filtered graph approach (TMFG). In this study, the TMFG method, which was found 

to give more accurate results (Golino et al., 2020) in many conditions, was used. While the 

codes written by the researchers were used to calculate the percent correct values from the EGA 

results, the Kappa values were obtained with the caret (Kuhn, 2020) package. 

Analyzes for machine learning methods were performed in the Experimenter module of WEKA 

(Hall et al., 2009, Bouckaert et al., 2020) with 10-fold cross-validation (Lachenbruch & 

Mickey, 1968). Cross-validation which was performed by dividing data into a number of folds 

(usually 10 folds) is a method used when the data is not large enough to divide it into training 

and test data (Witten et al., 2017). Since the scale items were classified instead of subjects in 

this study, the data set was transposed, and hence the number of instances was limited to the 

number of items. Therefore, 10-cross-validation method was used in this study. Boostrapping 

(Efron, 1983) method is used when the data sets are medium (approximately 1000) or larger 
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(more than 1000); otherwise, holdout methods are used for small (less than 1000 subjects) 

sample sizes in machine learning. 

2.3. Model Evaluation Criteria 

Percent correct values were used to compare the performance of EGA and machine learning 

methods in the study. The percentage of correctly classified items into the dimensions for 100 

replications was calculated. For this purpose, first, it was checked whether the number of 

recommended factors was estimated correctly. If it was correct, then it was examined whether 

the items were correctly classified into the dimensions. The percent correct values were 

obtained by dividing the number of replications in which the items were in the correct factors 

by the number of replications (100). Since it was stated that percent correct values should be 

above 80% (Hartmann, 1977), it was used as cut off value for percent correct.  

There are many criteria to evaluate the classification performance of machine learning methods. 

The most used criteria are accuracy (percent correct), error rate, precision, recall, sensitivity, 

specificity, receiver operating characteristic (ROC) curve, F criterion, and Kappa statistics. 

These values are calculated by creating a confusion matrix via the classification results. In 

classification, there are frequencies belonging to the instances classified into the cells of 

confusion (error) matrix. In an error matrix consisting of 2x2 classes a and b, there are 

frequencies belonging to instances classified correctly into classes a and b (True positive [TP] 

and True Negative [TN]). Also, there are instances classified into class b while it should be in 

class a (False positive [FP]), and in class b while it should be in class a (False Negative [FN]). 

Based on these frequencies, the accuracy rate is obtained by dividing the number of correctly 

classified instances to the total number of instances. Error rate is obtained by subtracting the 

accuracy rate from 1. Precision is calculated by dividing the value of TP by the sum of TP and 

FP. Sensitivity and Recall (True positive rate) measures are calculated by dividing the TP value 

to the sum of TP and FN. Specificity (True negative rate) value is calculated by dividing the 

TN value by the sum of TN and FP. 

F value (Rijsbergen, 1979), another measure used in the evaluation of models, is an equally 

weighted function of precision and recall values, while Fβ value is not a function of equal 

weights (Han et al., 2011). The Kappa statistic (Cohen, 1960; Fleiss, 1971), which evaluates 

the concordance in the confusion matrix, is evaluated as low if it is between 0-.20, acceptable 

if it is between .21-.40, medium if it is between .41-.60, very good if it is between .61-.80, and 

perfect if it is between .81-1.00 (Landis & Koch, 1977). The ROC curve (Egan, 1975) is a 

measure which is frequently used in binary classification. It is a graphical representation of TP 

value on the vertical axis and FP values on the horizontal axis regardless of class memberships 

or error cost (Witten et al., 2017). If the area value under this curve is around .50, it indicates 

that the model performance is low, and when it is approximately 1, the performance is high 

(Han et al., 2011). 

There are many model evaluation criteria, but it is important to determine which one is suitable 

for the data set. In this sense, whether the dependent variable is binary or multinominal is an 

important case in choosing the evaluation criterion to be used. Since the ROC curve, precision, 

recall, and specificity measures are used when dependent variable is binary, these evaluation 

criteria were not used for the multinominal form of dependent variables in this study. Similarly, 

the F criterion is a measure that can be used if the number of observations in the class variable 

is unbalanced (Branco et al., 2015). For these reasons, percent correct values and Kappa 

concordance statistics were used as model evaluation criteria in the present study. 

3. RESULT / FINDINGS 

Findings of the study are presented in this section according to the order of the research 

problems given in the introduction section. 
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3.1. Comparison of Percent Correct Values 

Percent correct (PC) values obtained from EGA and machine learning methods are presented 

in Figure 1. In addition, PC values are given in Appendix A for the ones who want to examine 

these values in detail. The findings obtained in this section were examined for percent correct 

values of each method. 

The increase in the average factor loading and the sample size increased the PC value in general. 

The factor loading was primarily effective on the classification performance of EGA. When the 

factor loading was .70, EGA had sufficient PC performance (>80%) even if sample size was 

small for normally distributed data. As the sample size increased, EGA had sufficient PC 

performance under the conditions where the average factor loading was .40. EGA had sufficient 

PC performance in 52.08% of all conditions. 

BayesNet had sufficient PC performance in approximately 98% of the conditions where the 

average factor loading was .70. When the conditions in which average factor loading was .40 

were examined, the increase in the sample size increased the PC performance of the methods. 

BayesNet had sufficient PC performance in 52.08% of all conditions. 

J48Consolidated had sufficient PC performance in all conditions where the average factor 

loading was .70, the number of items was 10, the number of dimensions was 2, and sample 

sizes were 200 and 500 regardless of the distribution of the data. However, the PC performance 

was below 80% under the conditions where sample sizes were 500 and 1000 and average factor 

loading was .40 for the normally distributed data. TJ48Consolidated had sufficient PC 

performance in 10.41% of all conditions. 

KStar had sufficient PC performance in all conditions where the sample sizes were 100 and 200 

and the average factor loading was .70. With the increase of the sample size to 500, it did not 

have sufficient PC performance for normally distributed data sets. In all conditions where the 

sample size was 1000, the PC value was below 80%. When average factor loading was .40, the 

number of dimensions was 2, the distribution of data was normal, and KStar had sufficient PC 

performance. Generally, KStar had sufficient PC performance in 40.63% of all conditions. 

NaiveBayes had sufficient PC performance in all conditions where the average factor loading 

was .70. The conditions where average factor loading was .40 and the number of items was 10 

positively affected the PC performance of the method. The sample size being 500 and above 

made the PC performance of the method independent from the distribution. However, the 

method had a better performance in conditions where data were normally distributed and the 

sample sizes were 100 and 200. NaiveBayes had sufficient PC performance in 67.71% of all 

conditions. 

RandomForest had sufficient PC performance in all conditions where the average factor loading 

was .70. However, it had not sufficient PC performance under any conditions where the average 

factor loading was .40 and the number of items was 5. Increasing the number of items and 

sample size increased the PC performance of the method. RandomForest had sufficient PC 

performance in 67.71% of conditions. 

RBFNetwork had generally sufficient performance under conditions where the average factor 

loading was .70. However, it had not sufficient PC performance under any conditions where 

data were normally distributed and the number of items was 5. As the sample and the number 

of items increased, the PC values of the method also increased. RBFNetwork had sufficient PC 

performance in 45.83% of all conditions. 

RseslibKnn had sufficient performance in all conditions where the average factor loading 

was .70. The PC value of the method was bigger than 80% in the conditions where sample sizes 

were 500 and 1000 and the number of items was 10. The number of dimensions did not have 

any effect on the PC performance of the method. It was especially noteworthy that it had 100% 
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PC value under all conditions where sample size was 1000 and average factor loading was 0.70. 

RseslibKnn had sufficient PC performance in 69.69% of all conditions. 

SimpleLogistic had not sufficient performance under any conditions where the number of items 

was 5 in skewed data. The method had more than 80% PC values in 3 dimensional structures 

compared to 2 dimensional ones. However, the method had not sufficient PC performance 

under any conditions where the average factor loading was .40, and sample sizes were 100 and 

200. Its PC values were higher than 80% in only one condition where the sample size was 500. 

SimpleLogistic had sufficient PC performance in 32.29% of all conditions.  

Figure 1. Comparison of percent correct values of the methods. 

 

3.2. Comparison of Kappa Concordance Values 

Kappa values obtained from EGA and machine learning methods are presented in Figure 2. In 

addition, Kappa values are given in Appendix B for researchers who would like to examine the 

details. 

EGA’s Kappa values varied between .69 and 1.00 for all simulation conditions. Accordingly, 

EGA had a very good matrix concordance in all conditions. However, it should be kept in mind 

that kappa values were calculated only with replications where the number of dimensions was 

estimated correctly. In other words, Kappa values should be evaluated together with percent 

correct values. According to these results, it can be said that EGA could classify items at a fairly 

good level in cases where the number of dimensions was estimated correctly.  

BayesNet had good Kappa values above .60 in all conditions where the average factor loading 

was .70. When the conditions with an average factor loading of 0.40 were examined, it had 

more acceptable Kappa values that were obtained in large samples compared to small ones, in 

2 dimensions compared to 3 dimensions, and in normal distribution compared to skewed 

distributions. In about 60% of the conditions where the average factor loading was .40, 
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moderate concordance was observed. BayesNet had good Kappa values in 66.66% of all 

conditions. 

J48Consolidated had good Kappa values in 50% of the conditions where the average factor 

loading was .70, and the other 50% of the conditions had medium or acceptable Kappa values. 

In 25% of the conditions where the average factor loading was .40, medium and above 

concordance was observed, while acceptable concordance was obtained in other conditions. In 

this method, in general, higher Kappa values were obtained in 2 dimensions compared to 3 

dimensions, for 5 items compared to 10 items per dimension. Changing the skewness and 

sample size did not cause a northwothy change in the Kappa values. J48Consolidated had good 

Kappa values in 30.21% of all conditions. 

KStar had perfect concordance in all conditions where sample sizes were 100, 200 and average 

factor loading was .70. Kappa values were slightly lower under conditions where sample size 

was 500 and there were normally distributed data than the skewed ones. However, Kstar had 

insufficient concordance under conditions where sample size was 1000 and the number of 

dimensions was 3. When the conditions with an average factor loading of .40 were examined, 

it tended to show a higher and better level of concordance in conditions where the number of 

dimensions was low, the number of items was 5, and the distribution of variables was normal. 

KStar had good Kappa values in 56.25% of all conditions. 

NaiveBayes had good concordance in all conditions where the average factor loading was .70. 

Under conditions where the average factor loading was .40, it had much better Kappa values 

obtained in large samples compared to small ones and 3-dimensional structure compared to 2-

dimensional ones. However, a better concordance was observed under conditions where data 

was skewed, and the number of items was 5 when compared to 10 items. The opposite of this 

case was true when there were 10 items per dimension. NaiveBayes had good Kappa values in 

72.92% of all conditions. 

RandomForest had perfect Kappa values in all conditions where the average factor loading 

was .70. Under conditions where the average factor loading was .40, the increase in the number 

of items per dimension, sample size and the decrease in skewness increased the performance of 

the method. Generally, acceptable Kappa values were obtained. NaiveBayes had good Kappa 

values in 75% of all conditions. 

RBFNetwork generally had perfect concordance in all conditions where the average factor 

loading was .70, except for conditions that the data were normally distributed, and the number 

of items was 5. In the conditions where the average factor loading was .40, the concordance 

was generally above the acceptable level, except for the conditions with a normal distribution 

and 5 items per factor. Overall, as the sample size got larger, the concordance increased. While 

the increase in the number of items per dimension decreased the performance in skewed data, 

it had the opposite in normal distributions. RBFNetwork had good Kappa values in 50% of all 

conditions. 

RseslibKnn had perfect concordance in all conditions where the average factor loading was .70. 

There was an acceptable concordance when the average factor loading was .40 and the sample 

size was small. Under conditions where the sample size was over 200, a fairly good 

concordance was observed. In general, getting a larger sample size increased the concordance, 

especially in skewed data. The change in the number of dimensions did not have a northwhorty 

effect on the overall concordance for RseslibKnn. Especially in all conditions where the sample 

sizes were 500 and 1000 and the average factor loading was .70, it is noteworthy that the 

agreement was 1. The decrease in the number of items per dimensions and skewness of data 

increased the concordance. RseslibKnn had good Kappa values in 81.25% of all conditions. 
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SimpleLogistic had a very good or perfect concordance in all conditions where the average 

factor loading was .70. In all conditions where the average factor loading was .40, 

SimpleLogistic had an acceptable or above concordance level. In general, the increase in the 

number of items and the sample size increased concordance. Increasing the number of 

dimensions and skewness of data decreased the concordance. SimpleLogistic had good Kappa 

values in 54.17% of all conditions. 

Figure 2. Comparison of Kappa concordance values of the methods. 

 

4. DISCUSSION and CONCLUSION 

In this study, the usability of exploratory graph analysis (EGA) and machine learning methods 

in deciding which item should be included in which dimension in the exploratory factor analysis 

was examined. The results obtained for different conditions were successively discussed for the 

performance of methods with regard to different sample sizes, average factor loadings, the 

number of items per dimensions, the number of dimensions, and the distribution of data. 

When the findings obtained for different conditions were evaluated together, it was seen that 

machine learning methods gave comparable results to EGA. Machine learning methods showed 

high performance, especially in small and medium sample sizes. For example, in all conditions 

where the average factor loading was .70, BayesNet, Naive Bayes, RandomForest, and 

RseslibKnn methods had bigger values than 80% PC values similar to the values of EGA. 

BayesNet, Simple Logistic and RBFNetwork methods had also an acceptable or high PC 

performance under many conditions such as different sample sizes, factor loadings, and the 

number of items. These methods had better classification performance than that of EGA when 

factor loading was .40. Kappa concordance values also support these results. In general, higher 

percent correct and Kappa values were obtained in conditions where the average factor loading 

was .70 compared to the average factor loading .40. 
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Under conditions where the average factor loadings and the number of items per dimension 

were low, percent correct values below 80% were obtained regardless of the number of factors, 

skewness of data, and sample size. However, in conditions where the average factor loading 

was low and the number of items per dimension was high, sample size was small and data were 

normally distributed and PC values of Naive Bayes, RandomForest, RBFNetwork, RseslibKnn, 

and SimpleLogistic methods were close to 80% or above. These methods showed the same 

performance even if there was skewness in large sample sizes. Kappa values also greatly 

supported such a result. Especially when the number of items per dimension was more than 5, 

it was seen that these methods performed well even if the average factor loading was low. The 

fact that the methods were Bayesian, decision trees, artificial neural networks and instance-

based showed that classification decisions can be made with different statistical and 

mathematical based methods. In addition, it was observed that the performance of some 

methods such as RBFNetwork and Kstar decreased in the conditions having 5 items and large 

sample sizes. This interesting result was considered to be obtained due to the mathematical 

structure of those methods. 

Machine learning methods generally do not require any assumptions (except the conditional 

independence assumption for the Naïve Bayes). The results of this study showed that the 

number of categories, skewness of data, and sample size had an effect on the classification 

performance of these methods. Although they were not based on factor analysis, the results of 

other studies revealed that sample size (Beleites et al., 2013; Brain & Webb, 1999; Chu et al., 

2012; Figueroa et al., 2012; Heydari & Mountrakis, 2018; Hamalainen & Vinni, 2006; Shao et 

al., 2013), feature selection (Chu et al., 2012), and the number of nominal classes (Minaei-

Bidgoli et al., 2003; Nghe et al., 2007) had effects on the performance of machine learning 

methods. On the other hand, studies on factor analysis using machine learning generally focused 

on factor retention (e.g. Goretzko & Bühner, 2020; Iantovics et al., 2019). Therefore, the results 

of the present study provide researchers with a reference point in using and selecting the most 

suitable machine learning method for their data structure to decide on which items will be 

included in which factors. For example, assume that when a researcher cannot decide on which 

item belongs to which dimension after EFA analysis because an item can load more than one 

dimension at the same time (cross loading), the researcher in such a situation can try different 

methods given in the present study and place the item into the appropriate dimension by taking 

into account the conditions similar to her/his own study. In addition, in cases where it is 

necessary to perform item parceling, items can be grouped by using methods that give accurate 

results in the current study. 

Due to many simulation conditions handled, the discussions were formed from generalized 

results for different conditions in the present study. Researchers who perform exploratory factor 

analysis can choose machine learning methods and classify scale items according to the 

characteristics of their data sets (sample size, average factor loading, and skewness of the data). 

In this case, they can compare the percent correct and Kappa values obtained from their study 

with the results of this study. For example, let us consider a method where PC value was 

obtained as 100% in current study. If the researcher obtains a very low value when he/she uses 

this method in his/her own data set, he/she may consider re-classifying the items. Thus, it will 

be possible to examine whether the items are in the right dimension or not. In addition, assume 

that researchers have been given a basis for decision-making. However, it should also be taken 

into account that this study does not cover all of the real situations that may actually occur. The 

level of similarity of the characteristics of the real data set with the conditions examined in the 

current study should also be taken into consideration. 

In this study, eight machine learning methods based on different statistical and mathematical 

basis included in the WEKA software were examined. In future studies, the performance of 



Koyuncu & Kilic

 

 940 

other methods such as Bayesian, artificial neural networks, instance based, rule based, decision 

tree, and support vector machine can also be examined. In addition, the number of conditions 

used in this research can be increased or the performance of EGA and machine learning 

methods used in the current study can be compared for different conditions such as inter-factor 

correlations. Since this study was carried out with simulated data sets, the performance of the 

EGA and machine learning methods can be examined over real data sets in similar conditions. 
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6. APPENDICES 

APPENDIX A  

Percent correct values of the methods. 
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et
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o
d

s 
Sample Size 

100 200 500 1000 

Average Factor Loadings 

0.40 0.70 0.40 0.70 0.40 0.70 0.40 0.70 

Number of Factors 
2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 

L
ef

t 
S

k
ew

ed
 

5
 I

te
m

s 

BayesNet 46.70 25.25 89.30 81.30 59.60 39.05 96.50 91.05 71.10 49.00 99.60 98.90 78.60 54.85 100 99.90 

EGA 9.00 3.00 83.00 47.00 21.00 4.00 98.00 93.00 45.00 8.00 100 100 77.00 55.00 100 99.00 
J48Consolidated 56.80 40.50 71.80 62.05 58.10 48.65 72.90 63.25 57.80 46.60 70.20 66.20 60.60 46.05 70.50 64.25 

KStar 61.90 47.50 94.10 89.30 70.80 52.55 98.70 97.00 78.50 71.55 100 99.70 50.00 25.00 51.60 25.45 

NaiveBayes 59.20 47.60 90.40 88.55 61.40 50.10 96.00 94.40 65.00 62.00 99.80 99.10 74.70 70.90 100 100 
RandomForest 45.20 40.15 89.20 87.30 44.80 38.45 94.80 93.00 47.60 42.00 97.70 97.45 46.80 44.40 98.90 98.75 

RBFNetwork 56.80 42.05 82.30 75.45 57.10 42.65 87.90 81.90 57.20 49.90 96.10 93.05 64.60 55.05 98.80 98.55 

RseslibKnn 52.60 39.75 93.60 89.45 60.10 41.80 98.50 95.80 63.50 56.50 100 99.95 78.70 66.70 100 100 
SimpleLogistic 38.90 40.40 69.50 75.35 42.80 43.75 68.20 76.75 42.40 44.65 62.90 75.45 40.50 43.45 56.40 75.50 

1
0
 I

te
m

s 

BayesNet 60.35 40.93 93.75 88.43 68.00 49.27 99.00 97.37 72.65 60.07 100 99.90 83.60 68.30 100 100 

EGA 1.00 0.00 69.00 41.00 7.00 1.00 91.00 85.00 40.00 10.00 99.00 98.00 70.00 62.00 100 100 
J48Consolidated 64.70 47.60 82.00 71.47 64.15 49.47 81.40 73.07 63.55 51.60 81.10 71.70 64.90 49.83 81.80 70.43 

KStar 68.45 53.80 95.70 91.00 75.80 62.10 99.30 97.60 86.00 76.13 99.95 99.80 50.00 33.33 53.00 36.33 

NaiveBayes 72.75 62.70 97.10 94.33 81.55 70.60 99.40 98.70 91.10 86.37 99.95 99.97 97.10 94.73 100 100 
RandomForest 78.60 66.57 97.95 96.40 85.65 78.13 99.70 99.37 91.40 86.17 99.90 99.93 93.65 88.67 100 100 

RBFNetwork 63.05 50.93 87.25 78.33 65.95 54.33 91.65 84.27 73.40 61.77 96.70 93.13 80.15 68.83 99.45 97.67 

RseslibKnn 69.15 55.30 96.05 91.00 78.95 65.17 99.35 98.00 87.40 78.30 100 99.87 93.75 88.70 100 100 
SimpleLogistic 68.30 59.97 87.10 88.60 70.65 67.67 89.85 91.10 75.25 71.00 90.65 93.40 76.60 74.70 91.95 93.83 

N
o

rm
al

 

5
 I

te
m

s 

BayesNet 57.90 44.30 97.50 94.75 61.80 53.70 99.50 99.00 73.60 62.20 100 100 83.40 74.85 100 100 

EGA 21.00 6.00 99.00 95.00 55.00 23.00 100 98.00 89.00 79.00 100 100 100 97.00 100 100 
J48Consolidated 60.20 46.20 75.50 64.55 56.90 47.95 71.90 63.15 61.60 45.15 76.70 60.50 58.40 44.65 74.50 57.60 

KStar 74.50 63.25 99.50 99.60 83.60 77.90 100 100 50.00 25.00 81.40 69.20 50.00 25.00 50.00 25.00 

NaiveBayes 45.60 39.00 85.20 80.75 43.10 33.80 89.30 83.85 37.50 28.75 96.20 95.20 28.90 23.95 98.20 98.40 
RandomForest 56.80 48.70 96.50 97.15 59.40 54.15 99.30 99.00 61.40 57.50 99.80 99.55 64.10 60.30 99.80 100 

RBFNetwork 32.60 22.15 48.20 43.80 25.50 18.20 52.10 47.35 21.00 12.20 53.00 54.75 12.30 8.10 56.30 53.50 

RseslibKnn 73.80 62.45 99.00 99.45 84.50 79.65 100 100 96.10 93.00 100 100 98.70 98.60 100 100 
SimpleLogistic 50.00 52.15 78.10 82.80 47.90 54.30 77.10 84.45 55.40 51.75 71.80 87.25 50.50 55.20 68.90 86.90 

1
0
 I

te
m

s 

BayesNet 68.55 49.83 99.20 98.20 77.50 59.73 99.80 99.93 84.35 73.87 100 100 94.10 84.07 100 100 

EGA 12.00 3.00 100 93.00 38.00 23.00 100 98.00 76.00 81.00 100 100 93.00 99.00 100 100 
J48Consolidated 62.90 48.50 82.45 74.10 66.55 49.47 80.30 72.27 63.95 50.43 79.50 71.03 66.55 50.40 79.10 69.00 

KStar 80.00 70.57 100 99.50 90.30 83.13 100 99.97 50.00 33.33 82.60 79.23 50.00 33.33 50.00 33.33 

NaiveBayes 89.80 83.63 99.45 99.27 95.85 92.57 99.20 98.70 97.85 97.67 100 100 98.10 97.97 100 100 
RandomForest 85.60 77.10 99.70 99.40 91.70 85.33 99.85 100 95.00 90.53 100 99.97 96.15 92.90 100 100 

RBFNetwork 80.85 71.87 94.25 95.00 85.40 75.97 94.40 95.80 88.25 83.00 96.65 98.07 89.10 84.00 98.65 99.33 

RseslibKnn 80.85 73.57 99.85 99.53 91.00 84.57 99.95 99.97 97.65 96.33 100 100 99.75 99.57 100 100 
SimpleLogistic 76.70 72.73 92.30 94.57 79.15 78.13 94.15 95.13 79.15 84.07 95.45 96.30 82.30 83.57 94.75 96.87 

R
ig

h
t 

S
k

ew
ed

 

5
 I

te
m

s 

BayesNet 52.80 28.40 87.80 75.40 63.80 42.60 95.40 91.60 69.20 48.10 99.70 98.85 75.90 58.90 100 100 

EGA 16.00 5.00 88.00 59.00 25.00 6.00 99.00 90.00 41.00 13.00 100 100 92.00 59.00 100 100 

J48Consolidated 58.60 43.85 76.50 65.40 59.30 42.15 72.60 66.55 58.80 47.05 75.40 67.00 62.00 47.45 75.90 63.50 

KStar 62.50 48.00 92.40 87.70 69.20 55.25 98.30 97.80 78.90 70.55 100 100 50.00 25.00 50.20 25.00 

NaiveBayes 58.80 46.20 91.40 83.80 64.30 49.25 96.40 94.65 63.70 58.25 99.80 99.40 67.20 62.35 99.60 99.60 

RandomForest 53.60 42.15 90.00 87.95 52.80 46.30 94.90 94.95 52.00 47.75 98.70 99.30 52.60 49.55 99.60 99.40 

RBFNetwork 55.90 41.70 82.40 70.55 59.30 42.20 86.10 83.85 58.90 48.75 96.50 93.50 66.20 55.35 98.90 98.00 

RseslibKnn 54.10 39.60 92.90 87.15 60.70 50.50 98.70 97.00 63.90 56.75 100 100 77.60 70.35 100 100 

SimpleLogistic 46.40 41.45 67.60 72.75 43.80 44.50 65.40 76.25 40.60 45.55 63.40 79.50 39.10 48.85 61.70 76.15 

1
0
 I

te
m

s 

BayesNet 60.55 42.57 95.25 91.07 65.70 51.00 98.30 97.63 77.10 58.80 99.90 99.80 81.35 69.30 100 100 

EGA 2.00 0.00 77.00 52.00 5.00 2.00 95.00 88.00 45.00 21.00 100 98.00 82.00 64.00 100 100 

J48Consolidated 64.25 48.43 82.80 73.70 63.65 49.43 83.80 72.90 64.50 50.00 81.70 72.20 63.15 48.87 80.55 72.60 

KStar 68.40 54.70 95.10 91.50 75.20 62.00 99.10 97.63 85.55 75.53 99.95 99.87 50.00 33.33 50.05 33.40 

NaiveBayes 74.20 62.93 95.20 92.73 79.40 69.30 98.05 96.93 89.70 82.00 100 99.77 93.80 89.43 100 99.93 

RandomForest 79.80 70.00 98.40 97.07 84.90 77.47 99.65 99.27 92.50 85.57 100 99.93 94.05 90.10 100 100 

RBFNetwork 65.25 53.63 87.50 80.93 67.45 53.40 89.25 84.77 71.10 61.50 95.90 92.40 79.60 66.43 98.95 97.57 

RseslibKnn 70.70 55.30 96.00 92.97 76.65 65.50 99.40 98.30 87.35 80.33 100 99.87 93.40 89.53 100 100 

SimpleLogistic 69.15 60.40 87.55 89.67 70.30 65.90 90.90 91.73 74.15 69.33 91.40 92.80 74.30 72.20 91.90 94.80 
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APPENDIX B  

Kappa concordance values of the methods 
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Sample Size 

100 200 500 1000 

Average Factor Loadings 

0.40 0.70 0.40 0.70 0.40 0.70 0.40 0.70 

Number of Factors 

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 

L
ef

t 
S

k
ew

ed
 

5
 I

te
m
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BayesNet 0.47 0.15 0.89 0.76 0.60 0.25 0.97 0.88 0.71 0.36 1.00 0.99 0.79 0.43 1.00 1.00 
EGA 0.74 0.72 0.97 0.91 0.77 0.70 1.00 0.99 0.89 0.78 1.00 1.00 0.97 0.92 1.00 1.00 

J48Consolidated 0.57 0.25 0.72 0.52 0.58 0.33 0.73 0.53 0.58 0.32 0.70 0.56 0.61 0.31 0.71 0.55 

KStar 0.62 0.35 0.94 0.87 0.71 0.40 0.99 0.96 0.78 0.62 1.00 1.00 0.50 0.00 0.52 0.01 
NaiveBayes 0.59 0.36 0.90 0.86 0.61 0.40 0.96 0.93 0.65 0.55 1.00 0.99 0.75 0.66 1.00 1.00 

RandomForest 0.45 0.31 0.89 0.85 0.45 0.28 0.95 0.92 0.48 0.33 0.98 0.97 0.47 0.37 0.99 0.99 

RBFNetwork 0.57 0.29 0.82 0.70 0.57 0.31 0.88 0.77 0.57 0.39 0.96 0.92 0.65 0.46 0.99 0.98 
RseslibKnn 0.53 0.28 0.94 0.87 0.60 0.29 0.98 0.95 0.64 0.46 1.00 1.00 0.79 0.57 1.00 1.00 

SimpleLogistic 0.39 0.27 0.70 0.69 0.43 0.31 0.68 0.71 0.42 0.33 0.63 0.69 0.41 0.32 0.56 0.69 

1
0
 I

te
m

s 

BayesNet 0.21 0.11 0.88 0.83 0.36 0.24 0.98 0.96 0.45 0.40 1.00 1.00 0.67 0.52 1.00 1.00 
EGA 0.85 0.72 0.98 0.94 0.89 0.73 0.99 0.99 0.96 0.88 1.00 1.00 0.98 0.97 1.00 1.00 

J48Consolidated 0.29 0.21 0.64 0.57 0.28 0.24 0.63 0.60 0.27 0.27 0.62 0.58 0.30 0.25 0.64 0.56 

KStar 0.37 0.31 0.91 0.87 0.52 0.43 0.99 0.96 0.72 0.64 1.00 1.00 0.00 0.00 0.06 0.05 
NaiveBayes 0.46 0.44 0.94 0.91 0.63 0.56 0.99 0.98 0.82 0.80 1.00 1.00 0.94 0.92 1.00 1.00 

RandomForest 0.57 0.50 0.96 0.95 0.71 0.67 0.99 0.99 0.83 0.79 1.00 1.00 0.87 0.83 1.00 1.00 

RBFNetwork 0.26 0.26 0.74 0.67 0.32 0.32 0.83 0.76 0.47 0.43 0.93 0.90 0.60 0.53 0.99 0.97 
RseslibKnn 0.38 0.33 0.92 0.86 0.58 0.48 0.99 0.97 0.75 0.67 1.00 1.00 0.88 0.83 1.00 1.00 

SimpleLogistic 0.37 0.40 0.74 0.83 0.41 0.52 0.80 0.87 0.50 0.56 0.81 0.90 0.53 0.62 0.84 0.91 

N
o

rm
al

 

5
 I

te
m

s 

BayesNet 0.58 0.31 0.98 0.93 0.62 0.39 0.99 0.99 0.74 0.52 1.00 1.00 0.83 0.68 1.00 1.00 
EGA 0.80 0.74 1.00 0.99 0.91 0.84 1.00 1.00 0.98 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

J48Consolidated 0.60 0.32 0.75 0.54 0.57 0.34 0.72 0.53 0.62 0.30 0.77 0.49 0.58 0.30 0.74 0.46 

KStar 0.74 0.53 1.00 0.99 0.84 0.70 1.00 1.00 0.50 0.00 0.81 0.63 0.50 0.00 0.50 0.00 
NaiveBayes 0.46 0.30 0.85 0.77 0.43 0.25 0.89 0.82 0.38 0.22 0.96 0.95 0.29 0.19 0.98 0.98 

RandomForest 0.57 0.39 0.97 0.96 0.59 0.46 0.99 0.99 0.61 0.50 1.00 1.00 0.64 0.53 1.00 1.00 

RBFNetwork 0.33 0.13 0.48 0.37 0.25 0.09 0.52 0.42 0.21 0.07 0.53 0.51 0.12 0.05 0.56 0.51 
RseslibKnn 0.74 0.52 0.99 0.99 0.84 0.72 1.00 1.00 0.96 0.90 1.00 1.00 0.99 0.98 1.00 1.00 

SimpleLogistic 0.50 0.39 0.78 0.78 0.48 0.41 0.77 0.80 0.55 0.40 0.72 0.83 0.51 0.43 0.69 0.83 

1
0
 I

te
m

s 

BayesNet 0.37 0.25 0.98 0.97 0.55 0.40 1.00 1.00 0.69 0.61 1.00 1.00 0.88 0.76 1.00 1.00 
EGA 0.93 0.80 1.00 0.99 0.94 0.91 1.00 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

J48Consolidated 0.26 0.23 0.65 0.61 0.33 0.24 0.61 0.58 0.28 0.26 0.59 0.57 0.33 0.26 0.58 0.53 

KStar 0.60 0.56 1.00 0.99 0.81 0.75 1.00 1.00 0.00 0.00 0.65 0.69 0.00 0.00 0.00 0.00 
NaiveBayes 0.80 0.75 0.99 0.99 0.92 0.89 0.98 0.98 0.96 0.97 1.00 1.00 0.96 0.97 1.00 1.00 

RandomForest 0.71 0.66 0.99 0.99 0.83 0.78 1.00 1.00 0.90 0.86 1.00 1.00 0.92 0.89 1.00 1.00 

RBFNetwork 0.62 0.58 0.89 0.92 0.71 0.64 0.89 0.94 0.76 0.75 0.93 0.97 0.78 0.76 0.97 0.99 
RseslibKnn 0.62 0.60 1.00 0.99 0.82 0.77 1.00 1.00 0.95 0.94 1.00 1.00 0.99 0.99 1.00 1.00 

SimpleLogistic 0.53 0.59 0.85 0.92 0.58 0.67 0.88 0.93 0.58 0.76 0.91 0.94 0.65 0.75 0.90 0.95 

R
ig

h
t 

S
k

ew
ed

 

5
 I

te
m

s 

BayesNet 0.53 0.17 0.88 0.69 0.64 0.28 0.95 0.89 0.69 0.35 1.00 0.99 0.76 0.47 1.00 1.00 

EGA 0.69 0.76 0.98 0.92 0.79 0.73 1.00 0.99 0.89 0.83 1.00 1.00 0.99 0.93 1.00 1.00 

J48Consolidated 0.59 0.29 0.76 0.56 0.59 0.27 0.73 0.57 0.59 0.34 0.75 0.58 0.62 0.33 0.76 0.53 

KStar 0.63 0.35 0.92 0.84 0.69 0.44 0.98 0.97 0.79 0.62 1.00 1.00 0.50 0.00 0.50 0.00 

NaiveBayes 0.59 0.35 0.91 0.80 0.64 0.39 0.96 0.94 0.64 0.51 1.00 0.99 0.67 0.56 1.00 0.99 

RandomForest 0.54 0.32 0.90 0.86 0.53 0.36 0.95 0.94 0.52 0.39 0.99 0.99 0.53 0.41 1.00 0.99 

RBFNetwork 0.56 0.29 0.82 0.64 0.59 0.30 0.86 0.80 0.59 0.38 0.97 0.92 0.66 0.47 0.99 0.97 

RseslibKnn 0.54 0.27 0.93 0.84 0.61 0.40 0.99 0.96 0.64 0.46 1.00 1.00 0.78 0.62 1.00 1.00 

SimpleLogistic 0.46 0.29 0.68 0.66 0.44 0.32 0.65 0.70 0.41 0.33 0.63 0.74 0.39 0.36 0.62 0.70 

1
0
 I

te
m

s 

BayesNet 0.21 0.14 0.90 0.87 0.31 0.26 0.97 0.96 0.54 0.38 1.00 1.00 0.63 0.54 1.00 1.00 

EGA 0.85 0.70 0.99 0.96 0.88 0.78 1.00 0.99 0.96 0.90 1.00 1.00 0.99 0.97 1.00 1.00 

J48Consolidated 0.28 0.23 0.66 0.61 0.27 0.24 0.68 0.59 0.29 0.25 0.63 0.58 0.26 0.23 0.61 0.59 

KStar 0.37 0.32 0.90 0.87 0.50 0.43 0.98 0.96 0.71 0.63 1.00 1.00 0.00 0.00 0.00 0.00 

NaiveBayes 0.48 0.44 0.90 0.89 0.59 0.54 0.96 0.95 0.79 0.73 1.00 1.00 0.88 0.84 1.00 1.00 

RandomForest 0.60 0.55 0.97 0.96 0.70 0.66 0.99 0.99 0.85 0.78 1.00 1.00 0.88 0.85 1.00 1.00 

RBFNetwork 0.30 0.30 0.75 0.71 0.35 0.30 0.79 0.77 0.42 0.42 0.92 0.89 0.59 0.50 0.98 0.96 

RseslibKnn 0.41 0.33 0.92 0.89 0.53 0.48 0.99 0.97 0.75 0.70 1.00 1.00 0.87 0.84 1.00 1.00 

SimpleLogistic 0.38 0.41 0.75 0.84 0.41 0.49 0.82 0.88 0.48 0.54 0.83 0.89 0.49 0.58 0.84 0.92 

 


