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Abstract
This article deals with the problem of reliability in a multicomponent stress-strength (MSS)
model when both stress and strength variables are from inverse Kumaraswamy distribu-
tion. The reliability of the system is estimated using classical and Bayesian approaches
when the common second shape parameter is known or unknown. The maximum likeli-
hood estimation and its asymptotic confidence interval for the reliability of the system are
obtained. Furthermore, two other asymptotic confidence intervals are computed based on
Logit and Arcsin transformations. The uniformly minimum variance unbiased estimator
for the reliability of the MSS model is obtained when the common second shape parameter
is known. The Bayes estimate is obtained exactly when the second shape parameter is
known and it is approximated by using the Monte Carlo Markov Chain method when the
second shape parameter is unknown. The highest probability density credible interval is
established using the Gibbs sampling technique. Monte Carlo simulations are implemented
to compare the different proposed methods. Finally, two real data sets are presented in
support of the suggested procedures.
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1. Introduction
The Kumaraswamy distribution, introduced by [28], is one of the most important life-

time distributions with finite support. However, it can not be used for most lifetime
data that have infinite support in theory. The probability density function (pdf) of the
Kumaraswamy distribution with two positive shape parameters α and θ is specified by

f (z;α, θ) = αθzθ−1
[
1 − zθ

]α−1
, 0 < z < 1.

To analyze lifetime data sets in the best-case scenario, the inverse Kumaraswamy (IKu)
distribution introduced by [1], is very flexible.
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The IKu distribution corresponds to the distribution of the random variable X = 1/Z−1
where Z has a Kumaraswamy distribution with parameters α and θ. The transformation
X = 1/Z − 1 is more appropriate than the transformation X = 1/Z which makes it more
flexible for modeling lifetime data. The cumulative distribution function (cdf) of IKu
distribution is as follows:

FX(x;α, θ) = [1 − (1 + x)−θ]α, x > 0 (1.1)
and the corresponding pdf is

fX(x;α, θ) = αθ( 1 + x)−(θ+1)[1 − (1 + x)−θ]α−1, x > 0, (1.2)
where α > 0 and θ > 0 are first and second shape parameters, respectively. Hereafter,
we use the notation IKu(α, θ) for the random variable that has an IKu distribution with
parameters α and θ. The several distributional properties of the IKu distribution were
discussed in [1]. The curves for pdf and hazard rate function (hrf) of the IKu distribution
reveal decreasing (monotonic) and upside-down bathtub (non-monotonic) shapes (Figures
1 and 2). The estimation and prediction problems of this distribution based on general
progressive censored samples were considered in [2]. A generalized version of the IKu
distribution was proposed in [20], while a bivariate generalization of the IKu distribution
was studied in [34].

Figure 1. The pdf plots of the IKu distribution for different combinations of (α, θ).

Figure 2. The hrf plots of the IKu distribution for different combinations of (α, θ).
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In probability theory, long-tailed distributions are probability distributions whose tails
asymptotically approach zero at a slower than one with exponential tails. They tend
to have many outliers with very large observations. In the context of reliability, the
extreme outlying observations in the direction of the right tail are important, however,
a distribution may have a long left tail, or both tails may be long. The distribution of
a random variable X with cdf of F is said to have a long tail if F has right unbounded
support and for all t>0,

lim
x→∞

1 − F (x+ t)
1 − F (x)

= 1.

Long-tailed distributions are a subclass of heavy-tailed distributions. All long-tailed
distributions are heavy-tailed, but the opposite may not be true. For detailed infor-
mation about the classification of probability distributions based on their tail behavior,
one could refer to [16, 42–44, 48]. The class of long-tailed distributions includes several
well-known lifetimes such as Pareto, Log-normal, Burr Type XII distributions, and so
on. Long-tailed distributions have many important applications in many fields including
meteorology, aerospace engineering, insurance, and finance. For example, commerce and
marketing plans usually find that their sales can best be described using the long-tailed
distributions. Consider an internet store. It may have certain items with very high sales
and a large number of items with much fewer sales. Although the sales volume for every
individual item at the far end of the tail may be negligible, there are enough items that
play an important role in the general profit-taking. The profit from low-sale volume items
can compete with the profit gained from best sellers.

Some of the attractive features of the IKu distribution are as follows:
• The IKu distribution belongs to the class of long-tailed distributions [1]. It has a

longer tail than several commonly used distributions, and this feature positively
affects the capability of distribution to fit the rare events (outlying observations)
occurring in the direction of the right tail. This means that the IKu distribution
can be considered as an extreme value distribution. Many random variables have
long-tailed distributions, including traffic patterns on the internet, city population
sizes, natural resource occurrences, stock price fluctuations, company sizes, income,
and so on. Therefore, such data can be modeled using the IKu distribution.

• The IKu distribution is known as the inverse version of a probability distribution.
The study of inverse distributions has provided a better understanding of standard
distributions and has helped increase flexibility for data fitting [30]. It is surprising
and interesting to know the inverse versions of the probability distributions indicate
the upside-down bathtub shapes for their hazard rates [46]. From a practical
perspective, there are many cases in which the data sets show upside-down bathtub
hazard rate behavior. One such instance was analyzed by [15] within the scope
of head and neck cancer data, in which the hazard rate firstly increased, attended
a maximum, and then decreased before it ultimately stabilized due to therapy.
As another instance, Langlands et al. [29] have investigated the data of breast
carcinoma and observed that the mortality increased firstly, got to a peak, and
then decreased.

• The IKu distribution belongs to proportional reversed hazard models that are an
important class of distribution families in reliability and survival analysis. This
family of distributions is defined as FX (x) = [F0 (x)]α, where α is positive and
F0 (.) is the cdf of the baseline random variable.

What distinguishes the IKu distribution from competing distributions is that, in addi-
tion to having a long tail, it is also known as the inverse version of a probability distribu-
tion, as well as a model with a proportional reversed hazard rate. The IKu distribution is a
better fit than six competitive models, including two long-tailed distributions (Burr Type
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XII and modified Lomax), two inverse distributions (inverse Weibull and inverse Gamma)
and two proportional reversed hazard models (exponentiated Weibull and exponentiated
Rayleigh) based on two real data sets (see Section 5). These justify the motivation for an
applied study based on the IKu distribution.

The estimation problem of stress-strength reliability, R = P (Y < X), has been exten-
sively investigated in the statistical literature. It has a broad application in many fields
such as engineering, agriculture, medical and so on. Here, X presents the strength of
a system that is exposed to a stress Y . Thus R indicates the system performance. In
engineering applications, if X denotes the strength of a building and Y represents the
resultant of the destructive forces acting on it, such as an earthquake, then R can be
interpreted as the safety factor of a building. In aquaculture, if X is the growth value of
fish in a treatment group and Y is the growth value of a control group, then R shows the
effectiveness of treatment. This fundamental idea was firstly studied in [11]. Thereafter,
the problem of estimating R has been discussed by a great number of researchers. Some
recent efforts pertaining to stress-strength models can be found in [5–9, 18, 41] for the
Weibull, Lindley, Dagum, truncated proportional hazard rate family, proportional hazard
rate family, Topp-Leone, and generalized Pareto distributions, respectively.

In recent years, inference for the reliability of the MSS model has received much at-
tention among researchers. This model contains k identical and independent strength
components and it operates when at least s (1 ≤ s ≤ k) of the components work properly
against common stress. It is commonly known as s-out-of-k: G system. MSS models ap-
pear in many practical situations, such as communication systems, industrial operations,
military technologies, and so on. For example, consider an airplane with four engines
that flies when at least two engines work satisfactorily. Thus, the airplane operation is a
2-out-of-4: G system. As another example, the kidney function in the human body is a
1-out-of-2: G system, since a person can survive with at least one healthy kidney. Assume
X1, X2, ..., Xk are independent random variables with common cdf of F (.) and exposed to
the common stress Y with cdf of G(.), Thus, the reliability in the MSS model is given by

Rs,k = P [at least s of (X1, X2, ..., Xk) exceed Y ]

=
k∑

i=s

(
k
i

)∫ ∞

0
[1 − FX (y)]i[FX (y)]k−idG (y). (1.3)

The mentioned model was firstly examined in [10]. Thereafter, many authors have
shown considerable interest in the MSS model. Some recent efforts regard to the issue, can
be found in [3,4,14,21–27,31–33,37] for the Topp-Leone, exponentiated Pareto distribution,
Kumaraswamy, unit-Gompertz, unit generalized Rayleigh, Geometric, Chen, proportional
reversed hazard rate family, bivariate Kumaraswamy, Weibull, the general class of inverted
Exponentiated models, inverted exponentiated Rayleigh, Burr XII, and bathtub-shaped
distributions, respectively.

To our knowledge, until now, no work has been carried out to study the MSS model
under the IKu distribution. The focus of this article is to establish classical and Bayesian
inferences on the reliability of the MSS model when the stress and the strength both
follow the IKu distribution. The rest of the content of this paper is organized as follows. In
Section 2, when the common second shape parameter is unknown, the maximum likelihood
estimate (MLE) of Rs,k along with its asymptotic confidence interval (ACI) are obtained.
Also, two other asymptotic confidence intervals are constructed based on Logit and Arcsin
transformations. The Bayes estimation of Rs,k is obtained by using the MCMC method
under square loss (SE) function. Furthermore, the highest probability density (HPD)
credible interval is provided in this section. In Section 3, when the second shape parameter
is known, the MLE, uniformly minimum variance unbiased estimate (UMVUE), and ACI
of Rs,k are investigated. The Bayes estimator of Rs,k is determined explicitly, in this
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section. Moreover, the HPD credible interval is provided. In Section 4, proposed methods
are compared via Monte Carlo simulations. In Section 5, the analysis of two real data sets
is provided for a demonstration of the findings. Finally, concluding remarks are considered
in Section 6.

2. Estimation of Rs,k when θ is unknown
2.1. MLE of Rs,k

SupposeX1, X2, . . . , Xk be independent strength random variables that follow IKu(α, θ)
and Y be stress random variable follows IKu(β, θ). Hence, the reliability of the MSS
model, using the Equations (1.1), (1.2), and (1.3) is obtained as

Rs,k =
k∑

i=s

(
k
i

)
β

∞∫
0

[
1 −

{
1 − (1 + y)−θ

}α]i[
1 − (1 + y)−θ

]α(k−i)
θ(1 + y)−(θ+1)

×
[
1 − (1 + y)−θ

]β−1
dy.

By using the change of variable z = 1 − (1 + y)−θ, we have

Rs,k =
k∑

i=s

(
k
i

)
β

1∫
0

(1 − zα)izα(k−i)+β−1dz

=
k∑

i=s

i∑
j=0

(
k
i

)(
i
j

)
(−1)jβ

1∫
0

zα(j+k−i)+β−1dz

=
k∑

i=s

i∑
j=0

(
k
i

)(
i
j

) (−1)jβ

α (j + k − i) + β
. (2.1)

It is interesting to note that the above expression does not depend on the parameter
θ. In the following, we compute the maximum likelihood (ML) estimate of Rs,k. To reach
this aim, assume that x1, x2..., xm and y1, y2..., yn are the random samples with the sets of
parameters (α, θ) and (β, θ), respectively. Let λ ≡ (α, β, θ), thus the likelihood function
based on a given observed sample is

L (λ) =αmβnθm+n exp
[
− (θ + 1)

m∑
i=1

ln (1 + xi) − (θ + 1)
n∑

i=1
ln (1 + yi)

]

× exp
[
(α− 1)

m∑
i=1

ln
{

1 − (1 + xi)−θ
}

+ (β − 1)
n∑

i=1
ln
{

1 − (1 + yi)−θ
}]

(2.2)

and the corresponding log-likelihood function is

l (λ) = m lnα+ n ln β + (m+ n) ln θ − (θ + 1)
[

m∑
i=1

ln (1 + xi) +
n∑

i=1
ln (1 + yi)

]

+ (α− 1)
m∑

i=1
ln
[
1 − (1 + xi)−θ

]
+ (β − 1)

n∑
i=1

ln
[
1 − (1 + yi)−θ

]
. (2.3)
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The MLEs of α, β, and θ can be computed as the solution of the following nonlinear
equations as
∂l (λ)
∂α

= m

α
+

m∑
i=1

ln
[
1 − (1 + xi)−θ

]
= 0, (2.4)

∂l (λ)
∂β

= n

β
+

n∑
i=1

ln
[
1 − (1 + yi)−θ

]
= 0, (2.5)

∂l (λ)
∂θ

= m+ n

θ
−
[

m∑
i=1

ln (1 + xi) +
n∑

i=1
ln (1 + yi)

]
+ (α− 1)

m∑
i=1

(1 + xi)−θ ln (1 + xi)
1 − (1 + xi)−θ

(2.6)

+ (β − 1)
n∑

i=1

(1 + yi)−θ ln (1 + yi)
1 − (1 + yi)−θ

.

We can readily find from Equations (2.4) and (2.5)

α̂ (θ) = − m
m∑

i=1
ln
[
1 − (1 + xi)−θ

] , (2.7)

β̂ (θ) = − n
n∑

i=1
ln
[
1 − (1 + yi)−θ

] , (2.8)

and the ML estimate of θ can be found as the solution of the following nonlinear equation

m+ n

θ
−
[

m∑
i=1

ln (1 + xi) +
n∑

i=1
ln (1 + yi)

]
−m

m∑
i=1

(1+xi)−θ ln(1+xi)
1−(1+xi)−θ

m∑
i=1

ln
[
1 − (1 + xi)−θ

]

−
m∑

i=1

(1 + xi)−θ ln (1 + xi)
1 − (1 + xi)−θ

− n

n∑
i=1

(1+yi)−θ ln(1+yi)
1−(1+yi)−θ

n∑
i=1

ln
[
1 − (1 + yi)−θ

] −
n∑

i=1

(1 + yi)−θ ln (1 + yi)
1 − (1 + yi)−θ

= 0.

Since the ML estimator of θ cannot be obtained explicitly from the above equation,
the Newton-Raphson method or the fixed point method or some other numerical method
needs to be used. In this case, we used the fixed point iterative method. By rewriting the
above equation, we obtain an equation of the form f (θ) = θ, where f (θ) is specified as
follows:

f (θ) = (m+ n) ×

 m∑
i=1

ln (1 + xi) +
m∑

i=1

(1 + xi)−θ ln (1 + xi)
1 − (1 + xi)−θ

+m

m∑
i=1

(1+xi)−θ ln(1+xi)
1−(1+xi)−θ

m∑
i=1

ln
[
1 − (1 + xi)−θ

]

+
n∑

i=1
ln (1 + yi) +

n∑
i=1

(1 + yi)−θ ln (1 + yi)
1 − (1 + yi)−θ

+ n

n∑
i=1

(1+yi)−θ ln(1+yi)
1−(1+yi)−θ

n∑
i=1

ln
[
1 − (1 + yi)−θ

]


−1

,

(2.9)

and θ̂ can be obtained by using a simple iterative procedure as f (θj) = θj+1. Here, θj

is the jth iteration of θ̂j . The iteration procedure should be stopped when |θj − θj+1| is
sufficiently small. When θ̂ is determined, the ML estimators of α and β can be obtained
from Equations (2.7) and (2.8), respectively. To compute the ML estimate of θ, we have
used the true value of θ as the initial guess value. In the real data application described,
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later on, we obtained the initial value of θ by drawing the two functions y = θ and y = f (θ)
(given in Equation (2.9)) and observing their intersection. After calculating α, β, and θ,
as well as the invariant property of MLE, the MLE of Rs,k is obtained as

R̂MLE
s,k =

k∑
i=s

i∑
j=0

(
k
i

)(
i
j

) (−1)j β̂

α̂ (j + k − i) + β̂
. (2.10)

It should be noted that to compute the MLEs of α, β, and θ, one can apply the existing
R functions such as nlm, nlminb, optim and so on. The advantage of these functions is
that they permit the direct maximization of the log-likelihood equation and do not need
partial derivatives of the log-likelihood equation. For the sake of comparison with the
fixed point iterative method, we also used the nlminb function to determine the MLEs of
α, β, and θ. We reached exactly the same results. For this reason, and also for the sake
of brevity, we did not include the results in the simulation section. However, the R codes
based on the fixed point method and nlminb function have been provided in Appendix A
and B, respectively.

The existence and uniqueness of the MLEs is one of the important topics in statistical
lectures. Since the likelihood equations are not analytically tractable, we use the super-
imposed curves of log-likelihood equations to show the existence and uniqueness of the
MLEs. In this regard, we apply the method of [45]. The necessary steps to achieve this
goal are as follows:

Step 1: We generate independent random samples of sizes 10 from X ∼ IKu (1, 5) and
Y ∼ IKu (3, 5), (α =1, β =3 and θ =5). The observations for strength data are as follows;
0.29, 0.05, 1.14, 0.67, 0.02, 0.08, 0.19, 0.20, 0.02, 0.29. Also, the observations for stress
data are as follows; 0.26, 0.27, 0.62, 0.72, 0.55, 0.19, 0.09, 0.35, 0.20, 1.26.

Step 2: The plots of the log-likelihood equations of α (d log L
dα = 0) and β (d log L

dβ = 0)
are drawn. Also, the plot of Equation (2.6) is sketched in terms of α and β while one of
them is kept as fixed at a time. The result is shown in Figure 3.

Step 3: Based on Figure 3, it is readily apparent that there exists one intersection
point (α̂ = 1.0810, β̂ = 2.9211, and θ̂ = 4.9682) which confirms that the solution of the
log-likelihood equations exist and are unique.

Figure 3. Plots of log-likelihood equations and their intersection points.
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Step 4: The plots of profile log-likelihood equation in terms of parameters α, β, and
θ are sketched in Figure 4. Based on Figure 4, it can be seen that the intersection point
maximizes the log-likelihood equation of the parameters.

Figure 4. Log-likelihood profile of the parameters α, β, and θ along with MLEs.

The above process is also used for different combinations of parameters as well as dif-
ferent sample sizes and it was observed that the ML estimates of parameters exist and are
unique.

Now, considering λ ≡ (α, β, θ), we determine the ACI of Rs,k using the asymptotic dis-
tribution of λ and delta method. The expected Fisher information matrix of λ is specified
as follows:

I (λ) = E


− ∂2l

∂α2 − ∂2l
∂α∂β − ∂2l

∂α∂θ

− ∂2l
∂β∂α − ∂2l

∂β2 − ∂2l
∂β∂θ

− ∂2l
∂θ∂α − ∂2l

∂θ∂β − ∂2l
∂θ2

 = E (A) ,

where

a11 = m

α2 , a12 = a21 = 0, a22 = n

β2 , a13 = a31 = −
m∑

i=1

(1 + xi)−θ ln (1 + xi)
1 − (1 + xi)−θ

,

a23 = a32 = −
n∑

i=1

(1 + yi)−θ ln (1 + yi)
1 − (1 + yi)−θ

,

a33 = m+ n

θ2 + (α− 1)
m∑

i=1

(1 + xi)−θln2 (1 + xi)[
1 − (1 + xi)−θ

]2 + (β − 1)
n∑

i=1

(1 + yi)−θln2 (1 + yi)[
1 − (1 + yi)−θ

]2 .

Unfortunately, it is very difficult to determine the expectation of the above expressions
analytically. Thus, we used the observed information matrix A as a consistent estimator
of I (λ) by omitting the expectation operator E. The MLE of Rs,k has an asymptotically
normal distribution with the mean Rs,k and variance

Hs,k =
3∑

i=1

3∑
j=1

∂Rs,k

∂λi

∂Rs,k

∂λj
A−1

ij ,
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where A−1
ij is the (i, j)th element of the inverse of A. Also, we have

∂Rs,k

∂α
=

k∑
i=s

i∑
j=0

(
k
i

)(
i
j

) (−1)j+1β (j + k − i)
[α (j + k − i) + β]2

,

∂Rs,k

∂β
=

k∑
i=s

i∑
j=0

(
k
i

)(
i
j

) (−1)jα (j + k − i)
[α (j + k − i) + β]2

.

Hence, the asymptotic variance is given by

Ĥs,k = A−1
11

(
∂Rs,k

∂α

)2
+ 2A−1

12
∂Rs,k

∂α

∂Rs,k

∂β
+A−1

22

(
∂Rs,k

∂β

)2
∣∣∣∣∣(α̂, β̂) (2.11)

and the 100 (1 − δ)% ACI of Rs,k is constructed as

R̂MLE
s,k

± zδ/2

√
Ĥs,k,

where, zδ/2 is the upper δ/2 th quantile of the N (0, 1) .

It should be pointed out that, the confidence interval obtained from the above equa-
tion may not be within the interval (0,1). In this situation, we follow the methods
of [19] and [35] and use the Logit and Arcsin transformations for Rs,k as g (Rs,k) =
log [Rs,k/(1 −Rs,k) ] and h (Rs,k) = Arcsin

(√
Rs,k

)
, respectively. Based on these trans-

formations, the 100 (1 − δ)% ACI for g (Rs,k) and Rs,k, respectively, take the following
form:

log
(

Rs,k

1 −Rs,k

)
± zδ/2

√
Ĥs,k

R̂s,k

√(
1 − R̂s,k

) ≡ (L1, U1)

and (
eL1

1 + eL1
,

eU1

1 + eU1

)
.

Also, the 100 (1 − δ)% ACI for h (Rs,k) and Rs,k, respectively, are as follows:

Arcsin
(√

R̂s,k

)
± zδ/2

√
Ĥs,k

2
√
R̂s,k

(
1 − R̂s,k

) ≡ (L2, U2)

and (
sin2L2, sin2U2

)
,

where, zδ/2 is the upper δ/2 th quantile of the N (0, 1). Hereafter, we denote AST, LOGT
and NT for ACIs which are obtained respectively based on Arcsin transformation, Logit
transformation and not using either of these two transformations.

2.2. Bayes estimation of Rs,k

In this section, we derive the Bayes estimate and corresponding HPD credible interval
of Rs,k under the SE loss function. To achieve this aim, we suppose that the independent
random variables α, β, and θ have Gamma priors with positive parameters (a1, b1), (a2, b2),
and (a3, b3), respectively. Based on the observations, the joint posterior density function
is

π (α, β, θ |x,y) = L (x,y |α, β, θ )π1 (α)π2 (β)π3 (θ)∫∞
0
∫∞

0
∫∞

0 L (x,y |α, β, θ )π1 (α)π2 (β)π3 (θ) dαdβdθ
∝ αm+a1−1βn+a2−1θm+n+a3−1 exp [−α (b1 + Uθ) − β (b2 + Vθ) +Wθ] , (2.12)
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where

Uθ = −
m∑

i=1
ln
[
1 − (1 + xi)−θ

]
, V (θ) = −

n∑
i=1

ln
[
1 − (1 + yi)−θ

]
,

Wθ = Uθ + Vθ − θ

[
b3 +

m∑
i=1

ln (1 + xi) +
n∑

i=1
ln (1 + yi)

]
.

Then, the Bayes estimate of Rs,k, against the SE loss function is calculated by

R̂Bayes
s,k = E (Rs,k |x,y) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
Rs,kπ (α, β, θ |x,y) dαdβdθ.

Since the Bayes estimate of Rs,k cannot be computed analytically, therefore we apply the
MCMC technique. From Equation (2.12), the posterior pdfs of α, β, and θ are as follows,
respectively:

α |θ,x,y ∼ Gamma [a1 +m, b1 + Uθ] , (2.13)
β |θ,x,y ∼ Gamma [a2 + n, b2 + Vθ] (2.14)
π (θ |α, β,x,y) ∝ θm+n+a3−1 exp [−αUθ − βVθ +Wθ] . (2.15)

We see that the posterior pdfs of α and β given in Equations (2.13) and (2.14) have
Gamma distributions. Thus, using the Gibbs sampling method, we generate random
samples from α and β. On the other side, the posterior pdf of θ given in Equation
(2.15) does not reduce analytically to a known distribution. In this situation, we follow
the method of [17]. If a posterior density function is unimodal and roughly symmetric,
therefore it is generally appropriate to approximate it by a normal distribution. The
correctness of this is confirmed by Figure 5 which gives the plot of the posterior density of
θ for different combinations of parameters (α, β). Hence, we apply the Metropolis-Hastings
technique to generate a sample for θ by considering a normal proposal distribution. The
necessary steps to achieve this goal are as follows:

Step 1: Start with an initial conjecture
(
α(0), β(0), θ(0)

)
.

Step 2: Set l = 1.
Step 3: Generate α(l) from Gamma(m+ a1, b1 + Uθ(l−1)).
Step 4: Generate β(l) from Gamma(n+ a2, b2 + Vθ(l−1)).
Step 5: Generate θ(l) from π

(
θ
∣∣∣α(l−1), β(l−1),x,y

)
using the Metropolis-Hastings with

proposal distribution N
(
θ(l−1),H

)
, where H can be computed from Equation (2.11).

Step 6: Compute R(l)
s,k =

k∑
i=s

i∑
j=0

(
k
i

)(
i
j

)
(−1)jβ(l)

α(l)(j+k−i)+β(l) .

Step 7: Set l = l + 1.
Step 8: Repeat Steps 3-7, N times, and determine R(l)

s,k for l = 1, 2, ..., N .

The Bayes estimate of Rs,k, based on the MCMC method, is calculated by

R̂MC
s,k

= 1
N −N0

N∑
l=N0+1

R
(l)
s,k,

where N0 is the burn-in period. Also, the 100 (1 − δ)% HPD credible interval for Rs,k can
be computed by using the method of [13], by minimizing(

Rs,k
([(1−δ)(N−N0)]+i) −Rs,k

(i)
)
, 1 ≤ i ≤ δ(N −N0),

where [.] denotes the largest integer function and the values of Rs,k are ranked in ascending
order from 1 to (N −N0).
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Figure 5. The posterior density of the parameter θ for different combinations of (α, β).

3. Estimation of Rs,k when θ is known
3.1. MLE of Rs,k

Assume that x1, x2..., xm and y1, y2..., yn are the random samples from the IKu distri-
bution with the sets of parameters (α, θ0) and (β, θ0), respectively. Thus the log-likelihood
function based on a given observed sample is

l (α, β |θ0,x,y) = m lnα+ n ln β + α
m∑

i=1
ln
[
1 − (1 + xi)−θ0

]
+ β

n∑
i=1

ln
[
1 − (1 + yi)−θ0

]
, (3.1)

where the constant terms are omitted from the above equation. From Equation (3.1), it
is easily seen that the MLEs of α and β are given as

α̂ = − m
m∑

i=1
ln
[
1 − (1 + xi)−θ0

] , β̂ = − n
n∑

i=1
ln
[
1 − (1 + yi)−θ0

] .
Therefore, by the invariant property of MLE, the MLE of Rs,k is obtained from Equation
(2.1). Proceeding in a way similar to Section 2.1, the MLE of Rs,k has an asymptotically
normal distribution with the mean Rs,k and variance

Ĥs,k = α2

m

(
∂Rs,k

∂α

)2
+ β2

n

(
∂Rs,k

∂β

)2
∣∣∣∣∣(α̂, β̂) .

Hence, the 100 (1 − δ)% ACI of Rs,k is constructed as

R̂MLE
s,k

± zδ/2

√
Ĥs,k.
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3.2. UMVUE of Rs,k

In this subsection, we derive the UMVUE of Rs,k through an unbiased estimator of
φ (α, β) = (−1)jβ/[α (j + k − i) + β] and a complete sufficient statistic of (α, β). It can
be seen that from Equation (2.2), (U∗, V ∗) is the complete sufficient statistic of (α, β),
where

U∗ = −
m∑

i=1
ln
[
1 − (1 + xi)−θ0

]
, V ∗ =

n∑
i=1

ln
[
1 − (1 + yi)−θ0

]
. (3.2)

Furthermore, the statistic U∗ has Gamma distribution with parameters m and α, and the
statistic V ∗ has Gamma distribution with parameters n and β. Let

U0 = − ln
[
1 − (1 +X1)−θ0

]
, V 0 = − ln

[
1 − (1 + Y1)−θ0

]
.

It is easy to know that U0 and V 0 come from the exponential distributions with parameters
α and β, respectively. Hence,

ψ
(
U0, V 0

)
=
{

1, U0 > (j + k − i)V 0

0, otherwise,

is an unbiased estimator of φ (α, β). Applying Lehmann’s theorem, the UMVUE of φ (α, β)
is specified by

φ̂UM (α, β) = E
[
ψ
(
U0, V 0

)
|U∗ = u∗, V ∗ = v∗

]
=
∫

A

∫
fU0|U∗=u∗

(
u0 |u∗

)
fV 0|V ∗=v∗

(
v0 |v∗

)
du0 dv0, (3.3)

where A =
{(
u0, v0) : 0 < u0 < u∗, 0 < v0 < v∗, u0 > (j + k − i) v0}. This integral can

be discussed with regards to h < 1 and h > 1, where h = (j + k − i) v∗/u∗ . When h < 1,
the integral in Equation (3.3) reduces to

φ̂UM (α, β) =
∫ v∗

0

∫ u∗

(j+k−i)v0

(m− 1) (n− 1)
u∗v∗

(
1 − u0

u∗

)m−2(
1 − v0

v∗

)n−2

du0 dv0

= (n− 1)
∫ 1

0
(1 − z)

n−2
(1 − hz)m−1dz, where z = v0/v∗

=
m−1∑
l=0

(−1)l(h)l
(
m− 1
l

)
/

(
n+ l − 1

l

)
. (3.4)

Similarly, when h > 1, the integral Equation (3.3) reduces to

φ̂UM (α, β) =
∫ u∗

0

∫ u0/(j+k−i)

0

(m− 1) (n− 1)
u∗v∗

(
1 − u0

u∗

)m−2(
1 − v0

v∗

)n−2

dv0 du0

= 1 − (m− 1)
∫ 1

0
(1 − z)

m−2(
1 − h−1z

)n−1
dz, where z = u0/u∗

= 1 −
n−1∑
l=0

(−1)l(h)−l
(
n− 1
l

)
/

(
m+ l − 1

l

)
. (3.5)

Thus, the φ̂UM (α, β) is obtained from Equations (3.4) and (3.5). Finally, the UMVUE of
Rs,k is determined by applying the linearity property of UMVUE as follows:

R̂UM
s,k =

k∑
i=s

k∑
j=0

(
k
i

)(
k
j

)
(−1)jφ̂UM (α, β) .
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3.3. Bayes estimation of Rs,k

In this subsection, we derive the Bayes estimate of Rs,k along with its HPD credible
interval under the SE loss function. To achieve this aim, we suppose that the indepen-
dent random variables α and β have Gamma priors with positive parameters (a1, b1) and
(a2, b2), respectively. Based on the observations, the joint posterior density function is

π (α, β |x,y) = L (x,y |α, β )π1 (α)π2 (β)∫∞
0
∫∞

0 L (x,y |α, β )π1 (α)π2 (β) dαdβ

= (b1 + U∗)m+a1(b2 + V ∗)n+a2

Γ (m+ a1) Γ (n+ a2)
αm+a1−1βn+a2−1 exp [−α (b1 + U∗) − β (b2 + V ∗)] ,

where U∗ and V ∗ are defined in Equation (3.2). Then, the Bayes estimate of Rs,k is
calculated by

R̂Bayes
s,k = E (Rs,k |x,y) =

k∑
i=s

i∑
j=0

(
k
i

)(
i
j

)
(−1)j ∫∞

0
∫∞

0
β

α(j+k−i)+βπ (α, β |x,y) dαdβ.

Now, using the results of [25], the Bayes estimate of Rs,k can be rewritten as

R̂Bayes
s,k =


k∑

i=s

k∑
j=0

(
k

i

)(
k

j

)
(−1)j(1 − w)n+a2 n+a2

q 1F2 (q, n+ a2 + 1; q + 1, w) , |w| < 1

k∑
i=s

k∑
j=0

(
k

i

)(
k

j

)
(−1)j(n+a2)
q(1−w)m+a1 1F2

(
q,m+ a1 + 1; q + 1, w

w−1

)
, w < −1

where q = m+ n+ a1 + a2 and w = 1 − (b2+V ∗)(i+j)
b1+U∗ . Notice that

2F1 (a, b; c, x) = 1
Beta (a, c− a)

∫ 1

0
wa−1(1 − w)c−a−1(1 − xw)−bdw, |w| < 1,

is the hypergeometric function that can be obtained using R software command
hyperg−2F1() from ,gsl, package. Also, the 100 (1 − δ)% HPD credible interval for Rs,k

can be computed by using the method of [13] proceeding in a way similar to Section 2.

4. Simulation study
In this section, we perform Monte Carlo simulations to compare the performances of

different estimates of Rs,k by using the classical and Bayesian methods. In this regard, we
generate random samples from the stress and strength variables for (s, k) = (2, 5) and for
different sample sizes 10, 30, and 50. The criteria of mean square error (MSE), average
length (AL) as well as coverage probability (CP) at confidence level of 95%, are used to
evaluate the simulation results. All of the computations are done by using R 3.4.4 based
on 10,000 replications.

To study the Bayes estimation, two schemes for hyperparameters are considered. We
investigate the hyperparameters (ai, bi) = (0.0001, 0.0001), i = 1, 2, 3 under the non-
informative prior. In the case of informative prior, we followed the idea of [47], such that
priors means are taken as the true values of the parameters and priors variances are little
(equal to 1). We use Prior 1 and Prior 2 to denote the Bayes estimators based on non-
informative and informative priors, respectively. Tables 1 and 2 represent the details of
the simulations when θ is unknown and known, respectively.
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Table 1. Different combinations of stress and strength parameters along with
the true values of R2,5 as well as different priors for Monte Carlo simulations (θ
is unknown).

Prior 1 Prior 2

(α, β, θ) R2,5 (ai, bi) , i = 1, 2, 3 (a1, b1) (a2, b2) (a3, b3)

(0.5,4.8253,1) 0.1 (0.0001,0.0001) (0.25,0.5) (23.2835,4.8253) (1,1)
(0.5,2.7563,1.5) 0.2 (0.0001,0.0001) (0.25,0.5) (7.5972,2.7563) (2.25,1.5)
(0.5,1.8401,1.5) 0.3 (0.0001,0.0001) (0.25,0.5) (3.3860,1.8401) (2.25,1.5)
(0.5,1.2943,1.5) 0.4 (0.0001,0.0001) (0.25,0.5) (1.6752,1.2943) (2.25,1.5)

(1,1.8422,2) 0.5 (0.0001,0.0001) (1,1) (3.3937,1.8422) (4,2)
(1,1.2950,2) 0.6 (0.0001,0.0001) (1,1) (1.6770,1.2950) (4,2)

(1.5,1.3082,2) 0.7 (0.0001,0.0001) (2.25,1.5) (1.7114,1.3082) (4,2)
(2.5,1.3123,2) 0.8 (0.0001,0.0001) (6.25,2.5) (1.7221,1.3123) (4,2)
(3,0.7214,1.5) 0.9 (0.0001,0.0001) (9,3) (0.5204,0.7214) (2.25,1.5)

Table 2. Different combinations of stress and strength parameters along with
the true values of R2,5 as well as different priors for Monte Carlo simulations (θ
is known equal to 5).

Prior 1 Prior 2

(α, β) R2,5 (ai, bi) , i = 1, 2 (a1, b1) (a2, b2)

(2,19.3019) 0.1 (0.0001,0.0001) (4,2) (372.5633,19.3019)
(2,11.0249) 0.2 (0.0001,0.0001) (4,2) (121.5484,11.0249)
(2,7.3606) 0.3 (0.0001,0.0001) (4,2) (54.1784,7.3606)
(2,5.1774) 0.4 (0.0001,0.0001) (4,2) (26.8055,5.1774)
(3,5.5328) 0.5 (0.0001,0.0001) (9,3) (30.6119,5.5328)
(3,3.8853) 0.6 (0.0001,0.0001) (9,3) (15.0956,3.8853)
(4,3.4743) 0.7 (0.0001,0.0001) (16,4) (12.0708,3.4743)
(5,2.6246) 0.8 (0.0001,0.0001) (25,5) (6.8885,2.6246)
(7,1.6834) 0.9 (0.0001,0.0001) (49,7) (2.8338,1.6834)

To conduct the Metropolis-Hastings technique, Markov chains of size 70000 are gener-
ated and the first 20000 of the samples are discarded to diminish the effect of the starting
distribution. Then, for the sake to reduce the dependence between the generated samples,
we take every 5th sampled value. To check the convergence of MCMC simulations, we are
computed the scale reduction factor estimate. This estimate is obtained by

√
V ar (Ω)/P ,

where Ω is the estimate of interest and V ar (Ω) = (n− 1)P/n +Q/n . In this formula, n
represents the iteration number of each chain, P represents the within-sequence variance
and Q represents the between-sequence variance. It is found that the values of the scale
factors for MCMC estimators are lower than 1.1 which are appropriate values for their
convergence. All of the results are reported in Tables 3-6. Based on these tables, the
following findings can be drawn.

• The MSEs of all the estimators decrease with increasing sample sizes, as antici-
pated.

• The MSEs of all the estimators are maximized when Rs,k is 0.5 and they become
smaller and smaller as we go away to extreme values.

• In the case where θ is known, the Bayes estimator based on Prior 2 has a smaller
MSE than other estimators. Also, there is no difference between the Bayes esti-
mator based on Prior 1, MLE, and UMVUE except for n = 10. In this sample
size, in most cases, the ordering of performance is the Bayes estimator based on
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Prior 1, MLE, and UMVUE. However, for extreme values of Rs,k, the opposite of
this ordering is observed.

Table 3. Point estimates of R2,5 along with MSEs (presented in parenthesis)
when θ is unknown.

Bayesian

(α, β, θ) R2,5 n MLE Prior 1 Prior 2

10 0.0988 (0.0055) 0.1300 (0.0061) 0.1143 (0.0025)
(0.5,4.8253,1) 0.1 30 0.0995 (0.0019) 0.1120 (0.0021) 0.1084 (0.0008)

50 0.0995 (0.0011) 0.1107 (0.0012) 0.1077 (0.0005)
10 0.1928 (0.0118) 0.2235 (0.0121) 0.2114 (0.0042)

(0.5,2.7563,2) 0.2 30 0.1973 (0.0040) 0.2117 (0.0041) 0.2075 (0.0018)
50 0.1979 (0.0024) 0.2099 (0.0024) 0.2052 (0.0012)
10 0.2874 (0.0167) 0.3160 (0.0165) 0.3103 (0.0058)

(0.5,1.8401,1.5) 0.3 30 0.2958 (0.0056) 0.3095 (0.0055) 0.3072 (0.0031)
50 0.2977 (0.0034) 0.3085 (0.0034) 0.3057 (0.0020)
10 0.3854 (0.0193) 0.4135 (0.0151) 0.4085 (0.0067)

(0.5,1.2943,1.5) 0.4 30 0.3949 (0.0063) 0.4087 (0.0060) 0.4051 (0.0037)
50 0.3972 (0.0037) 0.4059 (0.0036) 0.4049 (0.0025)
10 0.4819 (0.0202) 0.5080 (0.0160) 0.5051 (0.0072)

(1,1.8442,2) 0.5 30 0.4942 (0.0062) 0.5041 (0.0062) 0.4990 (0.0040)
50 0.4967 (0.0037) 0.5022 (0.0037) 0.4993 (0.0027)
10 0.5856 (0.0175) 0.6061 (0.0155) 0.5931 (0.0038)

(1,1.2950,2) 0.6 30 0.5952 (0.0052) 0.5958 (0.0051) 0.5994 (0.0024)
50 0.5971 (0.0031) 0.5987 (0.0031) 0.5973 (0.0020)
10 0.6893 (0.0130) 0.6900 (0.0121) 0.6902 (0.0023)

(1.5,1.3028,2) 0.7 30 0.6969 (0.0037) 0.6921 (0.0037) 0.6947 (0.0016)
50 0.6980 (0.0022) 0.6932 (0.0023) 0.6962 (0.0012)
10 0.7945 (0.0075) 0.7951 (0.0084) 0.7926 (0.0015)

(2.5,1.3123,2) 0.8 30 0.7986 (0.0021) 0.7955 (0.0022) 0.7921 (0.0011)
50 0.7991 (0.0013) 0.7971 (0.0013) 0.7959 (0.0008)
10 0.8999 (0.0025) 0.8931 (0.0032) 0.8900 (0.0012)

(3,0.7214,1.5) 0.9 30 0.9000 (0.0007) 0.8924 (0.0007) 0.8930 (0.0004)
50 0.9001 (0.0004) 0.8980 (0.0004) 0.8967 (0.0002)

• In the case where θ is unknown, the Bayes estimator based on Prior 2 has a smaller
MSE than Bayes estimator based on Prior 1 and MLE. Also, there is no difference
between the Bayes estimator based on Prior 1 and MLE except for n = 10. In this
sample size, in most cases, the Bayes estimator based on Prior 1 is better than the
MLE. However, for extreme values of Rs,k, the MLE has a smaller MSE.

• As anticipated, with the increase in sample size, the ALs of intervals tend to
decrease.

• The ALs of all the intervals are maximized when Rs,k is 0.5 and they become
smaller and smaller as we go away to extreme values.

• The HPD credible intervals based on Prior 2 have smaller ALs and higher CPs than
the HPD credible intervals based on Prior 1 as well as different ACI methods.

• The constructed intervals based on Prior 1 perform better performance than dif-
ferent ACI methods except for extreme values of Rs,k.

• For extreme values of Rs,k, it is observed that AST, NT, and LOGT have the
lowest to highest ALs respectively, but for moderate values of Rs,k, it can be seen
that LOGT has the best performances among the different ACI methods.

• Comparing the different ACI methods showed that NT, AST, and LOGT have the
lowest to highest CPs, respectively.
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• For a large sample size, all different ACI methods show the same ALs.
• In most cases, the CPs of the asymptotic and HPD intervals are respectively lower

and upper than the predefined nominal level of 95%.
• In general, it is observed that the performance of the estimators of Rs,k is bet-

ter when the common second shape parameter is known than when its value is
unknown.

Table 4. Point estimates of R2,5 along with MSEs (presented in parenthesis)
when θ is known (θ=5).

Classical Bayesian

(α, β) R2,5 n MLE UMVUE Prior 1 Prior 2

10 0.1141(0.0050) 0.1001(0.0045) 0.1270(0.0054) 0.1078(0.0010)
(2,19.3019) 0.1 30 0.1048(0.0014) 0.1001(0.0013) 0.1087(0.0014) 0.1042(0.0005)

50 0.1026(0.0008) 0.1000(0.0008) 0.1059(0.0008) 0.1026(0.0004)
10 0.2144 (0.0101) 0.2005 (0.0107) 0.2263(0.0102) 0.2070(0.0024)

(2,11.0249) 0.2 30 0.2050 (0.0033) 0.1999 (0.0034) 0.2090(0.0033) 0.2059(0.0014)
50 0.2033 (0.0020) 0.2002 (0.0020) 0.2049(0.0020) 0.2036(0.0009)
10 0.3094 (0.0139) 0.3009 (0.0155) 0.3173(0.0128) 0.3044(0.0036)

(2,7.3606) 0.3 30 0.3034 (0.0049) 0.2999 (0.0050) 0.3053(0.0047) 0.3031(0.0022)
50 0.3019 (0.0029) 0.2996 (0.0030) 0.3042(0.0029) 0.3025(0.0016)
10 0.4038 (0.0158) 0.4003 (0.0180) 0.4060(0.0144) 0.4034(0.0046)

(2,5.1774) 0.4 30 0.4009(0.0056) 0.3997 (0.0058) 0.4023(0.0055) 0.4013(0.0029)
50 0.4004 (0.0034) 0.4001 (0.0035) 0.4012(0.0033) 0.4011(0.0021)
10 0.4979 (0.0161) 0.5004 (0.0178) 0.4940(0.0149) 0.4983(0.0050)

(3,5.5328) 0.5 30 0.4988 (0.0056) 0.5004 (0.0058) 0.4974(0.0055) 0.4995(0.0032)
50 0.4990 (0.0034) 0.4999 (0.0034) 0.4977(0.0034) 0.4995(0.0018)
10 0.5914 (0.0143) 0.6006(0.0155) 0.5852(0.0139) 0.5934(0.0030)

(3,3.8853) 0.6 30 0.5970(0.0048) 0.5999 (0.0049) 0.5952(0.0047) 0.5975(0.0022)
50 0.5982(0.0029) 0.6001(0.0030) 0.5966(0.0029) 0.5971(0.0019)
10 0.6878 (0.0111) 0.7001 (0.0112) 0.6807(0.0109) 0.6926(0.0019)

(4,3.4743) 0.7 30 0.6960 (0.0035) 0.7000 (0.0035) 0.6921(0.0036) 0.6947(0.0017)
50 0.6978 (0.0021) 0.7003 (0.0021) 0.6960(0.0021) 0.6961(0.0013)
10 0.7881 (0.0065) 0.8000 (0.0063) 0.7779(0.0069) 0.7938(0.0013)

(5,2.6246) 0.8 30 0.7960 (0.0020) 0.8003 (0.0019) 0.7920(0.0021) 0.7949(0.0010)
50 0.7979 (0.0012) 0.7999 (0.0012) 0.7955(0.0012) 0.7968(0.0007)
10 0.8920 (0.0023) 0.9001 (0.0018) 0.8840(0.0026) 0.8939(0.0006)

(7,1.6834) 0.9 30 0.8972 (0.0006) 0.9003 (0.0006) 0.8948(0.0007) 0.8968(0.0003)
50 0.8984 (0.0004) 0.9000 (0.0003) 0.8964(0.0004) 0.8976(0.0002)

5. Real data analysis
In this section, we present two different lifetime data sets to display the application of

the proposed approaches in this paper.

5.1. Real data set I
In this subsection, we study the data set that was initially reported by [36]. The data

represent the length of times (in minute) to the breakdown of an insulating fluid at seven
voltage levels, ranging from 26 to 38 kilovolts (kV). Here, we consider the time to the
breakdown of 36 kV and 38 kV. This data set is reported as follows:
X: 36 kV 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67,3.99,

5.35, 13.77, 25.50
Y: 38 kV 0.09, 0.39, 0.47, 0.73, 0.74, 1.13, 1.40, 2.38
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The validity of the IKu distribution for strength data set X and stress data set Y is
checked by using the Kolmogorov-Smirnov (K-S) test. Furthermore, in this example the
IKu distribution is compared to some well-known lifetime models namely Burr type XII
(Burr), modified Lomax (ML)[12], inverse Weibull (IW), inverse Gamma (IG), exponen-
tiated Weibull (EW), and exponentiated Rayleigh (ER) distributions. The probability
density function of these distributions are listed below:

Burr : f (x;α, θ) = αθxθ−1
(
1 + xθ

)−(α+1)
,

ML : f (x;α, θ, σ) =
α
[
θ + 1 + log

(
1 + x

σ

)] [
log

(
1 + x

σ

)]θ
σ
(
1 + x

σ

) [
1 + log

(
1 + x

σ

)]θ+1 exp
[
−α

[
log

(
1 + x

σ

)]θ+1[
1 + log

(
1 + x

σ

)]θ
]
,

IW : f (x;α, θ) = θα−θx−(θ+1) exp
[
−(αx)−θ

]
,

IG : f (x;α, θ) = θα

Γ (α)

(1
x

)α+1
exp

[
− θ

x

]
,

EW : f (x;α, θ, σ) = αθ

σ

(
x

σ

)θ−1
exp

(
−
[
x

σ

]θ
)[

1 − exp
(

−
[
x

σ

]θ
)]α−1

,

ER : f (x;α, θ) = 2αθx exp
(
−θx2

) [
1 − exp

(
−θx2

)]α−1
,

where x, α, θ and σ are positive except for σ parameter in the ML distribution, which is
greater than −1. For purpose of comparison of the above distributions with the IKu dis-
tribution, we use several criteria including, Kolmogorov-Smirnov (K-S) distance, Akaike
information criterion (AIC) and Bayesian information criterion (BIC). The MLEs of un-
known parameters, K-S distances along with P-values, AIC, and BIC for all models and for
both X and Y data sets are reported in Table 7. According to P-values, all seven models
are accepted for fitting this data, but Based on AIC and BIC criteria, it is observed that
the IKu distribution provides the better fit compared to the other competitive models.
The validity of the IKu distribution is also supported by the various plots shown in Figure
6.

Table 7. The MLEs of unknown parameters along with some measures of
goodness-of-fit for real data set I.

data Model α̂ θ̂ σ̂ KS (P-value) AIC BIC

Burr 0.3764 2.4605 - 0.172(0.705) 76.474 77.890
ML 3.5441 9.0926 0.1354 0.113(0.978) 77.396 79.520
IW 0.6823 1.0280 - 0.155(0.813) 76.278 77.694

X IG 1.1221 1.6648 - 0.159(0.785) 76.174 77.590
EW 55.196 0.2464 0.0058 0.112(0.981) 77.406 79.530
ER 0.2878 0.0059 - 0.301(0.106) 84.330 85.746

IKu 3.7098 1.4930 - 0.116(0.974) 75.470 76.886
Burr 1.6310 1.7672 - 0.148(0.984) 18.084 18.243
ML 520.45 66.8900 0.0005 0.156(0.972) 20.052 20.290
IW 2.5139 0.9627 - 0.236(0.682) 21.487 21.645

Y IG 1.1007 0.4286 - 0.250(0.616) 21.466 21.705
EW 0.9252 1.4263 1.0519 0.143(0.988) 19.528 19.766
ER 0.5541 0.5093 - 0.168(0.951) 17.624 17.783

IKu 2.5013 2.7982 - 0.169(0.947) 18.569 18.727
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Figure 6. Diagnostic plots for real data set I.

Now, we obtain the reliability of the MSS model through classical and Bayesian methods
for (s, k) = (2, 5) and (4,5). First, we use the fixed point method to obtain the ML
estimates of unknown parameters. The initial value for this technique is determined by
drawing the two functions y = θ and y = f (θ) and observing their intersection, where
y = f (θ) is defined in Equation (2.9). The result is shown in Figure 7. Based on this
figure we see that the approximate initial value for θ should be between 1.5 and 2. The
ML estimate of θ is obtained as θ̂ =1.7142. So, using Equations (2.7) and (2.8) the
ML estimates of α and β are computed as α̂ = 4.5239 and β̂ = 1.5261, respectively.
From the Bayesian view, the priors selection problem for real data set is a challenging
topic because there is no prior knowledge of unknown parameters. In this regard, we
followed the method of [49]. Based on this method, the MLEs of the unknown parameters
are chosen as priors means and variances are very little (say, 1). Also, if there is no
available knowledge about the priors, then non-informative prior may be appropriate. In
our study, the Bayes estimates are obtained for both informative and non-informative
priors. The hyperparameters of (ai, bi) = (0.0001, 0.0001), i = 1, 2, 3 are selected for the
non-informative prior (Prior 1). Also, the hyperparameters of (a1, b1) = (20.4657, 4.5239),
(a2, b2) = (2.3290, 1.5261) and (a3, b3) = (2.9385, 1.7142) are selected for the informative
prior (Prior 2) based on the MLEs of unknown parameters. Tables 8 and 9 give the point
and interval estimates of Rs,k, respectively. Based on these results, the point estimates
of Rs,k which are obtained based on ML and Bayes approaches are about the same. In
view of interval estimates, the constructed intervals based on Bayes estimators have better
average lengths than different ACI methods. Also, comparing the different ACI methods
observed that AST and LOGT have respectively the lowest and highest average lengths,
when (s, k) = (2, 5) and LOGT and NT have respectively the lowest and highest average
lengths, when (s, k) = (4, 5). These results confirm the findings of the simulation.



Multicomponent stress-strength reliability based on a right long-tailed distribution 579

0.5 1.0 1.5 2.0 2.5 3.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

θ

y y=f (θ)

y= θ

Figure 7. The initial value in the fixed point technique for real data set I.

Table 8. Point estimates of Rs,k for real data set I.

Bayes estimates

(s, k) MLE Prior 1 Prior 2

(2,5) 0.8639 0.8583 0.8621
(4,5) 0.6645 0.6603 0.6657

Table 9. Interval estimates of Rs,k for real data set I.

ACI HPD

(s, k) AST LOGT NT Prior 1 Prior 2

(2,5) (0.739,0.953) (0.716,0.941) (0.756,0.972) (0.746,0.956) (0.770,0.942)
AL 0.214 0.225 0.216 0.210 0.172

(4,5) (0.426,0.865) (0.415,0.847) (0.436,0.893) (0.437,0.865) (0.484,0.840)
AL 0.439 0.432 0.457 0.428 0.356

In the first real data set, the underlying data structure for random stress and strength
samples is considered as a vector in the MSS model. Such a structure for data is observed
in many studies. For more details, one can refer to [3,23,37–40]. On the other hand, there
are other studies that the basic data structure for random stress and strength samples in
the above model is considered as a matrix. In this case, the observed samples for strength
(X) and stress (Y) variables are as follows:

X =


X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k
...

... . . . ...
Xn,1 Xn,2 · · · Xn,k

 , Y =


Y1
Y2
...
Yn

 .
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Although the above structure for strength and stress data is more consistent with the MSS
model structure, the estimate of the Rs,k will ultimately be exactly the same under both
data structures. The matrix X with n rows and k columns convert to a vector with nk
element. Also, the matrix Y with n rows and 1 column convert to a vector with n element.
This process is illustrated in the following real data set II.

5.2. Real data set II
In this subsection, we consider the monthly rainfall of long beach airport in California,

USA, from 2005 to 2017, to construct a scenario concerning the excessive drought. The
complete data are also available at http://www.laalmanac.com/weather/we10aa.php. Ac-
cording to the Meteorological Organization, January, February, March, and December are
the months with the highest rainfall. We claim that if the rainfall of the long beach air-
port, for at least two months from the mentioned months, is more than the annual average
rainfall of the previous year, there will be no excessive drought in the month of summer
afterward. This can be described as a 2-out-of-4 G system. It should be stated that [31]
have studied these data. Let Y1 denotes the mean annual rainfall for the 2005-2006 season
and X1k, k = 1, 2, ..., 4, are the monthly rainfall from December 2006 to March 2007. Sim-
ilarly, let Y2 be the mean annual rainfall for the 2007-2008 season and X1k, k = 1, 2, ..., 4,
are the monthly rainfall from December 2008 to March 2009. Here, a season represents
the period from the beginning of July to the end of June. When we carry on this data
process up to 2016-2017, we get n=6. The real data set for strength and stress variables
are as follows:

X =



0.68 0.20 0.49 0.03
2.61 0.17 4.04 0.42
2.61 0.17 4.04 0.42
2.40 1.04 0.30 0.85
4.41 0.87 0.24 0.49
3.59 9.33 4.72 0.15


, Y =



0.718
0.951
1.305
0.631
0.375
0.540


.

For computational purposes, we treat each of the X and Y matrices as vectors. Thus, we
obtain the vector X with 24 elements (m=24) and the vector Y with 6 elements (n=6).
We check whether strength data X and stress data Y come from IKu distribution or not
by the goodness-of-fit test as the same approach in the previous data. Table 10 presents
the MLEs of unknown parameters, K-S distances along with P-values, AIC, and BIC for
each model and data set. Based on this table, it can be seen that the IKu distribution
worked better than the other distributions with the minimum AIC and BIC. The validity
of the IKu distribution is also supported by the various plots shown in Figure 8.

In a similar way to the previous data set, we obtain the reliability of the MSS model
for (s, k) = (2, 4). The ML estimates of α, β, and θ are obtained as 1.5560, 1.7215 and
1.6045, respectively. Then, the MLE of R2,4 is obtained as 0.5723. From the Bayesian
view, the hyperparameters of (ai, bi) = (0.0001, 0.0001), i = 1, 2, 3 are selected for the
non-informative prior (Prior 1). Also, the hyperparameters of (a1, b1) = (2.4211, 1.5560),
(a2, b2) = (2.9636, 1.7215) and (a3, b3) = (2.5744, 1.6045) are selected for the informative
prior (Prior 2) using the method of [49]. The Bayes estimates of R2,4 based on Prior 1
and Prior 2 are computed as 0.5814 and 0.5770, respectively. Table 11 gives the interval
estimates of R2,4. In view of interval estimates, the constructed intervals based on the
Bayes estimator under Prior 2 has a better average length than the Bayes estimator under
Prior 1 as well as better than different ACI methods. Also, comparing the different
ACI methods observed that LOGT and NT have the lowest and highest average lengths,
respectively.
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Table 10. The MLEs of unknown parameters along with some measures of
goodness-of-fit for real data set II.

data Model α̂ θ̂ σ̂ KS (P-value) AIC BIC

Burr 1.0342 1.1883 - 0.126(0.799) 88.766 91.122
ML 36.990 -0.1866 161.61 0.100(0.949) 89.760 93.294
IW 2.1355 0.6731 - 0.117(0.863) 93.358 95.714

X IG 0.5704 0.1864 - 0.146(0.634) 97.726 99.082
EW 2.8759 0.4753 0.4396 0.099(0.956) 89.182 92.716
ER 0.2678 0.0293 - 0.167(0.467) 90.688 93.044

IKu 1.3495 1.3424 - 0.123(0.817) 88.530 90.886
Burr 2.4130 3.3177 - 0.166(0.985) 6.080 5.664
ML 0.0038 2.9248 0.1509 0.180(0.970) 7.980 7.355
IW 1.7496 2.7483 - 0.144(0.998) 6.028 5.612

Y IG 6.6044 4.2543 - 0.123(0.999) 5.658 5.242
EW 27.837 0.7747 0.1267 0.123(0.999) 7.622 6.997
ER 1.9372 2.2513 - 0.184(0.963) 5.960 5.544

IKu 26.784 7.0834 - 0.123(0.999) 5.694 5.278
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Figure 8. Diagnostic plots for real data set II.

Table 11. Interval estimates of Rs,k for real data set II.

ACI HPD

(s, k) AST LOGT NT Prior 1 Prior 2

(2,4) (0.323,0.803) (0.324,0.788) (0.322,0.823) (0.349,0.816) (0.369,0.774)
AL 0.480 0.464 0.501 0.467 0.405
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6. Concluding remarks
In this article, we have considered the reliability of the MSS model under the assumption

that the stress and strength random variables are taken from IKu distributions. The
reliability of the MSS model is obtained using the MLE and approximation Bayes estimate
when the common second shape parameter is unknown. Also, it is obtained explicitly
using the MLE, UMVUE, and Bayes estimate, when the common second shape parameter
is known. The asymptotic and HPD intervals are constructed. Furthermore, two other
asymptotic confidence intervals are derived based on Logit and Arcsin transformations.

The simulation results showed that the bias and MSE of Rs,k decrease as the sample size
increases. Also, the ALs of interval estimates get shorter when the sample size increases.
According to the MSE, AL, and CP values, the Bayesian estimators based on informative
priors had the best performances among the estimators. Moreover, the MSEs and ALs of
all estimators were low when Rs,k tends to the extreme value and they were high when
Rs,k tends to moderate value. Comparing the different ACI approaches in terms of the
ALs indicated that the Arcsin transformation and Logit transformation worked better
respectively for the extreme and moderate values of Rs,k.
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Appendix A.
The below program is performed in R to obtain the MLE of multicomponent stress-

strength reliability based on the fixed point method. The theta is the initial value for the
parameter.

This code generates a random sample of size n from IKu(α, θ).
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Random<−function (n , alpha , theta ) {
x<−0
for ( i in 1 : n) {

x [ i ]<−exp(−1/ theta∗log (1−( runif (1 ) ) ^(1/alpha ) ) )−1}
return ( x )

}

This code calculates the Rs,k based on Equation (2.1).
Rsk<− function ( alpha , beta , s , k ) {

sum=0
for ( i in s : k ) { for ( j in 0 : i ) {sum=sum+choose (k , i )∗

choose ( i , j )∗(−1)^ j ∗beta∗ ( alpha∗ ( k+j−i )+beta )
^(−1)}}

return (sum)
}

This code determines the MLEs of unknown parameters according to Equations (2.7),
(2.8), and (2.10).

ML. unknown . parameters<−function (x , y , theta ) {
m<−length ( x )
n<−length ( y )
theta . function<−function (x , y , theta ) {

A=sum( log(1+x ) )+sum((1+x )^(− theta )∗log(1+x )∗
(1−(1+x )^(− theta ) ) ^(−1) )+m∗
sum((1+x )^(− theta )∗log(1+x )∗
(1−(1+x )^(− theta ) ) ^(−1) )/ (sum( log(1−(1+x )^(− theta ) ) )

)
B=sum( log(1+y ) )+sum((1+y )^(− theta )∗log(1+y )∗
(1−(1+y )^(− theta ) ) ^(−1) )+n∗
sum((1+y )^(− theta )∗log(1+y )∗
(1−(1+y )^(− theta ) ) ^(−1) )/ (sum( log(1−(1+y )^(− theta ) ) )

)
out<− (m+n)∗ (A+B) ^(−1)
return ( out )

}
f . function<−function (x , y , theta ) {

theta . old<−theta
count<−0
repeat
{

theta .new<−theta . function (x , y , theta . old )
i f ( abs ( theta .new−theta . old )<1e −10)
{break}
else
{

theta . old<−theta .new
count<−count+1}}

c ( theta .new) }
theta . hat<−f . function (x , y , theta )
alpha . hat<−−m/sum( log(1−(1+x )^(− theta . hat ) ) )
beta . hat<−−n/sum( log(1−(1+y )^(− theta . hat ) ) )
out<−c ( alpha . hat , beta . hat , theta . hat )
return ( out )

}

This code estimates the MLE of Rs,k with 10000 replication for different combinations of
sample sizes of (m,n)=(10,10), (30,30), and (50,50).
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MLE. Rsk<−function ( nsim ,m, n , alpha , beta , theta , s , k ) {
Rsk . exact<−Rsk ( alpha , beta , s , k )
Rsk . hat<−0
for ( i in 1 : nsim ) {

x<−Random(m, alpha , theta )
y<−Random(n , beta , theta )
ML<−ML. unknown . parameters (x , y , theta )
alpha . hat<−ML[ 1 ]
beta . hat<−ML[ 2 ]
Rsk . hat [ i ]<−Rsk ( alpha . hat , beta . hat , s , k ) }

Mse<−numeric ( nsim )
for ( i in 1 : nsim ) {Mse [ i ]=(Rsk . hat [ i ]−Rsk . exact ) ^2}
Mse<−mean(Mse)
Rsk . hat<−mean( Rsk . hat )
out<−round( c ( Rsk . hat , Mse) ,4 )
return ( out ) }

MLE. Rsk ( 1 0 0 0 0 , 1 0 , 1 0 , 0 . 5 , 4 . 8 2 5 3 , 1 , 2 , 5 )
MLE. Rsk ( 1 0 0 0 0 , 3 0 , 3 0 , 0 . 5 , 4 . 8 2 5 3 , 1 , 2 , 5 )
MLE. Rsk ( 1 0 0 0 0 , 5 0 , 5 0 , 0 . 5 , 4 . 8 2 5 3 , 1 , 2 , 5 )

Appendix B.
The below program determines the MLEs of unknown parameters using the nlminb

function in R software. The alpha, beta, and theta are initial values for the parameters.
ML. unknown . parameters<−function (x , y , alpha , beta , theta ) {

m<−length ( x )
n<−length ( y )
log . Inv . kumaraswamy <− function (x , y , v=v ) {

alpha<−v [ 1 ]
beta<−v [ 2 ]
theta<−v [ 3 ]
l o g l i k e l i h o o d<−m∗log ( alpha )+n∗log ( beta )+(m+n)∗
log ( theta )−( theta +1)∗ (sum( log(1+x ) )+sum( log(1+y ) ) )+(

alpha −1)∗
sum( log(1−(1+x )^(− theta ) ) )+(beta−1)∗sum( log(1−(1+y )

^(− theta ) ) )
return(− l o g l i k e l i h o o d )

}
e s t imat i on<−nlminb ( c ( alpha , beta , theta ) ,
log . Inv . kumaraswamy , x=x , y=y , lower=0,upper=I n f )
out<−c ( e s t imat i on $par [ 1 ] , e s t imat i on $par [ 2 ] , e s t imat i on $par

[ 3 ] )
return ( out ) }


