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ABSTRACT 
 

This paper mainly discusses some regime-switching models and explore their usefulness in modeling the economic time series. 

In recent years, several time series models have been proposed which shape the idea of the existence of different regimes 

produced by a stochastic process. Especially, nonlinear time series models have gained more attention because linear time 

series models faced various limitations. The purpose of this study is to establish the methodology of the Self-Exciting Threshold 

Autoregressive (SETAR) model, Smooth Transition Autoregressive (STAR) model and Markov-Switching (MSW) model from 

parametric nonlinear time series models in the mean and to compare these models with each other through two financial data 

sets. For this purpose, some theoretical information on the subject models are given without going into too much detail. In the 

light of the obtained theoretical information, all models are modeled by using two financial data sets. The obtained models are 

compared with the help of some performance criteria, measurement of relative efficiency and graph showing the relation of the 

actual-fitted values of the models.  
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1. INTRODUCTION 
 

Time series analysis can be examined in two groups as linear and nonlinear time series analysis. 

Although linear time series analysis is more preferred because of its ease of theory and application, in 

some cases the use of nonlinear time series analysis is inevitable. The analysis of econometric time 

series with nonlinear models implies that some characteristics such as average variance and 

autocorrelation of the series are variable over time. Since many econometric time series exhibit these 

characteristics, it necessitates the use of nonlinear time series analysis. In other words, many 

econometric time series show severe breaks in their behavior from time to time, usually in response to 

events such as financial crises or rapid changes in government policy. In order to reflect the state of the 

underlying economy, the general attitude of market investors and other economic aspects, regime 

switching models became necessary at this stage. Several nonlinear time series models are presented in 

the literature of statistics. These models are exemplified as bilinear models by Granger and Andersen 

[1], the Threshold Autoregressive model (TAR) by Tong [2], Smooth Transition Autoregressive (STAR) 

Models by Terasvirta and Anderson [3] and the Markow-Switching (MSW) model by Hamilton [4]. 

Tong and Lim [5], Chan and Tong [6], Tsay [7] and Tong [8] have argued that a single econometric 

equation is not sufficient to model a financial series. Hence, they argued that linearization of the series 

section by section is more appropriate by using certain threshold values in the nonlinear time series.  

 

The nonlinear time series literature is born as TAR, STAR, SETAR, LSTAR and MSW models and 

these models are enriched by various studies. These regime-switching models are divided into two basic 

groups according to the determination of the regime. In the first group, TAR and STAR models are 

available. Regimes in TAR and STAR models are determined utilizing a variable that can be observed. 

It is known exactly where the regimes determined by statistical methods coincide over time. The second 
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group of models is the MSW model. In the MSW model, the transition between regimes is not 

observable but it can be determined through a stochastic process that cannot be observable. In this case, 

it is not known exactly where the regime is at the time, only probabilities are assigned for different 

regime occurrences [9, 10]. 

 

Studies in the literature contain a gap in comparison of regime switching models in nonlinear time series 

models. Nonlinear time series models are often compared with linear time series models. In this respect, 

this study is one of the pioneering studies in the literature in terms of comparing nonlinear time series 

models including SETAR, STAR and MSW models through nonlinear financial data sets. Accordingly, 

the primary purpose of this paper is to examine the theoretical framework of nonlinear time series 

models based upon the regime-switching in time series analysis from the current literature and the 

application of these nonlinear time series models to two financial data sets and as a result to compare 

the efficiencies of the models among themselves. Thus, researchers will be able to find an answer to the 

question of which model may be more effective in nonlinear time series modeling. 

 

The paper is structured as follows: we firstly describe the SETAR model and STAR model based on the 

deterministic transition between regimes and Markov Switching model (MSW) based on the stochastic 

process in the transition between regimes. Secondly, we apply these models to sales prices of gold bar 

(TL/gr) and sales prices of US dollar (USD/TL). Then we use scale-dependent measures and measures 

based upon percentage errors in order to compare the obtained models. Measurement of relative 

efficiency is also used for comparing the models. Finally, in the light of obtained results, we interpret 

the efficiencies of estimated models and compare findings. 
 

2. REGIME-SWITCHING MODELS 

 

In this part of the paper, the two types of regime-switching models are discussed, as well as their basic 

characteristics. We restrict our attention to models covering only two regimes to make the paper easier 

to understand. Some explanations on the extension of the models to allow more than one regime are 

given in the next part. It should also be noted that, throughout this article, {𝑦𝑡} symbolizes observable 

univariate time series of interest which is assumed to be ergodic and stationary. But it does not require 

these models to be stationary in each regime. Besides, {𝜀𝑡} are i.i.d. random variables with zero mean 

and unit variance. 

 

2.1. Models with Regimes Determined by Observable Variables 

 

The Threshold Autoregressive (TAR) model is the most important member of these models, which 

assumes that the regime occurs at a time 𝑡 that can be determined by an observable variable. This model 

initially developed by Tong [2], and Tong and Lim [5] and it is also discussed detailedly in the study of 

Tong [8].  

 

When considering a TAR model, it is assumed that regimes can be established by a threshold variable 

(or transition variable) associated with the threshold value 𝑐. If the threshold variable 𝑧𝑡 is taken to be 

lagged values of the time series 𝑦𝑡 (i.e., 𝑧𝑡 = 𝑦𝑡−𝑑) for a certain positive integer 𝑑, then the time series 

itself determines the regime. This type of model is called the SETAR model. 

The SETAR model with two regimes for a stationary time series 𝑦𝑡 can be defined as 

𝑦𝑡 = [∅1,0 + ∑ ∅1,𝑖
𝑝1
𝑖=1 𝑦𝑡−𝑖](1 − 𝐼(𝑦𝑡−𝑑 > 𝑐)) + [∅2,0 +∑ ∅2,𝑗

𝑝2
𝑗=1 𝑦𝑡−𝑗] 𝐼(𝑦𝑡−𝑑 > 𝑐) + 𝜀𝑡 (1) 

where 𝐼 is an indicator function expressed as 𝐼 = {1 𝑖𝑓 𝑧𝑡 = 𝑦𝑡−𝑑 > 𝑐 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} and 𝜀𝑡′𝑠 are 

the error terms sequence of independent and identically distributed (i.i.d.) variables with mean zero and 

constant variance, 𝑝1 and 𝑝2 are the degrees of the autoregressive (AR) model in lower and upper 

regimes, respectively. It also should be noted that 𝑧𝑡−𝑑 is the threshold variable by assuming that 𝑧𝑡−𝑑 =
𝑦𝑡−𝑑, 𝑑 and 𝑐 are the delay parameter and threshold value, respectively in Equation (1) (see [11] for a 
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detailed discussion). Here it is understood in Equation (1) that a SETAR model is also a piecewise linear 

AR model in the two regimes defined by the threshold variable 𝑦𝑡−𝑑 and c.  

 

To estimate the unknown parameters in Equation 1, Tong [12] constructed maximum likelihood 

estimation method by using Akaike Information Criteria (AIC) when there are a finite number of 

possible threshold values and Gaussian errors are assumed. Chan et al. [13] obtained the consistency 

and asymptotic normality property of the least-squares estimators of the coefficient parameter ∅𝑐 =
(∅1
′ , ∅2

′ )′ under some regularity conditions for the case of first-order autoregression models in each 

regime. However, in practice, the threshold parameter 𝑐 is undefined and takes infinite values in ℜ.  In 

this case, Petruccelli [14] proved that the conditional least squares estimator of ∅ for the SETAR (2,1,1) 

model is strongly consistent. Afterward, Chan [15] revealed that the conditional least squares estimator 

of a stationary ergodic TAR model is strongly consistent and the estimator of the threshold parameter is 

𝑁 consistent for the SETAR (2, p, p) model. From this point forth, this study is motivated by [15] in 

point of the estimation of unknown parameters in the SETAR model.  After important results of [15], 

Hansen [16] showed that the threshold effect (the disparity between two regimes’ slopes) becomes small 

while the sample size goes to infinity.  

 

The SETAR model assumes that the threshold value c determines the boundary between the two 

regimes. The gradual transition between the regimes can be provided by the following way: If the 

indicator function 𝐼(𝑦𝑡−𝑑 > 𝑐) in SETAR model given in Equation (1) is replaced by a continuous 

function 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐), which changes from 0 to 1 in a smooth manner, the resulting model is called the 

STAR model and is given by  

𝑦𝑡 = [𝜑1,0 + ∑ 𝜑1,𝑖𝑦𝑡−𝑖
𝑝1
𝑖=1 ](1 − 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐)) + [𝜑2,0 + ∑ 𝜑2,𝑗𝑦𝑡−𝑗

𝑝2
𝑗=1 ] 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) + 𝜀𝑡   (2) 

where 𝑠𝑡 is a stationary threshold variable, 𝛾 is the smoothness parameter, 𝑐 is the threshold value, 

𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) is a transition function, and 𝜀𝑡’s are the error terms, as defined in Equation (1). 

As expressed in Equation (2), a STAR model is defined by two autoregressive regimes connected to 

each other by a smooth transition function. For notational convenience, the STAR model can also be 

expressed in a closed-form taking 𝑝1 = 𝑝2 = 𝑝 as follows.  

𝑦𝑡 = 𝜑1
′𝑥𝑡(1 − 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐)) + 𝜑2

′ 𝑥𝑡𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) + 𝜀𝑡                                                             (3) 

where 𝜑𝑖 = (𝜑𝑖,0, 𝜑𝑖,1,⋯ , 𝜑𝑖,𝑝) are the parameters to be estimated for 𝑖 = 1,2 and                                     

𝑥𝑡 = (1, 𝑦𝑡−1,⋯ , 𝑦𝑡−𝑝) contains constant term and lagged values of the endogenous variable. Here, 𝑝 

is the degree of autoregressive construction. Note that the smoothing parameter γ characterizes the speed 

of transition between regimes. As indicated above, the transition function 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) is a continuous 

function that varies from 0 to 1. It controls the transition between regimes, and finally, the transition 

function can be a linear trend function (𝑠𝑡 = 𝑡). 
 

In this paper, we are inspired by the study of [10] which proposed the application of two types of STAR 

model, the logistic (LSTAR) and exponential (ESTAR) autoregressive models. This also includes some 

specification tests of the model such as linearity testing against smooth transition autoregression, 

determining the delay parameter, and choosing between LSTAR and ESTAR models. Van Dijk et al. 

[17] surveyed a recent development for STAR models. Liew et al. [18] investigated the exchange rates 

adjustment behavior with STAR models. 

 

In the STAR model, the Logistic Smooth Transition Autoregressive (LSTAR) model and Exponential 

Smooth Transition Autoregressive (ESTAR) model are obtained when the transition function GF(.) is 

used as the logistic function and exponential function, respectively [10]. There are many STAR type 

nonlinear models in the literature according to the type of transition function. However, this part of the 

study will focus primarily on the LSTAR and ESTAR models. A popular selection for the transition 

function 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) is the first-order logistic function and determined as: 
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𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) = (1 + 𝑒𝑥𝑝{−𝛾(𝑠𝑡 − 𝑐)})
−1,     𝛾 > 0                                                                  (4) 

The resultant model in Equation (4) is called a logistic STAR or LSTAR model. Here, 𝑐 can be 

interpreted as the threshold value that separates the two regimes, as in SETAR models. In this context, 

the logistic function varies monotonically from 0 to 1 while 𝑠𝑡 is increasing. The speed and smoothness 

of transition from one regime to another is determined by the parameter γ. When 𝛾 → 0, the transition 

between regimes hardens. While 𝛾 → 0, the transition between regimes smooths [19]. Another popular 

selection for the transition function 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) is the exponential function and specified as:  

𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) = 1 − 𝑒𝑥𝑝
−𝛾(𝑠𝑡−𝑐)

2
,     𝛾 > 0                                                                                (5) 

The resultant model in Equation (5) is referred to as the exponential STAR or ESTAR model. As in the 

LSTAR model, 𝑐 is the threshold value and γ can be expressed as the speed and smoothness of the 

transition between regimes. In the ESTAR approach, as 𝛾 → 0, the transition function approaches to 0. 

Thus, ESTAR (p) becomes AR (p) model. As γ approaches to ∞, 𝐺𝐹(𝑠𝑡 , 𝛾, 𝑐) = 1. In this case, the 

ESTAR (p) model becomes another AR (p) model. 

 

2.2. Models with Regimes Determined by Unobservable Variables 
 

The second class most popular model, which suppose that the regime occurs at a time 𝑡 cannot be 

observed but is determined by an unobservable stochastic process, is the Markov Switching (MSW) 

model. It is stressed in this case that we can only assign probabilities to the occurrence of different 

regimes. In the MSW model, the transition between the regimes is determined by an unobservable state 

or regime variable 𝑠𝑡 that cannot be observed, unlike the TAR and STAR models. The MSW model of 

[4], also known as the regime-switching model, is one of the most widely used nonlinear time series 

models. It has been applied for modeling and forecasting business cycles, volatility in financial and 

economic variables, and the term structure of interest rates. This model involves many equations in 

different regimes to characterize the time series structure. The current value of the state variable in the 

Markov chain used for transitions between regimes depends on the previous cycle's variable. 

In the case of only two regimes, 𝑠𝑡 can simply be supposed to have the values 1 and 2, such that the 

MSW model with an AR(p) model in both regimes is given by  

𝑦𝑡 = {
∅0,1 +∑ ∅𝑖,1𝑦𝑡−𝑖 + 𝜀𝑡1

𝑝
𝑖=1  𝑖𝑓 𝑠𝑡 = 1

∅0,2 +∑ ∅𝑖,2𝑦𝑡−𝑖 + 𝜀𝑡2
𝑝
𝑖=1  𝑖𝑓 𝑠𝑡 = 2

                                                                             (6) 

where ∅1𝑖 and ∅2𝑖 are the autoregressive delay parameters of each regime, 𝜀𝑡1 and 𝜀𝑡2 are mutually 

independent “white noise” series and 𝑠𝑡 specifies the first-degree Markov chain, which has the 

probabilities in Equation (7). If the serial is in the lower regime 𝑠𝑡 = 1, if it is in the upper regime 𝑠𝑡 =
2. In the MSW model, the process 𝑠𝑡 is supposed to be a first-order Markov-process. This means that 

the current regime 𝑠𝑡 is only dependent on the previous regime, 𝑠𝑡−1. It’s worth noting that the MSW 

model is completed by determining the transition probabilities matrix 

𝑃 = [
𝑝11 𝑝12
𝑝21 𝑝22

] = [
{[𝑠𝑡 = 1|𝑠𝑡−1 = 1] = 𝑝} {[[𝑠𝑡 = 2|𝑠𝑡−1 = 1] = 1 − 𝑝]}

{[𝑠𝑡 = 1|𝑠𝑡−1 = 2] = 𝑞} {[[𝑠𝑡 = 2|𝑠𝑡−1 = 2] = 1 − 𝑞]}
]                   (7) 

where each row sums up to one, and 𝑝11 denotes the probability of transition from lower regime to lower 

regime; 𝑝12 gives the probability of transition from lower regime to the upper regime; 𝑝21 shows the 

probability of transition from upper regime to lower regime; 𝑝22 presents the probability of transition 

from upper regime to upper regime. 

 

3. ESTIMATION OF THE MODELS 

 

In this section, we now provide the estimates of the parameters in the different regime-switching models. For 

further discussions, we refer to the study of [8, 20] for the SETAR model, [21] for the STAR model and [22] 

for the MSW model. It is also noted that we discuss the estimation problem for two-regime models. 
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3.1. Estimation of SETAR Models 

 

Suppose that we consider the SETAR model given in Equation (1). The parameters of this model can 

be commonly estimated by conditional least squares. To see that least squares is the best estimation 

process, model (1) can be rewritten as  

𝑦𝑡 = ∅1
′ 𝑥𝑡𝐼(𝑦𝑡−𝑑 ≤ 𝑐) + ∅2

′ 𝑥𝑡𝐼(𝑦𝑡−𝑑 > 𝑐) + 𝜀𝑡                                                                      (8) 

 or more compactly as 

𝑦𝑡 = 𝑥𝑡(𝑐)𝜙 + 𝜀𝑡                                                                                                             (9) 

where 𝑥𝑡 = (1, 𝑦𝑡−1,⋯ , 𝑦𝑡−𝑝), 𝑥𝑡(𝑐) = (𝑥𝑡
′𝐼(𝑦𝑡−𝑑 ≤ 𝑐), 𝑥𝑡

′𝐼(𝑦𝑡−𝑑 > 𝑐)), and 𝜙 = (∅1
′  ∅2

′ )′ with ∅1 =

(∅1,0, ∅1,1,⋯ , ∅1,𝑝) and ∅2 = (∅2,0, ∅2,1,⋯ , ∅2,𝑝). For a given value of 𝑐, estimates of 𝜙 are then 

computed by the least-squares method, defined as    

𝜙̂(𝑐) = (∑ 𝑥𝑡(𝑐)
′𝑥𝑡(𝑐)

𝑛
𝑖=1 )−1(∑ 𝑥𝑡(𝑐)

′𝑦𝑡
𝑛
𝑖=1 )                                                                       (10) 

The notation 𝜙̂(𝑐) is known as the conditional least square estimator that depends on conditional 𝑐. It 
should be noted that for the model (9), the corresponding residuals are expressed as 𝜀𝑡̂(𝑐) = 𝑦𝑡 −

𝑥𝑡(𝑐)
′𝜙̂(𝑐) with residual variance 𝜎̂2(𝑐) =

1

𝑛
∑ 𝜀𝑡̂

2𝑛
𝑡=1 (𝑐). This idea shows that the least square estimate 

of 𝑐 can be defined by minimizing the residual variance. In other words, the estimate of threshold value 𝑐 
is  

𝑐̂ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜎̂2(𝑐), 𝑐 ∈ 𝐶                                                                                                 (11) 

where 𝐶 indicates the set of all possible values that threshold variable takes [16].  

 

As in the case of the threshold value, the threshold variable 𝑦𝑡−𝑑 is unknown and it is an important 

problem to determine this variable. In practice, the delay parameter 𝑑 and the threshold variable 𝑦𝑡−𝑑 

are chosen by minimizing the residual variance. In the context of the SETAR model, we need an efficient 

grid search in Equation (11) to identify values of 𝑑. This means that the minimization problem in 

Equation (11) becomes   

(𝑐̂, 𝑑̂) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜎̂2(𝑐, 𝑑),   𝑐 ∈ 𝐶 𝑎𝑛𝑑 𝑑 ∈ 𝐷                                                                       (12) 

where 𝐷 denotes the set of all possible delay integers (d<p1, p2). 

 

Note that for the sake of convenience, we consider the method proposed by [8]. For each possible delay 

and threshold parameter, AIC is used to estimate these parameters and determine appropriate 

autoregressive orders, 𝑝1 and 𝑝2, in model (1). Both delay parameter 𝑑 and threshold value 𝑐 are then 

selected by minimizing the AIC, given by 

𝐴𝐼𝐶 = 𝑛1𝑙𝑛𝜎̂1
2 + 𝑛2𝑙𝑛𝜎̂2

2 + 2(𝑝1 + 1) + 2(𝑝2 + 1)                                                              (13) 

where 𝑛𝑘 , 𝑘 = 1,2  is the number of observations in the 𝑘𝑡ℎ regime, 𝜎̂𝑘
2, 𝑘 = 1,2 is the variance of the 

residuals in the 𝑘𝑡ℎ regime, 𝑝1 and 𝑝2 are the selected lag orders in the lower and upper regimes, 

respectively. 

 

3.2. Estimation of STAR Models  
 

Assume that we consider the STAR model expressed in equation (3). The estimation of parameters                 

𝜑 = (𝜑1,𝑝
′ , 𝜑2,𝑝

′ , 𝛾, 𝑐) in this model can be estimated as 

  𝜑̂ = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝑚

∑ [𝑦𝑡 − (𝜑̂1,𝑝
′ 𝑥𝑡 (1 − 𝐺𝐹(𝑦𝑡−𝑝, 𝛾, 𝑐) + 𝜑̂2,𝑝

′ 𝑥𝑡𝐺𝐹(𝑦𝑡−𝑝, 𝛾, 𝑐)))]
2

𝑛
𝑡=1           (14) 
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It is also noted that for fixed values of (𝛾, 𝑐), the STAR model is linear in terms of autoregressive 

parameters (𝜑1,𝑝
′ , 𝜑2,𝑝

′ ). Hence, conditional upon (𝛾, 𝑐), the estimates of 𝜑 = (𝜑1,𝑝
′ , 𝜑2,𝑝

′ )
′
can be 

estimated by ordinary least squares as 

𝜑̂(𝛾, 𝑐) = (∑ 𝑥𝑡(𝛾, 𝑐)
𝑛
𝑡=1 𝑥𝑡(𝛾, 𝑐)

′)−1(∑ 𝑥𝑡(𝛾, 𝑐)
𝑛
𝑡=1 𝑦𝑡)                                                        (15) 

where 𝑥𝑡(𝛾, 𝑐) = (𝑥𝑡
′ (1 − 𝐺𝐹(𝑦𝑡−𝑝; 𝛾, 𝑐)) , 𝑥𝑡

′ (𝐺𝐹(𝑦𝑡−𝑝; 𝛾, 𝑐)))
′

. Note that the parameters (𝛾, 𝑐) are 

obtained through a two-dimensional grid search by minimizing the residual variance                    

𝜎̂2(𝛾, 𝑐) =
1

𝑛
∑ 𝜀𝑡̂
𝑛
𝑡=1 (𝛾, 𝑐) where 𝜀𝑡 = 𝑦𝑡 − 𝜑̂(𝛾, 𝑐)

′𝜑̂(𝛾, 𝑐) is the vector of the model residuals. 

Ordinary least squares method is equivalent to maximum likelihood estimation with the additional 

assumption that errors 𝜀𝑡 are normally distributed (see [10,23] for a more detailed discussion). 
 

3.3. Estimation of MSW Models 
 

Maximum likelihood method can be used to estimate the coefficients in the MSW model. However, the 

estimation procedure is highly nonstandard in the literature, since the Markov process 𝑆𝑡 is not observed. 

The basic idea of the estimation problem is not only to obtain estimates of the parameters and the 

transition probabilities but also to obtain an estimate of the state that occurs at each point of the sample. 

 

We now consider the two-regime MSW model with an AR(p) specification in both regimes, given in 

Equation (6). If the parameters (i.e., coefficients) of this model are relaxed to be dependent on a hidden 

state variable 𝑆𝑡, it becomes:  

𝑦𝑡 = ∅0,𝑠𝑡 + ∅1,𝑠𝑡𝑦𝑡−1 +⋯+ ∅𝑝,𝑠𝑡𝑦𝑡−𝑝 + 𝜀𝑡 = 𝜙𝑗
′𝑋𝑡 + 𝜀𝑡  ,     𝑡 = 1                                    (16) 

where 𝑠𝑡 = 𝑗 are the unobserved state variables with the transition probabilities matrix in Equation (7),                     

𝑥𝑡 = (1, 𝑦𝑡−1,⋯ , 𝑦𝑡−𝑝)
′
, ∅𝑗
′ = (∅0,𝑗, ∅1,𝑗, ⋯ , ∅𝑝,𝑗)

′
, for 𝑗 = 1,2 and 𝜀𝑡 are normally distributed random 

variables with mean zero and variance 𝜎2. As shown in Equation (16), the parameters of the MSW 

model are based on the value of a discrete-valued state variable 𝑠𝑡. In the MSW model, 𝑠𝑡 is presumed 

to follow a particular stochastic process, namely an N-state (here, N=2) Markov chain or process. The 

evolution of the Markov process is defined by their transition probabilities expressed in Equation (7).  
 

Here, we are interested mainly in estimating the parameters of the model in Equation (16). Note that the 

primary item of interest is the regime indicator variable 𝑠𝑡 to estimate the parameter vector in Equation 

(17). We are interested in constructing the estimates of which regime is in effect at each point in time 𝑡 
since 𝑠𝑡 is unobserved. These estimates take the form of smoothing probabilities that 𝑠𝑡 = 𝑗, (𝑗 = 1,2). 
 

Let 𝑍𝑡 = (𝑧𝑡 , 𝑧𝑡−1,⋯ , 𝑧1) indicate the collection of all the observed variables up to time 𝑡, which denotes 

the information set we have at time 𝑡. The density of 𝑦𝑡 conditional on regime 𝑠𝑡, 𝑍𝑡−1 and 𝑠𝑡 =
𝑗, (𝑗 = 1,2) is a normal distribution with mean ∅𝑗

′𝑋𝑡 and variance 𝜎2, 

𝑓(𝑦𝑡|𝑠𝑡 = 𝑗, 𝑍𝑡−1; 𝜃) =
1

√2𝜋𝜎
𝑒𝑥𝑝 [

−(𝑦𝑡−∅𝑗
′𝑋𝑡)

2

2𝜎2
]                                                                      (17) 

where 𝜃 = (∅0, ∅1,⋯ , ∅𝑝, 𝜎𝜀
2, 𝑝11, 𝑝22) is a vector containing all of the parameters in Equation (16). It 

should be noted that all transition probabilities are completely defined by 𝑝11 and 𝑝22 because, for 

example, 𝑝12 = 1 − 𝑝11. The key idea is to estimate the parameter vector 𝜃 by the maximum likelihood 

method. As shown in [24], the maximum likelihood estimates of the transition probabilities are given 

by 

𝑝̂𝑖𝑗 =
∑ 𝑃(𝑠𝑡=𝑗, 𝑠𝑡−1=𝑖 | 𝑍𝑛;𝜃̂)
𝑛
𝑡=2

∑ 𝑃(𝑠𝑡−1=𝑖 | 𝑍𝑛; 𝜃̂)
𝑛
𝑡=2

                                                                                                 (18) 
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where 𝜃 denotes the maximum likelihood estimates of 𝜃 defined in (17). It is also seen in [24] that these 

satisfy the first-order conditions  

∑ (𝑦𝑡 − ∅̂𝑗𝑥𝑡)𝑥𝑡
𝑛
𝑡=1 𝑃(𝑠𝑡 = 𝑗 | 𝑍𝑛; 𝜃) = 0, 𝑗 = 1,2                                                        (19) 

which indicate that the log-likelihood function 𝐿(𝜃) = ∑ 𝑓(𝑦𝑡  | 𝑠𝑡 = 𝑗, 𝑍𝑡−1; 𝜃)
𝑛
𝑡=1  is maximized at the 

actual value of 𝜃. It is also noted that equation (18) provides the following equation. 

𝜎̂2 =
1

𝑛
∑ ∑ (𝑦𝑡 − ∅̂𝑗𝑥𝑡)

2
𝑃(𝑠𝑡 = 𝑗 | 𝑍𝑛;  𝜃)

2
𝑗=1

𝑛
𝑡=1                                                                   (20) 

It is understood from equation (20) that  ∅̂𝑗 can be estimated by the method of weighted least squares 

regression of 𝑦𝑡 on 𝑥𝑡, with weights given by the square root of the smoothed probability, 

𝑃(𝑠𝑡 = 𝑗 | 𝑍𝑛;  𝜃). Thus, the estimates ∅̂𝑗 can be computed as 

∅̂𝑗 = (∑ 𝑥𝑡(𝑗)𝑥𝑡(𝑗)
′𝑛

𝑡=1 )−1(∑ 𝑥𝑡(𝑗)𝑦𝑡(𝑗)
𝑛
𝑖=1 )                                                                         (21) 

where 𝑦𝑡(𝑗) = 𝑦𝑡√𝑃(𝑠𝑡 = 𝑗 | 𝑍𝑛;  𝜃) and 𝑥𝑡(𝑗) = 𝑥𝑡√𝑃(𝑠𝑡 = 𝑗 | 𝑍𝑛;  𝜃). See [25] for a more detailed 

discussion. 
 

4. PERFORMANCE CRITERIA 
 

In this section, scale-dependent measures and measures based on percentage errors are taken into 

consideration to compare the outputs of the models obtained in the application section.  

 

4.1. Scale-Dependent Measures 
 

Performance criteria calculated according to the scale of the data are called scale-based performance 

measures. When comparing different approaches applied to the same collection of data, these measures 

come in handy. However, they should not be used when comparing data sets with different scales. Mean 

Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Median 

Absolute Error (MAE) are the most widely used scale-dependent measures (MdAE). These measures 

are defined in Table 1. 
Table 1. Most used scale-dependent measures 

 

𝑀𝑆𝐸 =∑
(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑛

𝑖=1

 𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑛

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|,

𝑛

𝑖=1

 𝑀𝑑𝑀𝐻 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖 − 𝑦̂𝑖|) 

 

It should be noted that RMSE is preferred to MSE because it is on the same scale as the data. RMSE 

and MSE have historically gained popularity due to their theoretical relevance in statistical modeling. 

Moreover, they are more sensitive to outliers than MAE or MdAE. 
 

4.2. Measures Based on Percentage Errors 
 

In the performance measures based on the percentage errors, the percentage error is calculated by 𝑝𝑡 =
100𝜀𝑡 𝑦𝑡⁄ . Percentage errors-based performance criteria have the advantage of being able to perform 

calculations independent of the scale. Thus, it is frequently used for different types of data sets. Table 2 

shows the most widely used measures: Mean Absolute Percentage Error (MAPE), Median Absolute 

Percentage Error (MdAPE), Root Mean Square Percentage Error (RMSPE), and Root Median Square 

Percentage Error (RMdSPE). 
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Table 2. Most used measures based on percentage errors 

 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(|𝑝𝑡|) 𝑀𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑝𝑡|) 

𝑅𝑀𝑆𝑃𝐸 = √𝑚𝑒𝑎𝑛(𝑝𝑡
2) 𝑅𝑀𝑑𝑆𝑃𝐸 = √𝑚𝑒𝑑𝑖𝑎𝑛(𝑝𝑡

2) 

 

There are disadvantages such that the performance criterions based on the error percentages are infinite 

and undefined when the value of 𝑌𝑡 equals zero for 𝑡 relevant to any period and have a completely 

skewed distribution when the value of 𝑌𝑡 is near zero. For example, the value of MAPE will be significantly 

larger than the value of MdAPE. Therefore, when the 𝑥 value contains zero or near-zero values, it 

becomes impossible to use performance measures based on percentage errors. In this case, use of the 

Symmetric Mean Absolute Percentage Error (sMAPE) and the Symmetric Median Absolute Percentage 

Error (sMdAPE) criteria, referred to as "symmetric" measurements showed in Table 3, is required. 
 

Table 3. Symmetric measures  

 

𝑠𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

(|𝑦𝑖| + 𝑦̂𝑖) 2⁄

𝑛

𝑖=1

 𝑠𝑀𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
|𝑦𝑖 − 𝑦̂𝑖|

(|𝑦𝑖| + |𝑦̂𝑖|) 2⁄
) 

 

The problem that occurs around taking a value of zero or near zero is less obvious with the criteria of 

sMAPE and sMdAPE. Nevertheless, when 𝑥 takes a value close to zero, 𝑦 tends to take a value close to 

zero, so that the measurement will be divided by a value close to zero. Some researchers argued that 

measures based on percentage errors are highly skewed and that some transformations (logarithmic 

transformation, etc.) may make these measurements more stable [26]. 

 

Definition 1. The relative efficiency of a model compared to another model is defined by the ratio  

𝑅𝐸 (
𝑀𝑜𝑑𝑒𝑙𝑖

𝑀𝑜𝑑𝑒𝑙𝑗
) =

𝑀𝑆𝐸(𝑀𝑜𝑑𝑒𝑙𝑖)

𝑀𝑆𝐸(𝑀𝑜𝑑𝑒𝑙𝑗)
,     𝑖, 𝑗 = 1, 2, 3                                                                            (22) 

where 𝑖 and 𝑗 correspond to obtained by SETAR, STAR and MSW models. As is known from many 

applications, the MSE criterion is widely used for the comparison of models. Note that 𝑖𝑡ℎ model is said 

to be more efficient than 𝑗𝑡ℎ model if 𝑅𝐸 < 1. 
 

5. EMPIRICAL RESULTS 
 

5.1. First Application: Data and Method 
 

The nonlinear time series models described in the methodology section of this study are applied for the 

sales prices of bar gold (TL/gr) series obtained monthly between 1996-2016. A total of 241 observation 

values are used. The subject data set is obtained from the electronic data distribution system of the 

Central Bank of the Republic of Turkey (http://evds.tcmb.gov.tr/). In our study, we used the R 

Programming Language (3.1.3) and EViews 9 package software for time series analysis methods. 
 

5.1.1. Results of SETAR Model  
 

First of all, the first-order lag of the data is taken in order to ensure the stationary condition of the sales 

prices of the bar gold (TL/gr) series. Then, the augmented Dickey-Fuller (ADF) test proposed by 

Dickey-Fuller [27] was performed for the first order lagged series. The test results are given in Table 4. 

Test interpretation: 

 

http://evds.tcmb.gov.tr/
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𝐻0: There is a unit root (Data is not stationary). 

𝐻1: There is no unit root (Data is stationary). 
 

Table 4. ADF test results by EViews 9 software 

 

        t-Statistics    Prob. 

Augmented Dickey-Fuller test statistics      -12.54035      <0.001 

  Test critical values:                 %1 level      -3.996918  
                                                 %5 level       -3.428739  

                                                   %10 level       -3.137804   

 

According to the ADF test results, 𝐻0 hypothesis is rejected because the ADF test statistic value (-12.54) 

is smaller than all critical t-statistics values (-3.9969, -3.4287, -3.1378). So, the first order lagged series 

is stationary.  
 

For the SETAR model of the form (1), the parameter values for the most suitable SETAR models are 

obtained according to the AIC information criteria as a result of the iterations are given in Table 5, with 

the delay number of the threshold variable 𝑑, the number of delays of the sub regime 𝑖, the number of 

delays of the top regime 𝑗, and the 𝑐 threshold value. 
 

Table 5. SETAR model iteration results obtained by R programming 

 

 

Delay 

Number of 

Threshold 

Variable 

Delay 

Number 

of Lower 

Regime 

Delay 

Number 

of Upper 

Regime 

Threshold 

Value 

Information 

Criteria 

 𝑑 (zt-d) 𝑖 (y
t-i

) 𝑗 (y
t-j

) 𝑐 AIC 

1 3 1  1   0.16  399.8567 

2 3 1  1  0.15 399.8933 

3 3 1  1 0.14 400.0392 

4 3 1  1  0.13 400.0780 

5 3 1  1  0.12 400.1023 

6 3 1  1  0.11 400.1428 

7 3 1  1  0.10 400.2160 

8 3 1  1  0.09 400.2728 

9 3 1  1  0.00 400.3296 

10 3 1  1  0.01 400.3558 

 

The optimal number of delays for the threshold variable according to Table 5 is 3. In the same way, the 

model giving the lowest AIC value comes out as a SETAR model of the first order, in which the 

threshold value is 0.16 and the delay number of the upper and lower regime is 1. The parameter values 

obtained by the least-squares method are given in Table 6. 

Table 6. Estimation results of SETAR model 

    Model   Coefficients 
Standard  

Deviation 
 t-value  p 

Lower  

Regime 

∅1,0 0.2304 0.2078 1.1086   0.2687 

∅1,1  0.5708 0.1018 5.6095  <0.001* 

Upper  

Regime 

∅2,0 0.5184 0.2225 2.3294  0.0207* 

∅2,1 0.0064 0.0776 0.0839  0.9332 

                                         *Significant Coefficients 
 

The obtained SETAR model according to these results is as follows: 

𝑦𝑡 = {
0.2304 + 0.5708𝑦𝑡−1 + 𝜀𝑡   𝑖𝑓  𝑦𝑡−3 < 0.16
0.5184 + 0.0064𝑦𝑡−1 + 𝜀𝑡   𝑖𝑓  𝑦𝑡−3 ≥ 0.16

                                                               (23) 
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129 observational values are used for the lower regime generated by the observation values below the 

threshold value 𝑐 =  0.16 whereas 109 observational values are used for the upper regime of the 

observational values above 0.16. In other words, the number of observations corresponding to the 

threshold value of the threshold variable determined for the SETAR model iteratively, which is less than 

0.16, is 129, as the number of observations greater than this value is 109. The graph showing the points 

where the upper or lower regime is active according to the observation values below or above the 

threshold value is given in Figure 1. 

 

 
Figure 1. Switching graph between regimes of SETAR model 

 

According to Figure 1, the values obtained by the transition variable are predominantly active in the 

lower regime. To investigate the homoscedasticity of residuals obtained from the SETAR model in 

Equation 23, a scatter plot of residuals against fitted values is obtained in Figure 2.  

 

 
Figure 2. Scatter plot of residuals against fitted values for SETAR model 

 

As seen in Figure 2, there is no apparent evidence for homoscedasticity of residuals. Therefore, 

Spearman’s Rank Correlation test is carried out between the absolute values of residuals and 𝑦𝑡 time-

series values. Results of the test are given in Table 7.  

Table 7. Results of Spearman’s Rank Correlation Test 

Spearman's Rank Correlation Test 

S-value p-value 

2165500 0.8604 

 

According to Table 7, the null hypothesis of homoscedasticity is accepted because the 𝑝-value 0.8604 

is greater than the threshold 0.05. These results indicate that the homoscedasticity assumption is 

provided.  
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5.1.2. STAR Type Nonlinearity Test and Estimation Results of STAR Model  

 

The first step in the STAR type nonlinearity test is to determine the linear autoregressive model. The 

linear model suitable for sales prices of bar gold (TL/gr) series is determined as AR(2) with the help of 

the AIC information criterion. Probability values obtained from the AR model test against the STAR 

type model are given in Table 8. In the STAR type nonlinearity test, the test is repeated for                       

𝑝 =  1, 2, 3, 4, 5 delays to find the threshold variable that minimizes the F probability.  

Table 8. STAR type nonlinearity test and selection of transition function 

Threshold 

Variable 

Probability Values Selection of 

Transition 

Function F F3 F2 F1 

y
t-1

 0.0005494 0.1699 0.09863 0.07763 LSTAR 

y
t-2

 0.001242 0.1587 0.1345 0.1565 LSTAR 

   y
t-3

* 0.00002 0.0055 0.0225 0.0043 LSTAR 

y
t-4

 0.0009 0.4546 0.5073 0.1133 LSTAR 

y
t-5

 0.0125 0.3306 0.673 0.7496 LSTAR 

 

When the F probability values of the obtained models for the transition variables with different delay 

values are compared, the smallest probability value is obtained for the third delay. Comparing the 

probability values of 𝐹1, 𝐹2, 𝐹3 for the 𝑦𝑡−3 variable, 𝐹1 has the smallest probability value with a value 

of 0.0043. As a result, in the process of examining the STAR type nonlinearity for the sales prices of 

bar gold (TL/gr) series, the third delay in which linearity is most strongly rejected is determined as the 

number of delays of the threshold variable while the structure of the transition function in the STAR 

type models is designated as LSTAR. The results of the 2-regime LSTAR model estimated by the 

nonlinear least-squares method are given in Table 9. 

Table 9. Estimation result of LSTAR model 

  Lower Regime 

  Estimation Standard Deviation 𝑡-value 𝑝 

Constant 0.2856 0.2103 1.3578 0.1745 

y
t-1

 0.6092 0.1022 5.9614 <0.001* 

y
t-2

 -0.1867 0.1052 -1.7743 0.076* 

  Upper Regime 

  Estimation Standard Deviation 𝑡-value 𝑝 

Constant 0.3036 0.3127 0.9707 0.3317 

y
t-1

 -0.5731 0.1279 -4.479 <0.001* 

y
t-2

 0.0467 0.1297 0.36 0.7188 

* Significant Coefficients 𝛾 = 100 𝑐 = 0.1514  𝑆𝑆𝐸 = 1186.643   𝐴𝐼𝐶 = 400 

                                         
Mathematical representation of the estimated LSTAR model is as follows: 

𝑦𝑡 = (0.2856 + 0.6092𝑦𝑡−1 − 0.1867𝑦𝑡−2) × (1 − 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐)) + [(0.3036 −

0.5731𝑦𝑡−1 + 0.0467𝑦𝑡−2) × 𝐺𝐹(𝑠𝑡, 𝛾, 𝑐)] + 𝜀𝑡                                                                                         (24)             

Here, the transition function belonging to the LSTAR model and given in Equation (4) can be written 

as in Equation (25) according to 𝑠𝑡 threshold variable, 𝛾 smoothness parameter and 𝑐 threshold value 

estimated in Table 9. 

𝐺𝐹(𝑠𝑡, 𝛾, 𝑐) = 𝐺𝐹(𝑦𝑡−3, 100, 0.1514) = (1 + 𝑒𝑥𝑝{−100(𝑦𝑡−3 − 0.1514)})
−1                 (25) 

The optimal value for the threshold parameter 𝑐 in the transition function is determined as 0.1514. The 

smoothness value of the transition between regimes is calculated as 𝛾 =  100. The high 𝛾 value indicates 
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that the transition between regimens is fast and rigid. To visualize this prediction, the difference between 

the regime transition velocities by taking 𝛾 =  100 and 𝛾 =  1 can be obtained as in Figure 3. 

 
Figure 3. Transition velocities between regimes according to different smoothness parameters 

 

As can be seen from Figure 3, the parameter that determines the speed of approach from 0 to 1 of the 

logistic transition function is 𝛾. When the 𝛾 value is 100, the transition between the regimes is sudden 

and sharp. When 𝛾 value is 1, it is clear that the transition between the regimes is softer. In other words, 

as the value of 𝛾 parameter increases, the transition function converges to 1 more rapidly. As a result, it 

can be said that TAR-like models where the transitions between regimes are sudden and hard are more 

appropriate than the STAR models for the sales prices of bar gold (TL/gr) series, resulting from the fact 

that the transition between the regimes is hard and sudden. 
 

5.1.3. Estimation Results of Markov Switching Model  
 

In this part of the application, the Markov switching model which is based on a stochastic variable in 

the transition variable is estimated to reveal the nonlinear dynamics in the series of sales prices of bar 

gold (TL/gr). The Markov switching model based on 2 regimes and 2 delays in each regime obtained 

from the maximum likelihood method is as follows: 

Table 10. Estimation result of Markov switching model 

  Lower Regime 

  Estimation Standard Error 𝑧-value 𝑝 

Constant 8.3568 1.1796 7.0842 <0.001* 

y
t-1

 0.9529 0.4581 2.0801 0.0375* 

y
t-2

 1.2863 0.5304 2.4252 0.0153* 

  Upper Regime 

  Estimation Standard Error 𝑧-value 𝑝 

Constant 0.3507 0.1341 2.6151 0.0089* 

y
t-1

 0.2783 0.0690 4.0318 0.0001* 

y
t-2

 -0.2640 0.0673 -3.9230 0.0001* 

                                         * Significant Coefficients 

 

The mathematical representation of the Markov switching model obtained according to the results in 

Table 10 is as follows: 

𝑦𝑡 = {
8.3568 + 0.9529𝑦𝑡−1 + 1.2863𝑦𝑡−2 + 𝜀𝑡0  𝑖𝑓 𝑠𝑡 = 1
0.3507 + 0.2783𝑦𝑡−1 − 0.2640𝑦𝑡−2 + 𝜀𝑡1  𝑖𝑓 𝑠𝑡 = 2

                                                (26) 
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The matrix of transition probabilities between the regimes is as follows: 

𝑃𝑖𝑗 = [
𝑃11 𝑃12
𝑃21 𝑃22

] = [8.41 × 10
−09 0.9999

0.0246 0.9754
]                                                                       (27) 

While the process is active in the lower regime, the probability of switching to upper regime 
(𝑃[𝑆𝑡 = 2 | 𝑆𝑡−1 = 1] = 0.9999) and while it’s active in the upper regime the probability of remaining 

in the same regime (𝑃[𝑆𝑡 = 2 | 𝑆𝑡−1 = 2] = 0.9754) are quite high. This indicates that the process is 

predominantly active in the upper regime. 

 

5.1.4. Comparison of Methods 

 

In this application, SETAR, STAR, and Markov switching models which are the most used in nonlinear 

time series literature are applied to sales prices of bar gold (TL/gr) series. The performances of the 

obtained models are compared with the criteria of MSE, RMSE, MAE, and MdAE which are scale-

dependent, and with the criteria of sMAPE and sMdAPE which are based on percentage errors. The 

reason why the symmetric criteria are preferable from the performance criteria based on error 

percentages is that the stationary 𝑦𝑡 series used in the models have values of zero or near zero. Obtained 

results of performance criteria are given in Table 11. 

Table 11. Performance indicators of models 

  MSE RMSE MAE MdAE  sMAPE  sMdAPE  

SETAR 193.3240 13.9041 11.3961 9.7186  0.4101  44.1419  

LSTAR 278.5528 16.6899 13.7689 11.6367  0.4720  53.7691  

MSW 160.8788 12.6838 10.9923 10.1929  0.4119  41.2045  
 

According to the obtained MSE, RMSE, MAE, and sMdAPE performance criteria, the Markov 

switching model is considered as the model with the most effective performance. All performance 

criteria indicate that the SETAR model in which the transition between regimes is sudden and hard is 

more effective than the STAR model based on a smooth transition between regimes. This supports the 

graph of the transition velocities of the LSTAR model between regimes according to different 

smoothness parameters obtained in Figure 3. 

 

After comparing the models with performance criteria, we obtained a relative efficiency matrix from the 

values of MSE of each model for another comparison method. These values are obtained using (22) and 

the results are given in Table 12. 

Table 12. Efficiency matrix of the models 

SETAR LSTAR MSW   

1.0000 1.4409 0.8321 SETAR  

0.6940 1.0000 0.5775 LSTAR 

1.2017 1.7314 1.0000 MSW 

 

From Table 12, it can be seen that the efficiency values of the MSW model against SETAR and LSTAR 

models are smaller than 1. Besides, the efficiency value of the SETAR model against the LSTAR model 

is smaller than 1. Hence, it can be concluded that the MSW model is more efficient than other models 

and also SETAR is a more effective model than the LSTAR model. The graph which compares the fitted 

values obtained from each model with actual values is given in Figure 4. 
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Figure 4. The curve of sales prices of bar gold (TL/gr) and curves of fit obtained from related models 

 

According to the graph obtained in Figure 4, the Markov switching model appears to be the best 

performing model, followed by the SETAR and LSTAR models. It is seen that the SETAR model adapts 

to actual values better than the STAR model in parallel with the results obtained from performance 

criteria values. As a result, it can be interpreted that the Markov-Switching model indicates the best 

performance for the sales prices of bar gold (TL/gr). 

 

5.2. Second Application: Data and Method 
 

In this application, the nonlinear time series models discussed in Chapter 2 are applied for US Dollar 

sales prices (USD/TL) series obtained monthly between 2000 and 2016 in TL-based. A total of 204 

observations are available. The subject data set is obtained from the electronic data distribution system 

of the Central Bank of the Republic of Turkey (http://evds.tcmb.gov.tr/). For statistical analysis, R 

Programming Language (3.1.3) and EViews 9 package software are used.  
 

5.2.1. Results of SETAR Model  
 

The first step is to check the stability of the data. Augmented Dickey-Fuller test is applied for the 1st 

order lagged series of US Dollar sales prices (USD/TL) data before modeling process. Results of the 

test are given in Table 13.  

Table 13. ADF test results by EViews 9 Software 

        t-Statistics    Prob. 

Augmented Dickey-Fuller test statistics      -9.382990      <0.001 

  Test critical values:                 %1 level      -3.462737  
                                                 %5 level       -2.875680  

                                                   %10 level       -2.574385   

 

According to Table 13, the 𝑝-value of the test statistics is smaller than the %5 significance level. 

Therefore, the null hypothesis (𝐻0), in which there is a unit root, is rejected. In other words, the 1st order 

lagged series is stationary.  

 

The results of the most suitable parameter values obtained according to the AIC value as a result of the 

iterations made for the two regime SETAR model are given in Table 14. 
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Table 14. SETAR model iteration results obtained in R programming 

 

 

Delay 

Number of 

Threshold 

Variable 

Delay 

Number 

of Lower 

Regime 

Delay 

Number 

of Upper 

Regime 

Threshold 

Value 

Information 

 Criteria 

 𝑑 (zt-d) 𝑖 (y
t-i

) 𝑗 (y
t-j

) 𝑐 AIC 

1 5 1 1 -0.011 -1150.701 

2 5 1 1 -0.012 -1150.164 

3 5 1 1 0.007 -1148.851 

4 5 1 1 0.012 -1148.807 

5 5 1 1 0.008 -1148.745 

6 1 1 1 0.008 -1148.666 

7 5 1 1 0.011 -1148.602 

8 1 1 1 0.006 -1148.490 

9 1 1 1 0.007 -1148.489 

10 5 1 1 -0.013 -1148.487 

 

The optimal number of delays for the threshold variable according to Table 14 is 5. Likewise, the model 

giving the lowest AIC value comes out as a SETAR model of the first order, in which the threshold 

value is -0.011 and the delay number of the upper and lower regime is 1. The coefficient values of the 

SETAR model obtained by the conditional least-squares method are given in Table 15. 

Table 15. Estimation Results of SETAR Model 

    Model   Coefficients 
Standard  

Deviation 
 t-value  p 

Lower  

Regime 

∅1,0 -0.0043 0.0069 -0.6227   0.5342 

∅1,1  0.1996 0.1089 1.8324  0.0684* 

Upper  

Regime 

∅2,0 0.0181 0.0053 3.4013  0.0008* 

∅2,1 0.4581 0.0831 5.5103  <0.001* 

                                   *Significant Coefficients 

 

The following equation is the mathematical representation of the resulting SETAR model: 

𝑦𝑡 = {
−0.0043 + 0.1996𝑦𝑡−1 + 𝜀𝑡   𝑖𝑓  𝑦𝑡−5 < −0.011
0.0181 + 0.4581𝑦𝑡−1 + 𝜀𝑡   𝑖𝑓  𝑦𝑡−5 ≥ −0.011

                                                       (28) 

 

In this model, 74 observational values are used for the lower regime generated by the observation values 

below the threshold value 𝑐 =  −0.011 whereas 123 observational values are used for the upper regime of 

the observational values above -0.011. It should be noted that the total number of observations in the lower 

and upper regimes are determined according to the threshold variable 𝑦𝑡−5 and threshold value −0.011 

obtained from the SETAR model iteratively. The graph showing the points where the upper or lower regime 

is active according to the observation values below or above the threshold value is given in Figure 5. 
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Figure 5. Graph of transition between the regimes of SETAR model 

 

As can be seen from Figure 5, the observed values are mainly concentrated in the upper regime above 

the threshold value 𝑐 =  −0.011. A scatter plot is obtained in Figure 6 to provide a visual examination 

of the homoscedasticity assumption between the predicted dependent variable scores and the prediction 

errors. 

 
Figure 6. Scatter plot of residuals against fitted values for SETAR model 

 

Figure 6 presents a random displacement of scores into a rectangular shape without any clustering or 

systematic pattern. Therefore, this figure provides the assumption of homoscedasticity of residuals. To 

strengthen this view, Spearman's Rank Correlation test is applied between absolute values of residuals 

and 𝑦𝑡 time-series values. Test results are given in Table 16.  

Table 16. Spearman’s rank correlation test results 

Spearman's Rank Correlation Test 

𝑆-value 𝑝-value 

1208900 0.4745 

 

According to Table 16, the residuals have constant variance (homoscedasticity) with a 95% level of 

confidence since the 𝑝-value 0.4745 is greater than 0.05.  

 

5.2.2. STAR Type Nonlinearity Test and Estimation Results of STAR Model  

 

The first one of the STAR model prediction phases is to determine the most suitable linear model for 

the stationary data set. This model is determined as AR (2) for the US Dollar sales prices (USD/TL) 

series with the help of the AIC information criterion. The next step after the determination of a suitable 

model is the test phase which consists of the STAR model test against the AR model. Although the 



Aydın and Mermi / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 23 (1) – 2022 

 

64 

optimum number of delays is 2, the F test statistics and probability values are calculated for each number 

of delays until the 5th delay and the number of delays in which the linearity is most strongly rejected is 

determined as the delay number of the threshold variable. The results are given in Table 17. 

Table 17. STAR type nonlinearity test and selection of transition function 

Threshold  

Variable 
F* F3

* F2
* F1

* 

Selection of  

Transition 

Function 

y
t-1

 
6.736  

(<0.001) 

0.1503 

(0.8606) 

0.6278 

(0.6433) 

3.0304 

(0.0074) LSTAR 

y
t-2

 
6.597 

(<0.001) 

0.6723 

(0.5117) 

1.3288 

(0.2607) 

2.8722 

(0.0106) LSTAR 

y
t-3

 
6.507 

(<0.001) 

3.0969 

(0.047) 

2.88 

(0.0239) 

2.7935 

(0.0126) LSTAR 

𝑦𝑡−4
∗∗  

7.463 

(<0.001) 

10.575 

(<0.001) 

9.1952 

(<0.001) 

9.8602 

(<0.001) LSTAR 

y
t-5

 
4.387 

(<0.001) 

0.463 

(0.6301) 

0.5394 

(0.7069) 

0.4188 

(0.8659) ESTAR 

                              *F test statistic values and probability values in parentheses are given.  

                                 **Optimal threshold variable 

 

According to the STAR type nonlinearity test results in Table 17, the null hypothesis which indicates 

linearity of data, 𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 0, is rejected with the strongest 4th delay (F=7.463). Therefore, 

the delay number of the threshold variable can be taken as 4. When the probability values of 𝐹1, 𝐹2, 𝐹3 

for the 𝑦𝑡−4 variable are compared, 𝐹3 has the smallest probability value with 4.421 × 10-05. For this 

reason, the structure of the transition function is defined as LSTAR. 

 

The most favorable autoregressive model for US Dollar sales prices (USD/TL) was found to have a 

delay number of 2. Accordingly, for both regimes, autoregressive models that have 2 delays are 

calculated by using the nonlinear least-squares method. The results are given in Table 18. 

Table 18. Estimation result of LSTAR model 

  Lower Regime 

  Estimation Standard Deviation 𝑡-value 𝑝 

Constant 0.0120 0.0044 2.6902 0.0071* 

y
t-1

 0.4682 0.0730 6.4150 <0.001* 

y
t-2

 -0.1780 0.0754 -2.3577 0.0184* 

  Upper Regime 

  Estimation Standard Deviation 𝑡-value 𝑝 

Constant 0.0002 0.0147 0.0153 0.9878 

y
t-1

 -0.5576 0.2425 -2.2994 0.0215* 

y
t-2

 0.0808 0.2212 0.3654 0.7148 

*Significant Coefficients 𝛾 = 4121 𝑐 = 0.0819 𝑆𝑆𝐸 = 0.6727 𝐴𝐼𝐶 =  −1143 

 

The mathematical representation of the obtained model is as in (29). 

𝑦𝑡 = (0.0120 + 0.4682𝑦𝑡−1 − 0.1780𝑦𝑡−2) × (1 − 𝐺𝐹(𝑆𝑡 , 𝛾, 𝑐)) + [(0.0002 −

0.5576𝑦𝑡−1 + 0.0808𝑦𝑡−2) × 𝐺𝐹(𝑆𝑡, 𝛾, 𝑐)] + 𝜀𝑡                                                                              (29) 

Transition function in (29) can be written as follows: 

𝐺𝐹(𝑆𝑡, 𝛾, 𝑐) = 𝐺𝐹(𝑦𝑡−4, 4121, 0.0819) = (1 + 𝑒𝑥𝑝{−4121(𝑦𝑡−4 − 0.0819)})
−1             (30) 
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The optimal threshold value for the LSTAR model is calculated as 0.0819. The 𝛾 value which indicates 

the smoothness of the transition between the regimens is calculated as 4121. The graph showing the 

relationship between the threshold variable and the transition function is given in Figure 7. 

 

 
Figure 7. Graph of transition velocity between the regimes of LSTAR model 

 

As shown in Figure 7, the high 𝛾 value indicates that the transition between regimes is sudden and sharp. 

As a result, it can be said that STAR models, where the transition between regimes is soft are not 

effective models for US Dollar sales prices (USD/TL) series. 

 

5.2.3. Estimation Results of Markov Switching Model  

 

Estimation results of the Markov switching model through the maximum likelihood method using the 

second-order autoregressive models in each regime and based on the stochastic threshold variable 

between regimes are given in Table 19. 

Table 19. Estimation result of Markov switching model 

  Lower Regime 

  Estimation Standard Error 𝑧-value 𝑝 

Constant -0.0037 0.0038 -0.9606 0.3367 

y
t-1

 0.2376 0.0927 2.5631  0.0104* 

y
t-2

 -0.2037 0.1015 -2.0074  0.0447* 

  Upper Regime 

  Estimation Standard Error 𝑧-value 𝑝 

Constant 0.1209 0.0188 6.4445  <0.001* 

y
t-1

 0.8163 0.1952 4.1812  <0.001* 

y
t-2

 -0.0967 0.2315 -0.4178 0.6761 

                                       * Significant Coefficients 

 

The mathematical representation of the obtained model is as in (31). 

𝑦𝑡 = {
−0.0037 + 0.2376𝑦𝑡−1 − 0.2037𝑦𝑡−2 + 𝜀𝑡0  𝑖𝑓 𝑠𝑡 = 1
   0.1209 + 0.8163𝑦𝑡−1 − 0.0967𝑦𝑡−2 + 𝜀𝑡1  𝑖𝑓 𝑠𝑡 = 2

                                             (31) 

The matrix of transition probabilities between regimes is obtained with the help of Equation (18):                   

𝑃𝑖𝑗 = [
𝑃11 𝑃12
𝑃21 𝑃22

] = [
0.9230 0.0770
0.4377 0.5622

]                                                                                 (32) 

According to all transition probabilities, the probability of being active in the lower regime appears to 

be more than the probability of being active in the upper regime.  
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5.2.4. Comparison of Methods 

 

In this application, the TAR model, STAR model, and Markov switching model, which are the most 

used nonlinear time series models in the literature for US Dollar sales prices (USD / TL) series obtained 

monthly between 2000-2017 are estimated. To compare the performances of the models obtained, scale-

dependent performance criteria (MSE, RMSE, MAE and MdAE) and the symmetric measures (sMAPE 

and sMdAPE) presented in Section 4 are considered. The results obtained are given in Table 20. 

Table 20. Performance indicators of models 

 MSE RMSE MAE MdAE sMAPE  sMdAPE 

SETAR 0.0551 0.2348 0.2061 0.2067 0.1283  12.5457 

LSTAR 0.1999 0.4472 0.3952 0.4398 0.2334  24.9898 

MSW 0.1782 0.4222 0.3696 0.3881 0.2152  21.9987 

 

According to all the values of performance criteria obtained in Table 20, the SETAR model is seen as 

the model with the most effective performance. Depending on the high value of smoothness parameter 

obtained in the LSTAR model, the SETAR model shows better performance than the LSTAR model by 

all the criteria. To compare the efficiencies of the models through relative efficiency measurement, we 

obtained an efficiency matrix from the values of MSE of each model in Table 21.  

Table 21. Efficiency matrix of the models 

SETAR LSTAR MSW   

1.0000 3.6279 3.2341 SETAR  

0.2756 1.0000 0.8914 LSTAR 

0.3092 1.1218 1.0000 MSW 

 

According to the results in Table 21, the efficiency values of the SETAR model against LSTAR and 

MSW models are smaller than 1. Also, the efficiency value of the SETAR model against the LSTAR 

model is smaller than 1. Hence, it can be said that the SETAR model is more efficient than other models 

and also SETAR is a more effective model than the LSTAR model. To visually compare the US Dollar 

sales prices (USD/TL) series and the nonlinear time series models, a graph of the actual values and the 

fitted values obtained from the related models are obtained in Figure 8.  

 

 
 

Figure 8. The curve of US dollar sales prices (USD/TL) and curves of fit obtained from related models 

 

In parallel with the results obtained from the performance criteria, the SETAR model fit curve shows a 

closer fit with actual values than other parametric models. 
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6. CONCLUSION 

 

Despite evidence of potential nonlinearities, linear models dominated economic time series research 

until recently. There are at least two explanations for the widespread use of linear models. Firstly, in 

many cases, linear models are thought to provide rational approximations to true nonlinear relationships, 

the precise form of which is often unknown. Furthermore, due to a lack of computing capabilities, it was 

nearly impossible to specify and estimate complex nonlinear models. In recent years, there has been a 

steady rise in interest in the study and actual application of nonlinear time series models [28]. 

 

In this paper, we introduced the Self-Exciting Threshold Autoregressive (SETAR) model, Smooth 

Transition Autoregressive (STAR) model and Markov-Switching (MSW) model, which are the most 

commonly used nonlinear parametric time series models to be able to model volatility in a better way in 

financial markets. To that end, these models were applied to two financial data sets: sales prices of bar 

gold (TL/gr) and US dollar (USD/TL). The efficiencies of the obtained models were compared with 

some performance criteria given in Section 4. The empirical results can be summarized as follows: The 

MSW and SETAR models, respectively, are the most effective models in both applications. In first 

application, it has been determined that the SETAR model is more effective than the LSTAR model in 

terms of all the criteria discussed. This result supports the estimation value of smoothness parameter 

obtained in Table 9 for the LSTAR model and the transition velocities between the regimes for this 

value in Figure 3. Because, as the value of smoothness parameter increases, the smoothness of transition 

between the regimes decreases. The same result has also obtained in the second application. In this 

respect, LSTAR models can be interpreted as the most ineffective models due to the high smoothness 

parameter values which indicates that the transition between regimes is fast and rigid in both 

applications. Finally, the performance of the MSW model has also found to be quite successful 

compared to the LSTAR model by all criteria in both applications. 

 

It should be noted that all inferences about the models were obtained with the assumption of normally 

distributed of errors. Outliers, on the other hand, can distort this assumption. 
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