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HIGHLIGHTS  GRAPHICAL ABSTRACT 

 The semantic and metric maps 

are generated that first-

responders can easily read in 

post-disaster indoor 

environments. 

 A point-based deep learning 

architecture is employed to 

produce the semantic map.  

 Octree-based 3D metric map 

composes voxels not only 

occupied and free but also walls, 

terrain, and ramps.  

 The experimental results show 

that the proposed method can 

produce accurate maps.  
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 This study aims to create semantic and metric maps of a post-disaster indoor environment 

similar to standard the National Institute of Standards and Technology (NIST) search and 

rescue test arenas that first-responders can easily read. We prefer to use point cloud data 

acquired with an RGB-D camera since it does not be affected by post-disaster environments’ 

dusty and dull nature. Besides, each point cloud data is processed separately so that the 

semantic and metric maps grow incrementally. The Dynamic Graph Convolutional Neural 

Network (DGCNN) is used to classify points as sematic categories such as walls, terrain, and 

inclined and straight ramps. RTAB-Map and the semantic map are utilized to generate the 

octree-based 3D metric map. The experiments are conducted in a simulated environment 

modelled with Gazebo similar to NIST test arenas to show the effectiveness of the proposed 

method. 

 
Figure A. The metric(left) and semantic(right) maps of the environment 
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Aim of Article: This study aims to construct semantic and metric maps of a search and rescue 

test arena with a mobile robot.  

Theory and Methodology: The point cloud data is used to generate semantic and metric maps. 

DGCNN architecture is applied to determine the semantic class of points. The RTAB-Map and 

semantic map are utilized to generate an octree-based 3D metric map.  

Findings and Results: Figure A shows our experimental results. As seen from the figure, the 

proposed method produced accurate semantic and metric maps.  

Conclusion : The proposed method process each point cloud data separately and grows the 

semantic and metric maps incrementally so that it decreases computational complexity.   
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H I G H L I G H T S / Ö N E  Ç I K A N L A R 

 Afet sonrası bina içi ortamlarda  ilk yardım ekiplerinin kolaylıkla kullanabileceği anlamsal ve metik harita üretilmiştir. 

 Anlamsal haritanın çıkarılması için nokta tabanlı derin öğrenme mimarisinden faydalanılmıştır. 

 8-li ağaç yapısında 3B metrik haritada sadece dolu ve boş vokseller değil duvar, zemin ve rampalara ait olan vokseller de yer 

almaktadır. 

 Test sonuçları önerilen yöntemin doğruluğu yüksek haritalar üretebileceğini göstermiştir.  
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Bina içi ortamlarda zehirli madde yayılımı, sel, yangın ve deprem gibi afetlerden sonra robotlar 

kullanılarak arama ve kurtarma yapılmasına yönelik çalışmalar son yıllarda hız kazanmıştır. Bu 

çalışmanın ana motivasyonu, ilk yardım ekiplerinin kolaylıkla kullanabileceği afet sonrası bina 

içi ortamın metrik ve anlamsal haritalarını oluşturmaktır. Bu çalışmada, afet ortamında 

karşılaşılabilecek toz, duman ve yetersiz ışıklandırma gibi faktörlerden etkilenmeyen ve 

nesnelerin geometrik yapısını yüksek doğrulukta temsil edebilen nokta bulutu verilerinin 

kullanılmasına karar verilmiştir. Her bir adımda alınan nokta bulutu ayrı ayrı işlenerek önerilen 

yöntemin hesaplama karmaşıklığının düşürülmesi amaçlanmıştır. Anlamsal haritanın üretilmesi 

aşamasında geçmiş çalışmalardan farklı olarak nokta tabanlı derin öğrenme mimarisi DGCNN 

kullanılmıştır. Böylece nokta bulutunda yer alan her noktanın anlamsal sınıfı (duvar, zemin, 

eğimli ve düz rampa) belirlenmiştir. 3B metrik haritanın oluşturulması için RTAB-Map ve 

anlamsal harita birlikte kullanılarak 8-li ağaç yapısında bir gösterim elde edilmiştir. Bu haritada 

önceki çalışmalardan farklı olarak sadece dolu ve boş vokseller değil, aynı zamanda duvar, 

zemin ve rampa sınıflarına ait olan vokseller de yer almaktadır. Önerilen yöntemin test edilmesi 

için Gazebo benzetim ortamında NIST ortamlarına benzer bir test alanı modellenmiş ve bir 

Pionner 3-AT gezgin robot teleoperasyon yöntemi ile gezdirilmiştir. Test sonuçları önerilen 

yöntemin başarılı bir şekilde anlamsal ve metrik harita üretebildiğini göstermiştir.  

 

Anahtar Kelimeler: Arama ve Kurtarma, Gezgin Robot, 3B Anlamsal Harita, 3B Metrik 

Harita, Nokta Bulutu, Nokta Tabanlı Derin Öğrenme  
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I. INTRODUCTION 

After disasters such as fire, earthquakes, floods, and toxic 

substances, post-disaster indoor environments could be 

hazardous for search and rescue teams that include 

humans and animals. The main risks in these 

environments are the possibility of spreading dangerous 

matters and collapsing due to the structural breaking 

down. For these reasons, the studies that addressed search 

and rescue tasks exploiting robots in these environments 

have been gained popularity. Although using robots in 

search and rescue tasks could appear an appropriate 

solution to avoid risks for humans and animals, post-

disaster environments would be challenging even for 

robots to achieve the tasks they are expected to perform. 

The primary difficulties in post-disaster environments 

that the robot must cope with are uneven terrain and 

poorly lightened circumstances due to these 

environments’ dusty and dull nature. To deal with these 

challenges, the robots that operate in post-disaster 

environments must have advanced capabilities such as 

interpreting raw data, producing semantic information, 

and being aware of circumstances. Thanks to the 

improvements in perception technologies and 

corresponding algorithms and software, robots approach 

to reach these abilities. However, it is necessary to 

observe steadily positive and negative aspects of 

improved methods for giving direction to future works.  

Unfortunately, the researchers generally may not have the 

opportunity to test their works since post-disaster indoor 

environments are rarely faced, and building these 

environments is complicated and expensive. In order to 

overcome that problem, DARPA and RoboCup 

organizations regularly constituted competitions for 

search and rescue missions.  

 

The RoboCup rescue competitions have been conducted 

since 2001. The main goal of these competitions is to 

increase the performance of the robots in search and 

rescue missions. After the first competition, Kitano and 

Tadokoro [1] revealed challenges about these missions 

and introduced the first standards and evaluation metrics. 

Then, Jacoff et al. proposed reference test arenas for 

autonomous mobile robots developed by NIST [2]. An 

example reference test arena is shown in Fig. 1. Also, 

they defined objective performance evaluation criteria 

such as the number of locating victims and producing 

accurate maps that first-responders can easily read. In 

2006, the RoboCup rescue competitions were separated 

into two categories: Agent and the virtual robot 

competitions. While the agent competitions aimed to 

coordinate multi-agents systems that include police 

officers, firefighters, and first-responders to handle 

disasters in urban scenarios, virtual robot competitions 

focused on navigation, mapping, and victim detection [3]. 

After the first virtual robot competition, Balakirsky et al. 

[4] assessed the performance of the participant teams 

under specific standards and criteria. In order to evaluate 

the maps, they used metrics such as attributions that 

indicate crucial points such as victims and obstacles, 

accuracy, skeleton and metric quality, and utility that 

provides cleared regions, locations that the victims are 

trapped for first responders. The participant teams 

generally preferred to generate topological maps with 2D 

lasers. Over the years, the researchers developed new 

methods to improve the mapping capabilities of the 

robots. For example, in 2009, teams preferred to use 

image processing approaches to produce the 

environments' metric map [5]. These improvements 

promoted the administration of the competitions to 

introduce more challenging environments for robots. In 

2010, active elements such as smoke, elevator, and the 

ferry was integrated into the environments. The 

champion team at RoboCup 2012 used the simultaneous 

localization and mapping (SLAM) approach to generate 

geometric map of the environment. The SLAM approach 

segmented the laser scans into lines depending on the 

distance between successive points. Besides, the 

produced line segments were used to construct a semantic 

map that separates the environment into spaces such as 

small rooms, large rooms, and corridors divided by 

doorways. This was the first attempt to construct 

semantic maps in the search and rescue domain [6]. Sheh 

et al. [7] overviewed the 16 years of Robocup rescue 

competitions. The authors emphasized the robots' 

progress in terms of mobility, autonomy, perception, and 

adaptation to inhospitable environments such as poor 

lighting and piles of rubbles. Then, they announced 

novelties in the competition for the coming years. 

Probably, the most important one was using Robot 

Operating System (ROS) together with Gazebo 

simulation environment. ROS [8] is a commonly used 

framework to perform robotic applications. It contains 

libraries (in other words, packages) for a variety of 

purposes, from mapping to manipulation of a robot arm. 

ROS generally operates with Gazebo [9] simulation 

environment, which provides high-performance physics 

engines and 2D/3D sensors.  
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Figure. 1.  An example reference test arena [5].  

 

After ROS and Gazebo's introducing, participants of the 

virtual robot competition began to use ROS packages 

together with Gazebo. For example, in 2017, Chukyo 

Rescue A Team [10] employed GMapping [11] and 

Hector SLAM [12] packages for mapping. GMapping 

[11] is a well-known mapping approach since it was 

introduced because it could be employed in both indoor 

and outdoor applications. The main advantage of that 

method is the ability to create accurate maps with low 

computational complexity. However, GMapping 

approach accepts raw 2D laser range data and odometry 

to generate a 2D occupancy grid map. Similarly, the 

Hector SLAM [12] approach was applied to produce 2D 

metric maps. The Hector SLAM's positive aspects are it 

does not need to use odometry data and has a high update 

rate. YILDIZ Team [13] utilized Octomap [14] to 

describe 3D environments. OctoMap was proposed to 

build a representation (in other words, map) of 3D 

environments based on octree data structure [14]. First, 

the data is represented with only one voxel that contains 

all points. Then, it splits into eight voxels of the same 

size. The process is repeated until the predefined depth, 

or voxel size is accomplished. The main contribution of 

OctoMap representations is using a probabilistic 

occupancy estimation approach to determine free, 

occupied, and even unknown voxels. Besides, OctoMap 

is a memory-efficient representation when it is compared 

to previous approaches. However, the computational 

complexity of OctoMap is not appropriate to produce 

fine-detailed maps. For example, as the voxel size 

decreases, especially less than 0.05 meters, to describe 

details of scenes, OctoMap requires significant durations 

for generating maps. Also, it does not take into account 

the semantic clues of the scenes. In 2018, SOS RS Team 

[15] exploited FastSLAM algorithm [16] for mapping. 

FastSLAM algorithm uses the 2D laser range data as 

input and generates the geometric map of the 

environment. This algorithm decreases computational 

complexity of SLAM approaches significantly. In the 

same year, AutonOHM Team [17] employed one of the 

ROS packages, which is called ohm_tsd_slam [18] to 

generate a 2D map of the environment. The main 

advantage of this package is to integrate data gathered by 

RGB-D cameras and 2D/3D laser range finders within 

the same representation. Similar to the OctoMap 

approach, ohm_tsd_slam package cannot interpret the 

scenes in terms of semantic information. In 2019, ATR 

Team [19] utilized Real-Time Appearance-Based 

Mapping (RTAB-Map) [20] to create a 2D occupancy 

grid of the rescue environment. Besides, RTAB-Map also 

provides 3D point cloud data. RTAB-Map ROS package 

is integrated with OctoMap so that it can generate the 

voxel representation of the environment and separate 

voxels as occupied, free, and unknown [21]. Besides, 

RTAB-Map contains many feature extractor algorithms 

such as SIFT, SURF, BRIEF, FAST etc. to recognize 

some objects such as walls, terrain, and other everyday 

objects from the visual data. Therefore, it can produce 

semantic information. Unfortunately, RTAB-Map cannot 

identify ramps that placed NIST's test arenas since it did 

not design for search and rescue missions. 

 

As mentioned above, the participant teams of virtual 

robot competitions generally focused on mapping 

approaches that generate metric, topologic, and geometric 

maps. Extracting semantic information or producing 

semantic maps were considered from only a few teams. 

However, some previous studies that interested in the 

semantic classification of walls, terrain, and ramps were 

proposed. These studies are generally cast into two 

groups. In the first group, the well-known segmentation 

methods such as region growing [22] and RANSAC [23] 

are applied to obtain planar surfaces. Region growing 

uses a predetermined number of neighbors or search 

radius to determine the points that belong to the same 

planar surface. Therefore, it may not be appropriate for 

real-time applications due to its high computational 

complexity. On the other hand, RANSAC is a fast and 

accurate segmentation method aiming to determine a 

mathematical model for planes. However, it can clusters 

points that have a similar mathematical model into a 

plane. This could be problematic since RANSAC does 

not take into account the neighboring relationship. After 

planar surfaces are specified, segmented planes are 

classified depending on geometric features of planes such 

as normals of points. In the second group, learning 

approaches are employed for semantic segmentation. 

These studies generally prefer to apply the Convolutional 

Neural Networks (CNN) approach to visual data. A 

recent study proposed by Deng et al. [24] uses CNN to 
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determine point-wise semantic labels with RGB and 

depth images in NIST test arenas. On the other hand, 

Turgut and Kaleci [25] concentrated on directly using 

point cloud data instead of visual data. For that reason, 

they examined point-based deep learning architectures 

and they made a comprehensive comparison for PointNet 

[26], PointNet++ [27], PointCNN [28], and DGCNN [29] 

architectures that are classified walls, terrain, and ramps 

in a simulated environment similar to NIST test arenas. 

 

In this study, we aim to produce the 3D metric and 

semantic maps of a simulated environment similar to 

NIST reference test arenas with a mobile robot. In this 

way, we can provide an accurate semantic map, which 

describes walls, terrain, and ramps, that first-responders 

can easily read. It is important to note that generating 

accurate maps is one of the crucial evaluation criteria in 

virtual robot competitions because an accurate map can 

significantly decrease searching victim duration and 

protect first-responders from accidents. Besides, 

producing a semantic map can contribute robot's 

autonomous navigation capability. For example, the robot 

can navigate more reliable by adjusting its velocity when 

it knows the slope of a ramp. Also, the robot can generate 

suitable waypoints while traversing ramps to keep its 

balance.  In fact, the robot can consider ramps to enhance 

its path plan.  

 

The previous studies that address the semantic 

classification of walls, terrain, and ramps are rare, and 

they used generally visual and 2D range data. However, 

the visual data may not be appropriate for dusty, dull, and 

poorly lightened post-disaster environments. On the other 

hand, 2D range data cannot be affected by these 

situations. Nevertheless, its capability to describe the 3D 

characteristics of the scene is insufficient. At that point, 

using point cloud data can be a favorable solution to cope 

with the drawbacks of visual and 2D range data. 

Therefore, we placed an RGB-D camera on a P3-AT 

robot and utilized RTAB-Map ROS package to gather 

point cloud data of a scene. One of the contributions of 

this study is processing a single scene, which is captured 

after each predetermined time interval while the robot 

navigates in the environment by teleoperation.  In this 

way, the semantic and metric maps grow step-by-step, 

and the computational complexity of the proposed 

method is decreased. The second contribution is applying 

a point-based deep learning architecture DGCNN, which 

receives a single scene and determines point-wise 

semantic classes, instead of using visual data. The weight 

of DGNN model generated by Turgut and Kaleci [25] 

with data acquired in a different simulated environment is 

used to classify each point. The last contribution is 

creating a 3D metric map that the robot needs to 

navigate. Apart from the previous studies, we utilize 

RTAB-Map and the semantic map while producing the 

octree-based 3D metric map. In the map, each voxel has a 

semantic label so that robot can plan its path more 

reliable.  

 

The rest of the paper is organized as follows: In Section 

2, the proposed method is explained in detail. The 

experimental setup and experiments are presented in 

Section 3. The conclusion and future works are given in 

Section 4. 

II. METHOD 

The proposed method consists of three stages. In the first 

stage, RTAB-Map is employed to gather point cloud 

data. Besides, we made some modifications to obtain 

point cloud data for each scene. In the second stage, we 

construct a semantic map of each separate scene with the 

aid of point-based deep learning architecture DGCNN. 

Then, we merge the current map with the global semantic 

map. Lastly, similar to the semantic map, we build a 

metric map (in other words, octree map) of the current 

scene and merge it with the previously generated metric 

map. In this stage, we obtain free and occupied voxels 

from RTAB-Map, and then we utilize the semantic map 

to classify voxels in terms of wall, terrain, inclined and 

straight ramps. 

 

A. Gathering Point Cloud Data 

We used the RTAB-Map ROS package to gather point 

cloud data. RTAB-Map receives raw point cloud data 

acquired with the RGB-D sensor of the robot (Fig. 2(a)). 

It is important to note that the raw point cloud data is 

obtained according to the robot's local coordinate system 

(Fig. 2(b)). Hence, RTAB-Map automatically transforms 

the raw point cloud data into the global coordinate 

system of Gazebo simulation environment with the aid of 

the robot's position and orientation. Then, RTAB-Map 

applies the voxel filter depending on the GridCellSize 

parameter to downsample the transformed point cloud 

data (Fig. 2(c)). In this way, computational complexity 

decreases because the number of samples is reduced 

without losing the general characteristics of the data. 

Another crucial issue about the gathering point cloud data 

is that RTAB-Map accumulates point cloud data during 

the map producing process as a default property. After 

this process is completed, it reveals an entire map of the 

environment. However, this default property is not 

appropriate for constructing the semantic and metric 

maps of a search and rescue environment. The main  
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(a)                   (b)                     (c) 

Figure. 2.  Gathering point cloud data. (a)  The red, green, and blue lines at the upper-right corner of the image indicate Gazebo’s 

global coordinate system. The same colored lines on the robot show robot’s local coordinate system. (b) The raw point cloud data 

according to the robot’s local coordinate system. (c) The downsampled point cloud data according to the Gazebo’s global 

coordinate system. 

 

reason for that is decreasing computational complexity 

while processing point cloud data separately for each 

scene. In order to achieve this, we adjusted the 

MaxNodes parameter. 

B. Constructing Semantic Map 

After we obtain point cloud data for a scene, the 

duplicated points are removed from the point cloud data 

to diminish the computational complexity of the 

approach. Then, the DGCNN architecture is used to 

classify points as sematic categories such as wall, terrain 

inclined, and straight ramps. It is a graph-based 

architecture that creates local regions for each point in 

the point cloud. In these local regions, K neighbors of a 

point (Pc) are found. In order to determine these K 

neighbors of Pc, if the point features are exist, the 

distance in feature space is used, otherwise spatial 

distance is used. DGCNN builds a graph for each local 

region, and the points (Pc and its K neighbors) that 

belong to the local region are considered nodes of the 

graph. The edges of the graph are defined only between 

Pc and its K neighbors. The weights of the edges are x, y, 

and z coordinates of neighbors relative to Pc in the first 

layer. In the successive layers, the weights of edges are 

features of points relative to the previous layer. After 

local regions and corresponding graphs are constructed, 

Multi-Layer Perceptron (MLP) is applied to edges for 

extracting features of points. The features of a local 

region are extracted by applying the maximum pooling 

method to the features of all points situated in the local 

region. In other words, points are evaluated by 

considering K neighbors in local regions instead of 

evaluating each point independently. The process steps 

mentioned above are called EdgeConv operator, and the 

operator can easily integrate into any architecture. The 

DGCNN architecture was created by combining the 

PointNet architecture and EdgeConv operator. In contrast 

to architectures that process edges of the graph of local 

regions, the neighborhood relationship between points is 

dynamically updated according to feature space. Besides, 

the local regions are not expanded hierarchically, unlike 

other architectures. 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure. 3.  An example for construction of semantic map. (a) 

Clustering of point depending on class labels. (b) Segmentation 

of planar surfaces of class. (c) Merging current map with 

global one.  
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The DGCNN architecture determines the semantic label 

of each point in the point cloud data. After that point, we 

cluster the points in terms of their labels. An example 

point cloud is shown in Fig. 3(a). In this figure, red, 

yellow, blue, and purple indicate wall, terrain, inclined, 

and straight ramps classes, respectively. As seen from the 

figure, each class could contain different planar surfaces, 

just like walls orthogonal to each other. Therefore, we 

apply RANSAC [30] segmentation method to segment a 

class' points that belong to different planar surfaces. This 

process is repeated for each class so that each planar 

surface in the scene is determined. The result of the 

segmentation process is given in Fig. 3(b). We show each 

planar surface with different colors in the figure. Lastly, 

segmented planar surfaces are merged with the global 

semantic map depending on the position and orientation 

of the planar surfaces of the current and global map. The 

resultant semantic map is represented in Fig. 3(c). In the 

figure, green and orange describe the global and current 

semantic maps, respectively.     

 

C. Constructing Metric Map 

Robots generally require an appropriate representation of 

the environment to achieve the tasks they are expected to 

perform. One of these representations is the metric map. 

In previous studies, occupancy grids were frequently 

applied to obtain 2D metric maps. Occupancy grids 

describe the environment with a grid composes of equal-

size cells. Each cell has a probabilistic value between 0 

and 1, depending on its amount of occupancy. Besides, 

each cell must belong to one of the three states: free, 

occupied, and unknown. In the beginning, all cells are 

initialized with 0.5 to indicate the unknown state. Then, 

as the robot gathers information from the environment, 

the cells' probabilistic value is updated [31]. In a similar 

manner, the octree data structure is commonly employed 

to generate 3D metric maps [14, 21]. An example for the 

octree data structure is given in Fig. 4. First, the data is 

represented with only one voxel that contains all points. 

This is generally called level 0 or root node. Then, it 

splits into eight voxels of the same size (level 1). 

Simultaneously, voxels of octree are classified as empty 

(free) and non-empty (occupied), whether consisting of at 

least one point or not. The process is repeated until the 

predefined depth or voxel size (VSIZE) is accomplished. 

 

In this study, we utilized RTAB-Map ROS package to 

construct an octree. RTAB-Map can also determine the 

state of the voxels as free and occupied since it integrates 

with OctoMap. As a default, RTAB-Map ROS package 

only provides occupied voxels. However, it has 

RayTracing ability that fills the unknown spaces between  

 
 

Figure. 4.  An example for the octree data structure [32].  

 

the sensor and occupied voxels. Therefore, we enabled 

RayTracing ability to obtain free voxels. An example for 

constructing the metric map is shown in Fig. 5. In this 

example, we used the same scene that is given in Fig. 3. 

The white and black colors in Fig. 5(a) depict free and 

occupied points taken from the RTAB-Map. The 

corresponding metric map is shown in Fig. 5(b). At that 

point, we used the semantic map to classify occupied 

voxels into walls, terrain, inclined, and straight ramps. To 

achieve this, we first identified the points that belong to a 

voxel. Then, the semantic class of each point in that 

voxel was specified with the aid of the semantic map. 

Lastly, we calculated a histogram to count the number of 

points for each class and determined the dominant 

semantic class, which has the maximum number of 

points, of that voxel through the histogram. The semantic 

map and the corresponding metric map of the scene are 

illustrated in Fig. 5(c) and Fig. 5(d), respectively. In 

order to merge the current and global metric maps, we 

first determined the boundary voxels of both maps. Then, 

we considered the positions and orientations of boundary 

voxels. Lastly, we found neighbor voxels and merged the 

maps. 

III. EXPERIMENTAL WORKS 

A. Experimental Setup 

We used ROS and Gazebo to conduct the experiments. 

First, we modeled ESOGU Artificial Intelligence & 

Robotic Laboratory Search and Rescue Test Arena in 

Gazebo simulation environment (Fig. 6(a)). The 

dimensions of environment are 6 x 4 meters. Then, we 

utilized hector_nist_arenas_gazebo ROS package [33] to 

insert ramps in the environment (Fig. 6(b)). A Pioneer 3-

AT mobile robot was launched in the modeled 

environment with an Asus XTion Pro RGB-D sensor to 

capture point cloud data. We used teleop_twist_keyboard 

ROS package [34] for the teleoperation of the mobile 

robot.  
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(a) (b) 

  
(c) (d) 

 

Figure. 5.  An example for construction of metric map. (a)  Free (white) and occupied (black) points taken from the RTAB-Map. 

(b) Corresponding metric map of (a). (c) Semantic map of the scene. (d) Corresponding metric map of (c).  

 

After each predetermined time interval (TimeInterval), 

point cloud data was gathered with RTAB-Map ROS 

package while the robot operates in the simulation 

environment. The TimeInterval parameter is selected 1 

second in this experiment. Also, GridCellSize and 

MaxNodes parameters of RTAB-Map ROS package are 

determined as 0.025 and 1, respectively. A preprocessing 

step must be applied to the point cloud data for the scene 

classification problem of point-based deep learning 

architectures. Therefore, the scene is divided into blocks 

instead of using the entire scene to avoid losing data and 

detect local features. As a result, we separated a point 

cloud data into 1 m2 blocks in the xy plane independent 

from the points' z coordinates. Deep learning 

architectures accept a fixed number of points. In this 

study, we specified the number of points in a block as 

4096. We applied random upsampling or downsampling 

to the blocks that contain less than or greater than 4096 

points, respectively. Besides, we removed the blocks that 

have less than 500 points. DGCNN architecture can 

receive coordinates, normalized coordinates, and color 

information of points as an input. In this study, we did 

not use color information, and points were presented with 

6D features (x, y, and z coordinates and normalized x, y, 

and z coordinates). We used the default parameters for 

scene segmentation of DGCNN architecture. 

  
 

 
                                      (a) 

 
(b) 

 

Figure. 6. (a) ESOGU AIRLAB search and rescue test arena, 

(b) Gazebo model of the test arena.  
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The DGCNN architecture is implemented in Python 

programming language using TensorFlow library [35]. 

However, the remaining parts of the method are realized 

with C++ programming language. For that reason, we 

used pybind11 wrapper [36]. After the points belong to 

each class were determined, we clustered the points 

depending on the class labels. Besides, we applied 

RANSAC segmentation method to segment different 

planar surfaces. The DistanceThreshold parameter of 

RANSAC is selected 0.02 meters. We used 

octree_viewer module [37] of the Point Cloud Library 

(PCL) [38] to visualize the metric map. In this step, 

VSIZE parameter is chosen 0.05 meters. In order to 

generate semantic and metric maps of the environment 

given in Fig. 6(b), the robot navigated for 160 seconds. 

Therefore, 160 scenes were captured during that process. 

The experiments were carried out on a PC with Intel i7 

processor with 2.8 Ghz, 16 GB RAM, and operating 

system Ubuntu 20.04.     

 

B. Experimental Results 

The experimental results are shown in Fig. 7. In the 

figure, the left and right columns illustrate the metric and 

semantic map of the environment, respectively. The rows 

of the figure represent the results at some steps. The 

mapping process was completed at 160 steps, and we 

preferred to give results at 40, 80, 120, and 160 steps. In 

the figure, red, yellow, purple, and blue colors represent 

the wall, terrain, straight, and inclined ramp classes, 

respectively. We did not visualize points and voxels 

belong to the free semantic class to clarify figures. As 

seen from the results, our semantic and metric maps grow 

incrementally. In this way, the computational complexity 

of the proposed method was decreased. 

 

The results for semantic maps indicate that the proposed 

method successfully classifies walls, terrain, and ramps 

for each scene although the DGCNN model was trained 

with data gathered in a different simulated environment. 

Besides, the proposed method calculates and stores 

properties such as orientation, maximum, and minimum 

coordinates of each planar surface even though we did 

not visualize these properties. Then, the method utilizes 

these properties to merge the current scene and the global 

semantic map. The experimental results indicate that our 

method successfully merges the maps to generate an 

accurate semantic map. In our method, the success of 

producing a metric map of a scene highly relies on the 

semantic map's accuracy. As seen from the figures, the 

metric map of the environment is generated successfully 

since the semantic map is accurately created. Then, the 

current and global maps are integrated carefully with 

determining boundary voxels. The experimental results 

for metric maps show that the proposed method merges 

the maps successfully.   

IV. CONCLUSIONS AND FUTURE WORKS 

This study aims to create semantic and metric maps of an 

environment similar to standard NIST search and rescue 

test arenas. To do that, we utilized RTAB-Map ROS 

package and DGCNN architecture. The proposed method 

grows semantic and metric maps incrementally to 

decrease the computational complexity. Besides, we 

prefer to use point cloud data instead of visual data, 

which many previous studies employed, since point cloud 

data is more suitable for post-disaster environments. In 

contrast to previous studies that address producing 3D 

metric maps, we classified voxels not only occupied and 

free but also walls, terrain, and ramps. The experimental 

results indicate that our method successfully generates 

accurate semantic and metric maps. For future works, we 

plan to develop a new metric map approach and 

determine free and occupied voxels without using 

RTAB-Map since the computational complexity of 

OctoMap that integrated into RTAP-Map is not 

appropriate to produce fine-detailed maps. Besides, we 

aim to create a topological map utilizing the metric map. 

Thus, the robot can efficiently navigate the environment 

by preparing the shortest path plan using the topological 

map.  
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(a) Metric map step 40 (b) Semantic map step 40 

  
(c) Metric map step 80 (d) Semantic map step 80 

  
(e) Metric map step 120 (f) Semantic map step 120 

  
(g) Metric map step 160 (h) Semantic map step 160 

Figure. 7.  Experimental results.    
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