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This paper has two main objectives, the first objective is to define an algorithm for the
right (left) division of multivariate polynomial matrices while the second is to generalize
the concept of Grobner basis to ideals generated by a finite set of multivariate polynomial
matrices.

1. Introduction

In many problems in systems theory, we encounter matrices called ”Polynomial matrices” whose elements are
polynomials over the field of rationals or over the ring of integers, in an indeterminate x or several indeterminate
x, y, z, ... [1]. These matrices constitute one of the most attractive research area in matrices theory.

In this article, we try to make a link between all the matrices whose elements are multivariate polynomials
and one of the most powerful tools in the resolution of polynomial systems, it is Grobner’s Bases [2]. First, we
introduce an algorithm to calculate the quotient and the remainder produced by running a right or left division of A
by a finite set of multivariate polynomial matrices A. Nevertheless, this algorithm present some pathologies linked
essentially to the dependence of remainder on how we order the polynomial matrices inside A, ”The remainder is
not unique”.

This situation led us to reproduce the Buchberger’s technique developed in his PhD thesis by defining a
prototype of Grobner basis in the context of polynomial matrices.

This paper is organized as follow: In the section 2, we give some notations and some auxiliary result needed
in sequel. In the section 3, we give an algorithm for the right division of two or more multivariate polynomial
matrices. Some problems linked to this concept such as the well known membership ideal problem are also
investigated. In order to tackling these problems and pathologies, we present in the section 4, the concept of
Grobner basis for right ideal generated by a set of multivariate polynomial matrices. For this, we will show at
first the notions of monomial ideal and leading terms ideal, than we give the definition of a Grobner basis and
some basic and elementary properties of this notion, this section was achieved by a generalization of some of
Buchberger’s work, such as the Buchberger’s criterion and the Buchberger’s algorithm.
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2. Preliminaries and Notations

Let K be a field and let X be a sequence of n algebraically independent variables x1, x2, ..., xn. Each product
of the form xα1

1 ...xαn
n where α1, ..., αn ∈ N is called a monomial and it will be abbreviated by Xα such that

α = (α1, ..., αn). The set of all monomial over K will be denoted by M(X). It is well known that we can sort
M(X) by some special types of orderings so called monomial orderings. Recall that a total ordering ≺ on M(X)
is called monomial ordering wherever for each Xα, Xβ and Xγ in M(X), we have:

1. Xα ≺ Xβ ⇒ XγXα ≺ XγXβ ,

2. ≺ is well-ordering.

Absolutely, there exists many monomial orderings, each one is convenient for a special type of problems. Among
them, we point to the pure and graded reverse lexicographic ordering denoted respectively by ≺lex and ≺grelex.

Each K−linear combinations of monomials in M(X) is called a polynomial on x1, x2, ..., xn over K. The set
of all polynomials on x1, x2, ..., xn over K will be denoted by K[x1, x2, ..., xn] or shortly K[X]. Clearly, K[X]
equipped with the usual polynomial addition and multiplication, has the rings structure.

Let f ∈ K[X] and ≺ be a monomial ordering on M(X). Then:
- The greatest monomial with respect to ≺ contained in f is called the leading monomial of f and we write lm(f).
- The coefficient of Lm(f) is called the leading coefficient of f , it is denoted by lc(f).
- The leading term Lt(f) of f is the product lc(f).lm(f).
- We call the multidegree of f and we write multideg(f), the power of the leading monomial lm(f) of f .

Now, we will introduce the concept of multivariate polynomial matrices.

Definition 2.1. Let p, q ∈ N∗ and let (fij) 1 ≤ i ≤ p
1 ≤ j ≤ q

be a double sequence of p × q polynomials in K[X]. A

multivariate polynomial matrix is a matrix A(X) of the form

A(X) = (fij) =


f11 f12 · · · f1q
f21 f22 · · · f2q

...
...

. . .
...

fp1 fp2 · · · fpq

 .

The set of all multivariate polynomial matrices of p rows and q columns over K will always denoted by Kp×q[X].

A multivariate polynomial matrix A(X) may obviously be considered as a polynomial in x1, x2, ..., xn whose
coefficients are p× q constant matrices:

A(X) = A(1)Xα1 +A(2)Xα2 + ...+A(s)Xαs . (2.1)

Definition 2.2. A diagonal matrix of order n in Kn×n[X] is said to be monomial matrix if all the diagonal
coefficients equal to the same monomial Xα such that α ∈ Nn. Throughout this paper all monomial matrices will
be denoted by Jα.

Clearly, Each square multivariate polynomial matrix of order n can be written as a linear combination of
monomial matrices in Kn×n[X]:

A(X) =
s∑

i=1

A(i)Jαi .

Notations: For all multivariate polynomial matrix A(X) ∈ Kp×q[X] we have:

1. The leading monomial lm(A(X)) of A(X) is: lm(A(X)) = max
i,j

(lm(fij)).

2. The leading monomial matrix of A(X) is: LM(A(X)) = Jα such that Xα = lm(A(X)).

2

CUJSE 19(1): 001-012 (2022)



Noufa and Boudaoud CUJSE xx(x): xxx-xxx (xxxx)

3. The (matrix) coefficient of LM(A(X)) is the leading coefficient of A(X), it will be denoted by LC(A(X)).

4. The leading term of A(X) is:

LT (A(X)) = LC(A(X))lm(A(X)) = LC(A(X))LM(A(X)) = LC(A(X))Jα.

5. The multidegree of A(X) is : multideg(A(X)) = max
i,j

(multideg(fij)).

The following lemma is very easy to prove.

Lemma 2.1. Let Xα, Xβ ∈ M(X). Then,

1. multideg(Jα) = α.

2. If α = 0, then J0 = Id, Id is the identity matrix of order n.

3. Jα × Jβ = Jα+β.

4. If Xβ divides Xα, then Jβ divides Jα and we have:

Jα = Jα−βJβ.

Definition 2.3. If A(X) is a square multivariate polynomial matrix, then we say that A(X) is regular if LC(A(X))
is invertible.

Example 2.1. Let A(x, y) be a square multivariate polynomial matrix in K2×2[x, y] defined by A(x, y) =(
x2 + xy 3x2 − xy + y2

x2 + y + 1 −xy + 2

)
. Then,

A =

(
1 3
1 0

)
x2 +

(
1 −1
0 −1

)
xy +

(
0 1
0 0

)
y2 +

(
0 0
1 0

)
y +

(
0 0
1 2

)
.

=

(
1 3
1 0

)(
x2 0
0 x2

)
+

(
1 −1
0 −1

)(
xy 0
0 xy

)
+

(
0 1
0 0

)(
y2 0
0 y2

)
+

(
0 0
1 0

)(
y 0
0 y

)
+

(
0 0
1 2

)
.

lm(A) = x2, LM(A) = J(2,0) =

(
x2 0
0 x2

)
, LC(A) =

(
1 3
1 0

)
and multideg(A) = (2, 0), A is regular

because LC(A) is invertible.

In the following proposition, we present some elementary properties linked to the sum and product of multi-
variate polynomial matrices.

Proposition 2.1. Let A(X), B(X) ∈ Kn×n[X] be non-zero multivariate polynomial matrices and let ≺ be any
monomial ordering on M(X). Then

1. multideg(A(X)B(X)) = multideg(A(X)) +multideg(B(X)).

2. If A(X) +B(X) ̸= 0, then

multideg(A(X) +B(X)) ≤ max(multideg(A(X)),multideg(G(X))).

If, in addition, multideg(A(X)) ̸= multideg(B(X)), then equality occurs.

For the rest of the paper we will use the letters A, B to indicate the multivariate polynomial matrices. The
letters of the form A, B stands for the constant matrices

3. Division of Square Multivariate Polynomial Matrices

This section is intended to define a division algorithm for matrices with multivariate polynomials entries.
3
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3.1. The Division’s Algorithm

The problem of the determination of the right (left) quotient and the right (left) remainder of the division of
polynomial matrices was the main point of interest in a large number of papers [3], [4], [5], [6], because of the
large number of its applications in linear system theory. In this section, we give a right (left) division’s algorithm
of multivariate polynomial matrices.

Theorem 3.1. Let ≺ be a monomial ordering on M(X). Then for all matrices A and B in Kn×n[X] such that B
is regular, there exist Qr and Rr in Kn×n[X] such that

A = QrB +Rr,

and Rr = 0, or Rr is a Kn×n− linear combination of monomial matrices which are not r-divisible by LM(B).
Qr and Rr are respectively called the right quotient of A and the right remainder of A on the right division by B.
Similarly, there exist Ql and Rl defined as the left quotient and left remainder of A on the left division by B satisfy

A = BQl +Rl,

with Rl = 0, or Rl is a Kn×n−linear combination of monomial matrices which are not l-divisible by LM(B).

Proof. We prove this theorem by giving an algorithm for evaluating the right quotient and right remainder:

Let A =

p∑
i=1

A(i)Jαi and B =

q∑
j=1

B(j)Jβj
be in Kn×n[X] with αi, βj ∈ Nn. Let LT (A) = A(p)Jαp and

LT (B) = B(q)Jβq , suppose also that B is regular (that is det(B(q)) ̸= 0).
If Jβq does not divide any monomial matrix in A, we put:

Qr = 0 and Rr = A.

If Jβq divides one or more monomials in A, we choose from them the monomial of the higher multidegree.
Without loss of generality, we suppose that Jβq divides Jαp , then:
Compute

A1 = LC(A) [LC(B)]−1

A1 = A−A1Jαp−βqB

If Jβq does not divide any monomial matrix in A1, then:

Qr(X) = A1Jαp−βq ,
Rr = A1.

If Jβq divides one or more monomial matrices in A1, we choose from them the monomial of the higher multide-
gree. Without loss of generality, we suppose that Jβq divides LM(A1), then: We put LM(A1) = Jα(1) and we
calculate:

A2 = LC(A1) [LC(B)]−1

A2 = A1 −A2Jα(1)−βq
B

If Jβq does not divide any monomial matrix in A2, then:

Qr = A1Jαp−βq +A2Jα(1)−βq
,

Rr = A2.

If not, we repeat this operation until we get a matrix As for which Jβq is not a divisor of any monomial in As and
then

Qr = A1Jαp−βq +A2Jα(1)−βq
+ ...+AsJα(s−1)−βq

,

Rd(X) = As.

with α(i) = multideg(Ai(X)) for all i = 1, ..., s.
To determine the left quotient and the left remainder, just perform the right division of the transpose of A by

the transpose of B, then by taking the transposes of the obtained quotient and remainder we get Ql and Rl.
4
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Example 3.1. Let A,B ∈ R2×2[x, y] defined respectively by

A =

(
x2y + 1 2x2y + y − 1
x− y − 2 x2y + 2

)
and B =

(
xy + x+ 1 x− y − 1

x− 2 xy + 2

)
.

We have, LT (A) =

(
1 2
0 1

)(
x2y 0
0 x2y

)
and LT (B) =

(
1 0
0 1

)(
xy 0
0 xy

)
.

Since LM(B) = J(1,1) divides LM(A) = J(2,1), we put:

A1 = LC(A) [LC(B)]−1 =

(
1 2
0 1

)[(
1 0
0 1

)]−1

=

(
1 2
0 1

)
,

A1 = A−A1 × J((2,1)−(1,1))B

=

(
−3x2 + 3x+ 1 −x2 + xy − 3x+ y − 1

−x2 + 3x− y − 2 2− 2x

)
LM(B) = J(1,1) is not a divisor of LM(A1) = J2,0, but A1 contains a monomial matrix J(1,1) which is divisible

by LM(B). Since the coefficient of J(1,1) in A1 is the matrix
(

0 1
0 0

)
, we put

A2 =

(
0 1
0 0

)(
1 0
0 1

)
=

(
0 1
0 0

)
.

and

A2 = A1 −A2J(0,0)B =

(
−3x2 + 2x+ 3 −x2 − 3x+ y − 3

−x2 + 3x− y − 2 2− 2x

)
.

A2 does not contains any monomial matrix divisible by J(1,1). Hence,

Qr = A1.J(1,0) +A2.J(0,0) =

(
x 2x+ 1
0 x

)
and Rr = A2.

Remark 3.1. If Rr = 0 (respectively Rl = 0), then we say that B a right (respectively left) divisor of A.

Proposition 3.1. The right quotient Qr of A and the right remainder Rr of A on the right division by B are
unique.

Proof. Suppose that there exist Qr, Rr and Q′
r, R

′
r in Kn×n[X], such that A = QrB + Rr = Q′

rB + R′
r. Thus,

Rr − R′
r = (Q′

r − Qr)B. If Rr ̸= Rr then Rr − R′
r contains one or more monomial matrices divisible by

LM(B) which impossible because neither Rr nor R′
r contains monomial matrices divisible by LM(B). Hence

Rr(X) = R′
r(X), therefore Qr = Q′

r because B is regular.

The definition of right quotient and remainder can easily be extended to dividends A, which are p × q where
the divisor B is a regular q × q matrix. The uniqueness property is preserved and Qr, Rr are also p× q matrices.
In a similar manner the definition of left quotient and remainder may be extended to q × p matrices, resulting in
unique multivariate polynomial matrices Ql and Rl which are also q × p.

Corollary 3.1. If A and B are two multivariate polynomial matrices commuting in each other, then Ql = Qr and
Rl = Rr.

Now, we focus our intention to study the divisibility of a non null multivariate polynomial matrix A ∈
Kn×n[X] by a set of regular multivariate polynomial matrices A1, A2, ..., As from the same ring Kn×n[X].

Theorem 3.2. Let A = {A1, A2, ..., As} be a set of regular multivariate polynomial matrices in Kn×n[X]. Then
for all A ∈ Kp×n[X], there exist Qr1, Qr2, ..., Qrs in Kp×n[X] such that:

A =
s∑

i=1

QriAi +Rr.

where Rr = 0, or Rr is a combination of terms in Kn×n[X] which are not divisible by any LC(Ai) for all
i ∈ {1, 2, ..., s}.

Proof. We proceed by induction on s, and then the theorem occur.
5

CUJSE 19(1): 001-012 (2022)



Noufa and Boudaoud CUJSE xx(x): xxx-xxx (xxxx)

3.2. The Ideal Membership Problem

To make some context let us consider the following example.

Example 3.2. Let A =

(
xy2 − x 0

0 xy2 − x

)
, B =

(
xy + 1 0

0 xy + 1

)
and C =

(
y2 − 1 0

0 y2 − 1

)
. It is so

easy to verify that:

A
B,C→ −

(
x+ y 0
0 x+ y

)
,

A
C,B→ 0.

This example shows that the right remainder produced by the right division algorithm when run on a multi-
variate polynomial matrix A depends of the choices performed in the run.

This situation leads us to wonder about the following ideal membership problem:
Sometimes, for a right ideal I in GLn(K)[X] generated by a finite set of matrices A = {A1, A2, ..., As} in
GLn(K)[X], we can find some matrices A belongs to I but A do not reduce to zero modulo A1, ..., As.This
seems contradictory.

In order to tackling this problem, we introduce the concept of right (left) Grobner basis for right (left) ideal in
GLn(K)[X].

4. Right and Left Grobner Basis

4.1. Leading Terms Ideal, Monomial Ideal in GLn(K)[X]

Definition 4.1. Let I ⊆ GLn(K)[X] be a right (left) ideal other than {0}, and fix a monomial ordering ≺ on
M(X).
(1) We denote by LT (I) the set of leading terms of non-zero elements of I with respect to ≺.

LT (I) = {A(α)Jα : ∃A ∈ I − {0} such that LT (A) = A(α)Jα}.

(2) We denote by ⟨LT (I)⟩ the right (left) ideal generated by the elements of LT (I).

Let I = ⟨A1, A2, ..., As⟩ be a right (left) ideal in GLn(K)[X], then for all i = 1, ..., s we have, LT (Ai ∈
LT (I) ⊂ ⟨LT (I)⟩, hence:

⟨LT (A1), LT (A2), ..., LT (As)⟩ ⊆ ⟨LT (I)⟩.

This inclusion is strict in general. However, sometimes it is possible to find a set of generators {G1, G2, ..., Gt}
of I , for which we have

⟨LT (I)⟩ = ⟨LT (G1), ..., LT (Gt)⟩.

In what follow, we will focus on the determination of such set of generators. For this, we need to introduce a
prototype to the concept of monomial ideal in GLn(K)[X].

Definition 4.2. A right (left) ideal I in GLn(K)[X] is called monomial if it is generated by monomial matrices,
that is:

I = ⟨{Jα, α ∈ F ⊂ Nn}⟩.

Lemma 4.1. Every right or left monomial ideal I ⊂ GLn(K)[X] has a finite monomial matrices generating set
{Jα1 ,Jα2 , ...,Jαt}.

Proof. This is a simple reformulation of the well known Dickson’s Lemma.

Lemma 4.2. Let J1 ⊆ J2 ⊆ J3 ⊆ ... be a sequence monomial ideals in GLn(K)[X]. For some j ∈ N we must
have Jj = Jj+1 = Jj+2 = ....

Proof. We consider the ideal J =
⋃
i

Ji generated by all monomial matrices in all Ji. By the above Lemma, J has

a finite generating set A. For each Ji ∈ A there exists a ji ∈ N such that Jj ∈ Jji . For j = max
i

(ji) we have

A ⊆ Jj , implying J ⊆ Jj . Since Ji ⊆ J for all i we get the desired equality.
6
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Theorem 4.1. Let I a right (left) in GLn(K)[X] with I ̸= {0}. Then,

1. The ideal ⟨LT (I)⟩ is monomial in GLn(K)[X].

2. There exists a finite set of multivariate polynomial matrices {G1, G2, ..., Gt} in I such that ⟨LT (I)⟩ =
⟨LT (G1), ..., LT (Gt)⟩.

Proof. (1) Consider the ideal generated by the leading monomial matrices of all non zero multivariate polynomial
matrices in I ,

⟨{LM(A), A ∈ I − {0}⟩.

Since LT (A) = LC(A).LM(A), then LT (A) and LM(A) differ only by a multiplicative factor in GLn(K).
Hence,

⟨LT (T )⟩ = ⟨LT (A), A ∈ I − {0}⟩ = ⟨LM(A), A ∈ I − {0}⟩.

Thus ⟨LT (I)⟩ is monomial in GLn(K)[X].
(2) Since ⟨LT (I)⟩ = ⟨LM(A), A ∈ I − {0}⟩, it follows from the above lemma that there exist G1, ..., Gt ∈ I
such that ⟨LT (I)⟩ = ⟨LM(G1), ..., LM(Gt)⟩. Since for all i = 1, ..., t, LT (Gi) and LM(Gi) differ only by a
multiplicative factor in GLn(K), we obtain:

⟨LT (I)⟩ = ⟨LT (G1), ..., LT (Gt)⟩

4.2. Right (Left) Grobner Basis

Definition 4.3. Fix a monomial ordering ≺ on M(X). A finite subset G = {G1, ..., Gt} of non-zero multivariate
polynomial matrices of a right (left) ideal I ⊆ GLn(K)[X] different from {0} is said to be a right (left) Grobner
basis with respect to ≺ if

⟨LT (I)⟩ = ⟨LT (G1), ..., LT (Gt)⟩.

Example 4.1. In GL2(R)[x, y], we consider the right ideal generated by B =

(
xy + 1 0

0 xy + 1

)
and C =(

y2 + 1 0
0 y2 + 1

)
, and let

A =

(
xy2 − x 0

0 xy2 − x

)
∈ R[x, y].

We have shown above that
A = QrB + 0C +Rr

A = Q′
rC + 0B,

, such that

Qr =

(
y 0
0 y

)
, Rr =

(
−x− y 0

0 −x− y

)
and Q′

r =

(
x 0
0 x

)
. The second equation shows that A ∈ I ,

and from the first one we get:
Rr = A−QrB ∈ I.

Thus, LT (Rr) ∈ ⟨LT (I)⟩, but LT (Rr) /∈ ⟨LT (B), LT (C)⟩ because LM(Rr) it is not divisible neither by
LM(B) nor by LM(C(X)).
Consequently, {B,C} is not a right Grobner basis of I .

Proposition 4.1. Each non-zero right (left) ideal in GLn(K)[X] has a right (left) Grobner basis with respect to
every monomial order .

Proof. The result derives immediately from the theorem 4.1.

Lemma 4.3. If G = {G1, ..., Gt} is a Grobner basis for a right (left) ideal I ⊆ GLn(K)[X] with respect to a
monomial order ≺, then G is a basis of I .

7
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Proof. We need to show that I ⊆ ⟨G⟩, so we pick A ∈ I . Let Rr be the remainder produced by a run of the right
division algorithm.
Notice that Rr ∈ I . If Rr ̸= 0, then LT (Rr) ∈ ⟨LT (I)⟩ = ⟨LT (G1), ..., LT (Gt)⟩. This means that some
LT (Gi) divides LT (Rr). This contradicts the properties of the right remainder. Hence Rr = 0, which implies
f ∈ ⟨G⟩.

Proposition 4.2. Let G = {G1, ..., Gt} be a right (left) Grobner basis for a right (left) ideal I ⊆ GLn(K)[X]
with respect to a monomial ordering ≺. The remainder produced by the right division algorithm when run on a
multivariate polynomial matrix A is independent of the choices performed in the run.

Proof. Suppose that one run gave Rr and another gave R′
r. Then,

A =
t∑

i=1

QriGi +Rr =
t∑

i=1

Q′
riGi +R′

r

Thus, Rr −R′
r =

t∑
i=1

(Q′
ri −Qri)Gi, which means Rr −R′

r ∈ I . If Rr ̸= R′
r then there would be a leading term

LT (Rr −R′
r) ∈ ⟨LT (I)⟩ which is not divisible by any LT (Gi) for i = 1, ..., t. This contradicts the fact that G is

a Grobner basis of I . Hence Rr = R′
r.

It follows from the above proposition that if G is a right (left) Grobner basis for a right (left) ideal I ⊆
GLn(K)[X] with respect to a monomial ordering ≺. A multivariate polynomial matrix A belongs to I if and only
if the remainder produced by the right division algorithm is 0.

4.3. Buchberger’s Criterion

In this paragraph we will show how to construct a right (left) Grobner basis for a right (left) ideal I generated by
a finite subset in GLn(K)[X].

Definition 4.4. Let ≺ be a monomial order on M(X) and A,B be two non-zero multivariate polynomial matrices
in GLn(K)[X] with multideg(A) = α and multideg(B) = β, (α, β ∈ Nn). We define the Sr−polynomial
matrix of A and B:

Sr(A,B) = Jγ−α(LC(A))−1A− Jγ−β(LC(B))−1B,

such that γ = (γ1, ..., γn) ∈ Nn with γi = max(αi, βi). Jγ is least common multiple LM(A) and LM(B).
Similarly, the Sl−polynomial matrix of A and B is defined by:

Sl(A,B) = AJγ−α(LC(A))−1 −BJγ−β(LC(B))−1

We observe that the leading terms of the two parts of the Sr−polynomial matrix (respectively Sl−polynomial
matrix) cancel. In particular, every monomial matrix of Sr(A,B) (respectively Sl(A,B)) is ≺ −smaller than Jγ .

Lemma 4.4. Let {A1, ..., As} be a set of multivariate polynomial matrices in GLn(K)[X] and let A = C1A1 +
...+ CsAs with Ci ∈ GLn(K) such that for all i = 1, ..., s, multideg(Ai) = δ ∈ Nn. If multideg(A) < δ Then,

1. A is a GLn(K)−linear combination of Sr(Ai, Aj), i, j ∈ {1, ..., s}.

2. ∀i, j ∈ {1, ..., s} : multideg(Sr(Ai, Aj)) < δ.

Proof. Let us prove the first assertion. For all i ∈ {1, ..., s} we have

lC(CiAi) = CiLC(Ai) and multideg(CiAi) = multideg(Ai) = δ.

From the assumption multideg(C1A1 + ...+ CsAs) < δ, we certainly obtain:

C1LC(A1) + ...+ CsLC(As) = 0. (4.1)
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We have
s∑

i=1
CiAi =

s∑
i=1

CiLC(Ai)[LC(Ai)]
−1Ai

= C1LC(A1)
[
(LC(A1))

−1A1 − (LC(A2))
−1A2

]
+[C1LC(A1) + C2LC(A2)][(LC(A2))

−1A2−
(LC(A3))

−1A3] + · · ·+ [C1LC(A1) + · · ·+
+Cs−1LC(As−1)][(LC(As−1))

−1As−1 − (LC(As))
−1As]

+[C1LC(A1) + · · ·+ CsLC(As)](LC(As))
−1As.

From the equation (4.1), we get:

s∑
i=1

CiAi = C1LC(A1)[(LC(A1))
−1A1 − (LC(A2))

−1A2]

+[C1LC(A1) + C2LC(A2)][(LC(A2))
−1A2 − (LC(A3))

−1A3]+
+...+ [C1LC(A1) + ...+ Cs−1LC(As−1)][(LC(As−1))

−1As−1

−(LC(As))
−1As]

(4.2)

From an other side, we have for all i ∈ {1, ..., s} :

LT (Ai) = LC(Ai)Jδ,

and, for all i, j ∈ {1, ..., s}

Sr(Ai, Aj) = Jδ−δ[LC(Ai)]
−1Ai − Jδ−δ[LC(Aj)]

−1Aj

= [LC(Ai)]
−1Ai − [LC(Aj)]

−1Aj .

Hence, the equation (4.2) can be written as follow:

A =
s∑

i=1

CiAi = C1LC(A1)Sr(A1, A2) + [C1LC(A1) + C2LC(A2)]Sr(A2, A3)

+...+ [C1LC(A1) + ...+ Cs−1LC(As−1)]Sr(As−1, As).

The second assertion follows immediately from the first one.

Theorem 4.2. (Buchberger criterion) Let G = {G1, ..., Gt} ⊆ GLn(K)[X] \ {0} and ≺ be a monomial order on
M(X). G is a Grobner basis for I = ⟨G⟩ if and only if for all i, j the multivariate polynomial matrix Sr(Gi, Gj)
reduces to zero modulo G.

Proof. If G is a Grobner basis for the right ideal I , then it follows from the above lemma that,

Sr(Gi, Gj)
G→ 0

Now, let us prove the converse implication, suppose that G = {G1, ..., Gt} is a basis of I such that for all

i, j ∈ {1, ..., t} with i ̸= j: S(Gi, Gj)
G→ 0. To prove that G is a Grobner basis for I , we need to show that

⟨LT (I)⟩ ?
=⟨LT (G1), · · · , LT (Gs)⟩.

For this, we prove for all A ∈ I that

LT (A) ∈ ⟨LT (G1), ..., LT (Gt)⟩.

Since G is a basis for I , then there exist A1, ..., At ∈ GLn(K)[X], such that

A = A1G1 + ...+AtGt. (4.3)

Let
δ = max{multideg(A1G1), ...,multideg(AtGt)} (4.4)
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The expansion given in (4.3) is not unique, let’s choose an expansion of A for which δ is minimal. Obviously,
multideg(A) ≤ δ.
If multideg(A) = δ, then there exist i ∈ {1, ..., t} such that multideg(A) = multideg(AiGi), thus LT (Gi)
divides LT (A). Hence,

LT (A) ∈ ⟨LT (G1), ..., LT (Gt)⟩.

Let’s prove that multideg(A) = δ.
Suppose that multideg(A) < δ and let m(i) = multideg(AiGi), then we have:

A =
∑

m(i)=δ

AiGi +
∑

m(i)<δ

AiGi.

Let
A =

∑
m(i)=δ

LT (Ai)Gi +
∑

m(i)=δ

(Ai − lt(Ai))Gi +
∑

m(i)<δ

AiGi (4.5)

If m(i) = δ, then
multideg((Ai − LT (Ai))Gi) < δ,

if m(i) < δ, then
multideg(AiGi) < δ.

The two last sums in (4.5) have a multideg less than δ.
From the hypothesis multideg(A) < δ, we certainly obtain:

multideg

 ∑
m(i)=δ

LT (Ai)Gi

 < δ.

Put LT (Ai) = CiJα(i) with Ci ∈ GLn(K). We have∑
m(i)=δ

LT (Ai)Gi =
∑

m(i)=δ

CiJα(i)Gi,

since for all i such that m(i) = δ we have multideg (LT (Ai)Gi) = δ,

the sum
∑

m(i)=δ

CiJα(i)Gi is a GLn(K)−linear combination of Sr−polynomial matrices Sr(Jα(j)Gj ,Jα(k)Gk) :

∑
m(i)=δ

CiJα(i)Gi =
∑
j,k

CjkSr(Jα(j)Gj ,Jα(k)Gk)

for Cjk ∈ GLn(K), and

S(Jα(j)Gj ,Jα(k)Gk) = Jδ−α(j)[LC(Gj)]
−1Jα(j)Gj − Jδ−α(k)[LC(Gk)]

−1Jα(k)Gk

= Jδ[LC(Gj)]
−1Gj − Jδ[LC(Gk)]

−1Gk

= Jδ−γjkSr(Gj , Gk)

such that γjk is the multideg of the least common multiple of LM(Gj) and LM(Gk). Therefore,∑
m(i)=δ

LT (Ai)Gi =
∑
j,k

CjkJδ−γjkSr(Gj , Gk). (4.6)

Or, for all j, k ∈ {1, ..., t} we have

Sr(Gj , Gk)
G→ 0.
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Thus, Sr(Gj , Gk) =
t∑

i=1
DijkGi such that Dijk ∈ GLn(K)[X] satisfy for all i, j, k :

multideg(DijkGi) ≤ multideg(Sr(Gj , Gk)).

Hence,

∑
m(i)=δ

LT (Ai)Gi =
∑
j,k

CjkJδ−γjk

(
t∑

i=1

DijkGi

)

=
t∑

i=1

ÃiGi

where Ãi are multivariate polynomial matrices satisfy multideg(ÃiGi) < δ, also multideg

 ∑
m(i)=δ

LT (Ai)Gi

 <

δ. So, all the terms in (4.5) have a multideg strictly less than δ which contradicts the fact that δ is minimal.
Hence, multideg(A) = δ .

4.4. Buchberger’s Algorithm

Input: A generating set A = {A1, ..., As} ⊆ GLn(K)[X] \ {0} for a right ideal I and a monomial order ≺.
Output: A Grobner basis for I with respect to ≺.

• G = A

• While ∃Ai, Aj ∈ G such that Sr(Ai, Aj) does not reduce to zero modulo G.
- Let Rr be a right remainder produced by the right division algorithm run on Sr(Ai, Aj) and G
- Let G := G ∪ {Rr}.

Proof. To guarantee that Sr(Ai, Aj) reduces to zero modulo G we can use the right division Algorithm. (A
technical remark: If the remainder is non-zero then it is not clear that Sr(Ai, Aj) does not reduce to zero modulo
G. However, it is clear that G is not yet a Grobner basis and it is safe to add the remainder to G, ensuring that
S(Ai, Aj) now reduces to zero.) If the algorithm terminates, then by Theorem 4.2 the set G is a Grobner basis
for ⟨G⟩. Furthermore ⟨G⟩ = I since we only add elements of I to G. To show that the algorithm terminates we
observe that in every step the monomial ideal ⟨LM(Ai) : Ai ∈ G⟩ keeps getting strictly larger because LM(Rr)
is produced from the right division algorithm with the property that no monomial matrix in Ai divides it. By
lemma 4.2 this cannot go on forever.

5. Conclusions

In this article, we try to make a link between matrices whose elements are multivariate polynomials and one of
the most powerful tools in the resolution of polynomial systems, it is Gröbner’s Bases. Firstly, we introduce an
algorithm to calculate the quotient and the remainder produced by running a right or left division of multivariate
polynomial matrix by a finite set of matrices of the same type. Nevertheless, this algorithm present some problems
linked essentially to the dependence of remainder on how we order these polynomial matrices, the remainder is not
unique. This situation leads us to reproduce the Buchberger’s technique developed in his PhD thesis by defining
an algorithm of Gröbner basis in the context of polynomial matrices.
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