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Abstract
We introduce bi-slant ξ⊥-Riemannian submersions from Sasakian manifolds onto Riemann-
ian manifolds as a generalization of slant and semi-slant ξ⊥-Riemannian submersion and
present some examples. We give the necessary and sufficient conditions for the integration
of the distributions used to define the bi-slant ξ⊥-Riemannian submersions and examine
the geometry of foliations. After we obtain necessary and sufficient conditions related to
totally geodesicness of such submersion. Finally we give some decomposition theorems for
total manifold.
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1. Introduction
The differential geometry of slant submanifolds has been studied by many authors since

B.Y Chen [10] defined slant immersions in complex geometry as a natural generalization
of both holomorphic immersions and totally real immersions. Carriazo [9] has introduced
bi-slant immersions. Then Uddin et al. [31] have studied warped product bi-slant immer-
sions in Kaehler manifolds. As a generalization of CR-submanifolds, slant and semi-slant
submanifolds, Cabrerizo et al. [8] have defined bi-slant submanifolds of almost contact
metric manifolds. Recently, Alqahtani et al. [5] have investigated warped product bi-slant
submanifolds of cosymplectic manifolds.

On the other hand Riemannian submersions were introduced by B. O’Neill [19] and A.
Gray [12]. Since then Riemannian submersions have been studied extensively by many
geometers. In [32], B. Watson defined almost Hermitian submersions between almost
Hermitian manifolds. In this study, he investigated some geometric properties between
base manifold and total manifold as well as fibers.

B. Sahin [27] described the notion slant submersion from almost Hermitian manifold
onto an arbitrary Riemannian manifold as follows: Let F be a Riemannian submersion
from an almost Hermitian manifold (M, g, J) onto a Riemannian manifold (N, g′). If
for any nonzero vector X ∈ Γ (kerF∗) the angle θ (X) between JX and Γ (kerF∗) is a
constant, i.e. it does not dependent on the choice of p ∈ M and X ∈ Γ (kerF∗), then it is
called that F is a slant submersion. Therefore the angle θ is said to be the slant angle of
the slant submersion. Many interesting studies on several types of submersions have been
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done. For instance, slant and semi-slant submersions [3, 13–16, 21], bi-slant submersions
[23], quasi bi-slant submersions [22], anti-invariant Riemannian submersions [25,28], semi-
invariant submersions [20,26], pointwise slant submersions [6,18], hemi-slant submersions
[30], Lagrangian submersions [29], generic submersions [24].

Furthermore J.W. Lee [17] defined anti-invariant ξ⊥-Riemannian submersions from al-
most contact metric manifolds. Later Akyol et al studied the geometry of semi-invariant
ξ⊥-Riemannian submersion, semi-slant ξ⊥-Riemannian submersions and conformal anti-
invariant ξ⊥-submersions from almost contact metric manifolds [1, 2, 4].

The paper is regulated as following. In Section 2, we recall the basic formulas and
concepts needed for this paper. In Section 3 we define bi-slant ξ⊥-Riemannian submersions
from Sasakian manifolds onto Riemannian manifolds and give some examples. We also
examine the geometry of leaves of distributions and find necessary and sufficient conditions
for such maps to be totally geodesic. In the last section, we obtain some decomposition
theorems.

2. Preliminaries
An almost contact structure (ϕ, ξ, η) on a manifold M of dimension 2n+ 1 is defined by

a tensor field ϕ of type (1, 1), a vector field ξ (Reeb vector field) and a 1-form η so that
ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ ϕ = 0, ϕξ = 0. (2.1)

Here I is the identity map of TM . There always exist a Riemannian metric g on M
proving the following compatibility condition with the structure (ϕ, ξ, η)

g (ϕX, ϕY ) = g (X,Y ) − η(X)η(Y ) (2.2)
where X,Y are arbitrary vector fields on M . Then the manifold M with the structure
(ϕ, ξ, η, g) is called an almost contact metric manifold. An almost contact metric manifold
is named normal if

[ϕ, ϕ] + 2dη ⊗ ξ = 0 (2.3)

where [ϕ, ϕ] is Nijenhuis tensor of ϕ. Let Φ denote the 2-form on an almost contact metric
manifold (M,ϕ, ξ, η, g) expressed with Φ(X,Y ) = g (X,ϕY ) for any X,Y ∈ Γ (TM). The
Φ is called the fundamental 2-form of M . An almost contact metric manifold (M,ϕ, ξ, η, g)
is said to be a contact metric manifold if Φ = dη. A normal contact metric manifold is
called a Sasakian manifold. Then the structure equations of Sasakian manifold are given
by

(∇Xϕ)Y = g (X,Y ) ξ − η(Y )X and ∇Xξ = −ϕX,

where ∇ is the Levi-Civita connection of g and X,Y ∈ Γ (TM).

Let (M, g) and (N, g′) be a Riemannian manifolds with m and n dimension, respectively,
such that m > n. A surjective mapping F : M −→ N is said to be a Riemannian
submersion if F has maximal rank and the differential map F∗ restricted to Γ

(
(kerF∗)⊥

)
is a linear isometry.

For any q ∈ N , F−1(q) which is an m − n dimensional submanifold of M , called
fiber. A vector field on M is named vertical (or horizontal) if it is always tangent (or
orthogonal) to the fibers[19]. A vector field X on M is named basic if X ∈ Γ

(
(kerF∗)⊥

)
and F∗Xp = X∗F (p) for all p ∈ M [11].
A Riemannian submersion F : M −→ N is qualified by two fundamental tensor fields T

and A on M such that
T(E,F ) = TEF = H∇VEVF + V∇VEHF (2.4)
A(E,F ) = AEF = V∇HEHF + H∇HEVF (2.5)
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where E and F are arbitrary vector fields on M and ∇ the Levi-Civita connection of M .
In addition, for X,Y ∈ Γ

(
(kerF∗)⊥

)
and U,W ∈ Γ (kerF∗) the tensor fields satisfy

TUW = TWU (2.6)

AXY = −AYX = 1
2
V[X,Y ]. (2.7)

Moreover, note that a Riemannian submersion F : M −→ N has totally geodesic fibers
if and only if T vanishes identically. Now, let’s remember the following lemma from [19].

Lemma 2.1. Let F : M −→ N be a Riemannian submersion between Riemannian mani-
folds (M, g) and (N, g′). For the basic vector fields X,Y ∈ Γ(TM) we have

i) g(X,Y ) = g′(X∗, Y∗) ◦ F ,
ii) F∗

(
[X,Y ]H

)
= [X∗, Y∗],

iii) [V,X] is vertical for V ∈ Γ(kerF∗),
iv)

(
∇M
X Y

)H
is a basic vector field corresponding to ∇N

X∗Y∗, where ∇M and ∇N are
the Levi-Civita connections on M and N , respectively.

Furhermore considering (2.4) and (2.5) we write
∇UV = TUV + ∇̄UV (2.8)
∇UX = H∇UX + TUX (2.9)
∇XU = AXU + V∇XU (2.10)
∇XY = H∇XY + AXY (2.11)

where X,Y ∈ Γ
(
(kerF∗)⊥

)
, U, V ∈ Γ (kerF∗) and ∇̄UV = V∇UV .

Let ψ : M −→ N is a smooth map. In that case the second fundamental form of ψ is
defined by

∇ψ∗(X,Y ) = ∇ψ
Xψ∗(Y ) − ψ∗

(
∇M
X Y

)
(2.12)

where X,Y ∈ Γ (TM) and ∇ψ the pullback connection. Note that ψ is called harmonic
if trace∇ψ∗ = 0 and ψ is named as a totally geodesic map if (∇ψ∗) (X,Y ) = 0 for
X,Y ∈ Γ (TM) [7].

3. Bi-slant ξ⊥-Riemannian submersions
Definition 3.1. Let F is a Riemannian submersion from a Sasakian manifold (M,ϕ, ξ, η, g)
onto a Riemannian manifold (N, g′) so that ξ ∈ Γ

(
(kerF∗)⊥

)
. Then F : M −→ N is called

a bi-slant ξ⊥-Riemannian submersion if there exist a pair of the orthogonal distributions
D1 ⊂ kerF∗ and D2 ⊂ kerF∗ such that

(1) kerF∗ = D1 ⊕D2
(2) D1 and D2 are two slant distributions with the slant angles θ1 and θ2, respectively

F is called proper if its slant angles satisfy θ1, θ2 ̸= 0, π2 .

Note that R2n+1 denote a Sasakian manifold with the structure (ϕ, ξ, η, g) defined as

ϕ

(
n∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z

)
=

n∑
i=1

(
Yi

∂

∂xi
−Xi

∂

∂yi

)
,

η = 1
2

(
dz −

n∑
i=1

yidxi
)
, ξ = 2 ∂

∂z

g = η ⊗ η + 1
4

n∑
i=1

(
dxi ⊗ dxi+ dyi ⊗ dyi

)
,
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where (x1, ..., xn, y1, ..., yn, z) are the Cartesian coordinates.
Now, considering the above definition, we can give the following example.

Example 3.2. Let F : R9 −→ R5 be a submersion defined by

F (x1, x2, x3, x4, y1, y2, y3, y4, z) =
(
(cosα)x1 − (sinα)x2,

x3+x4√
2 , (sin β)y1 + (cosβ)y2, y3, z

)
then

kerF∗ = span

{
V1 = sinα ∂

∂x1
+ cosα ∂

∂x2
, V2 = 1√

2

(
∂

∂x3
− ∂

∂x4

)
,

V3 = cosβ ∂

∂y1
− sin β ∂

∂y2
, V4 = ∂

∂y4

}
and

(kerF∗)⊥ = span

{
H1 = cosα ∂

∂x1
− sinα ∂

∂x2
,H2 = 1√

2

(
∂

∂x3
+ ∂

∂x4

)
H3 = sin β ∂

∂y1
+ cosβ ∂

∂y2
,H4 = ∂

∂y3
, ξ = ∂

∂z

}
Thus we obtain D1 = span {V1, V3} and D2 = span {V2, V4} with the angle cos θ1 =

sin(β − α) and θ2 = π
4 . Then F is a bi-slant ξ⊥-Riemannian submersion.

Example 3.3. Given a submersion F : R9 −→ R5 by

F (x1, x2, x3, x4, y1, y2, y3, y4, z) =
(
x1 +

√
3x4

2
, sinαx2 + cosαx3, y1, y3, z

)

Then the submersion F is a bi-slant ξ⊥-Riemannian submersion such that D1 = span{V1 =
1
2

(√
3 ∂
∂x1

− ∂
∂x4

)
, V4 = ∂

∂y4
} and D2 = span{V2 = cosα ∂

∂x2
− sinα ∂

∂x3
, V3 = ∂

∂y2
} with

slant angles θ1 = π
3 and θ2 = α, respectively.

Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian manifold (M,ϕ, ξ, η, g)
onto a Riemannian manifold (N, g′). Then for U ∈ Γ (kerF∗), we have

U = PU +QU (3.1)

where PU ∈ Γ (D1) and QU ∈ Γ (D2).
In addition, for U ∈ Γ (kerF∗), we get

ϕU = ψU + ωU (3.2)

where ψU ∈ Γ (kerF∗) and ωU ∈ Γ (kerF∗)⊥.
Similarly, for X ∈ Γ (kerF∗)⊥, we can write

ϕX = BX + CX (3.3)

where BX ∈ Γ (kerF∗) and CX ∈ Γ (kerF∗)⊥.
The horizontal distribution (kerF∗)⊥ is decompesed as

(kerF∗)⊥ = ωD1 ⊕ ωD2 ⊕ µ (3.4)

where µ is the complementary distribution to ωD1 ⊕ ωD2 in (kerF∗)⊥ and contains ξ.
Also it is invariant distribution of (kerF∗)⊥ with respect to ϕ.
From (3.1), (3.2) and (3.3) we have following equations

ψD1 = D1, ψD2 = D2, BωD1 = D1, BωD2 = D2. (3.5)

Furthermore, by using the equations (2.1), (3.2) and (3.3) we get:
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Lemma 3.4. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′). then we obtain
i) ψ2U +BωU = −U ii) ωψU + CωU = 0
iii) ψ2W +BωW = −W iv) ωψW + CωW = 0
v) ωBX + C2X = −X + η(X)ξ vi) ψBX +BCX = 0
for any U ∈ Γ(D1), W ∈ Γ(D2) and X ∈ Γ

(
(kerF∗)⊥

)
On the other hand from (2.8), (2.9), (3.2) and (3.3) we have

(∇Uψ)V = BTUV − TUωV (3.6)
(∇Uω)V = CTUV − TUψV (3.7)
(∇Uψ)V = ∇̄UψV − ψ∇̄UV (3.8)
(∇Uω)V = H∇UωV − ω∇̄UV (3.9)

for any U, V ∈ Γ (kerF∗). We say that ω is parallel if
(∇Uω)V = 0

for U, V ∈ Γ (kerF∗).
Now we can give the following theorem by using Definition 3.1 and the equation (3.2).

Theorem 3.5. Let F be a Riemannian submersion from a Sasakian manifold (M,ϕ, ξ, η, g)
onto a Riemannian manifold (N, g′). Then F is a bi-slant ξ⊥-Riemannian submersion if
and only if there exist slant angle θi defined on Di such that

ψ2 = −
(
cos2 θi

)
I, i = 1, 2

Proof. The proof of this theorem is the similar to semi-slant submanifolds [8]. �
Theorem 3.6. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then

i) D1 is integrable if and only if
g (TUωψV − TV ωψU,W ) =g (TUωV − TV ωU,ψW )

+ g (H∇UωV − H∇V ωU, ωW )
ii) D2 is integrable if and only if

g (TWωψZ − TZωψW,U) =g (TWωZ − TZωW,ψU)
+ g (H∇WωZ − H∇ZωW,ωU)

for U, V ∈ Γ (D1) and W,Z ∈ Γ (D2).

Proof. For U, V ∈ Γ (D1) and X ∈ Γ
(
(kerF∗)⊥

)
, since g ([U, V ], X) = 0, it is sufficient

to show g ([U, V ],W ) = 0 for W ∈ Γ (D2). Then since M is a Sasakian manifold we get
g ([U, V ],W ) = − g (∇UϕψV,W ) + g (∇UωV, ϕW )

+ g (∇V ϕψU,W ) − g (∇V ωU, ϕW ) .
Theorem 3.5 and the equation (2.9) imply that

sin2 θ1g ([U, V ],W ) = − g (TUωψV − TV ωψU,W ) + g (TUωV − TV ωU,ψW )
+ g (H∇UωV − H∇V ωU, ωW )

Similarly for W,Z ∈ Γ (D2) and U ∈ Γ (D1) it can be shown that
sin2 θ2g ([W,Z], U) = − g (TWωψZ − TZωψW,U) + g (TWωZ − TZωW,ψU)

+ g (H∇WωZ − H∇ZωW,ωU) .



Bi-slant ξ⊥-Riemannian submersions 13

which proves (ii). Thus the proof is completed. �

Theorem 3.7. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then (kerF∗)⊥

is integrable if and only if

g (AYBX − AXBY, ωU) =g (H∇XCY − H∇Y CX,ωU) + η(Y )g (Y, ωU)
− η(X)g (Y, ωU) − g ([X,Y ], ωψU)

for X,Y ∈ Γ
(
(kerF∗)⊥

)
and U ∈ Γ (kerF∗).

Proof. ForX,Y ∈ Γ
(
(kerF∗)⊥

)
and U ∈ Γ (kerF∗). Then sinceM is a Sasakian manifold

we get

g ([X,Y ], U) = − g (∇XY, ϕψU) + g (ϕ∇XY, ωU)
+ g (∇YX,ϕψU) − g (ϕ∇YX,ωU) .

From Theorem 3.5 we deduce that

sin2 θ1g ([X,Y ], U) =
(
cos2 θ2 − cos2 θ1

)
g ([X,Y ], QU) − g (∇XY, ωψU)

+ g (∇YX,ωψU) + g (∇XϕY, ωU) + η(Y )g (X,ωU)
− g (∇Y ϕX,ωU) − η(X)g (Y, ωU)

Then from the equations (2.10) and (2.11), we have

sin2 θ1g ([X,Y ], U) =
(
cos2 θ2 − cos2 θ1

)
g ([X,Y ], QU) − g ([X,Y ], ωψU)

+ g (AXBY, ωU) + g (H∇XCY, ωU) − g (AYBX,ωU)
− g (H∇Y CX,ωU) − η(X)g (Y, ωU) + η(Y )g (X,ωU)

which gives the desired equation. �

Theorem 3.8. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian mani-
fold (M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then the
distribution D1 defines a totally geodesic foliation if and only if

g (TUωψV,W ) = g (TUωV, ψW ) + g (H∇UωV, ωW )

and

g (TUωV,BX) = g (H∇UωψV,X) − g (H∇UωV,CX)

where U, V ∈ Γ(D1), W ∈ Γ(D2) and X ∈ Γ
(
(kerF∗)⊥

)
.

Proof. From the equations (2.1), (2.2) and (3.2) for any U, V ∈ Γ(D1) and W ∈ Γ(D2)
we can write

g (∇UV,W ) = g (ϕ∇UV, ϕW )
= −g (ϕ∇UψV,W ) + g (∇UωV, ϕW )

Then Theorem 3.5 implies that

sin2 θ1g (∇UV,W ) = −g (∇UωψV,W ) + g (∇UωV, ϕW )

Hence by using the equation (2.9) we have

sin2 θ1g (∇UV,W ) = g (H∇UωV, ωW ) + g (TUωV, ψW )
− g (TUωψV,W ) .
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which proves the first equation. On the other hand, for X ∈ Γ
(
(kerF∗)⊥

)
, we derive

g (∇UV,X) =g (∇UϕV, ϕX) + g (V, ϕU) η(X)
= − g (ϕ∇UψV,X) + g (∇UωV, ϕX) + g (V, ϕU) η(X).

Considering Theorem 3.5 we arrive at

sin2 θ1g (∇UV,X) = −g (∇UωψV,X) + g (∇UωV, ϕX) .

From (2.9) we have

sin2 θ1g (∇UV,X) = − g (H∇UωψV,X) + g (H∇UωV,CX) + g (TUωV,BX)

which gives the second equation. �

Theorem 3.9. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian mani-
fold (M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then the
distribution D2 defines a totally geodesic foliation if and only if

g (TWωψZ,U) = g (TWωZ,ψU) + g (H∇WωZ, ωU)

and

g (TWωZ,BX) = g (H∇WωψZ,X) − g (H∇WωZ,CX)

where U ∈ Γ(D1), W,Z ∈ Γ(D2) and X ∈ Γ
(
(kerF∗)⊥

)
.

Proof. By using similar method in Theorem 3.8 the proof of this theorem can be easily
made. �

Theorem 3.10. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian mani-
fold (M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then the
distribution (kerF∗)⊥ defines a totally geodesic foliation on M if and only if(

cos2 θ1 − cos2 θ2
)
g (AXY,QU) = −g (H∇XY, ωψU) + g (AXBY, ωU)

+ g (H∇XCY, ωU) + η(Y ) (X,ωU)

where X,Y ∈ Γ (kerF∗)⊥ and U ∈ Γ (kerF∗).

Proof. For X,Y ∈ Γ (kerF∗)⊥ and U ∈ Γ (kerF∗) we can write

g (∇XY, U) = g (ϕ∇XY, ϕU)
= −g (∇XY, ϕψU) + g (ϕ∇XY, ωU)

By using Theorem 3.5 we obtain

g (∇XY, U) = cos2 θ1g (∇XY, PU) + cos2 θ2g (∇XY,QU) − g (∇XY, ωψU)
+ g (ϕ∇XY, ωU)

From the equations (2.10), (2.11) and PU = U −QU we have

sin2 θ1g (∇XY, U) =
(
cos2 θ2 − cos2 θ1

)
g (AXY,QU)

− g (H∇XY, ωψU) + g (AXBY, ωU)
+ g (H∇XCY, ωU) + η (Y ) g (X,ωU)

Thus we have the desired equation. �
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Theorem 3.11. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian mani-
fold (M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then the
distribution (kerF∗) defines a totally geodesic foliation on M if and only if(

cos2 θ1 − cos2 θ2
)
g (TUQV,X) = − g (H∇UωψV,X) + g (TUωV,BX)

+ g (H∇UωV,CX)

where X ∈ Γ (kerF∗)⊥ and U, V ∈ Γ (kerF∗).

Proof. Suppose that X ∈ Γ (kerF∗)⊥ and U, V ∈ Γ (kerF∗). Then we get
g (∇UV,X) =g (∇UPV,X) + g (∇UQV,X)

=g (ϕ∇UPV, ϕX) + g (ϕU, PV ) η(X) + g (ϕ∇UQV, ϕX)
+ g (ϕU,QV ) η(X)

Considering that M is a Sasakian manifold we arrive

g (∇UV,X) = − g
(
∇Uψ

2PV,X
)

− g
(
∇Uψ

2QV,X
)

− g (∇UωψV,X)

+ g (∇UωV, ϕX)
From (2.8), (2.9) and Theorem 3.5 we obtain

sin2 θ1g (∇UV,X) =
(
cos2 θ2 − cos2 θ1

)
g (TUQV,X)

− g (H∇UωψV,X) + g (H∇UωV,CX)
+ g (TUωV,BX)

which shows our assertion. �
Theorem 3.12. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then F is a
totally geodesic map if and only if(

cos2 θ2 − cos2 θ1
)
g (AXQU, Y ) =g (CH∇XωU, Y ) + g (H∇XωψU, Y )

+ g (ωAXωU, Y ) − g (U, ϕX) η(Y )
and (

cos2 θ1 − cos2 θ2
)
g (TUQV,X) = − g (H∇UωψV,X) + g (TUωV,BX)

+ g (H∇UωV,CX)

where X,Y ∈ Γ (kerF∗)⊥ and U, V ∈ (kerF∗).

Proof. Firstly since F is a Riemannian submersion for X,Y ∈ Γ (kerF∗)⊥ we have
(∇F∗) (X,Y ) = 0.

Therefore forX,Y ∈ Γ (kerF∗)⊥ and U, V ∈ (kerF∗) it is enough to show that (∇F∗) (U, V ) =
0 and (∇F∗) (X,U) = 0. So we can write

g′ ((∇F∗) (X,U), F∗Y ) = −g′ (F∗ (∇XU) , F∗Y ) = −g (∇XU, Y ) .
Then we have

g (∇XU, Y ) = −g (∇XϕψU, Y ) + g (∇XωU, ϕY ) + g (U, ϕX) η(Y )
From the equations (2.10), (2.11) and Theorem 3.5 we obtain the first equation of Theorem
3.12

sin2 θ1g (∇XU, Y ) =
(
cos2 θ2 − cos2 θ1

)
g (AXQU, Y ) − g (CH∇XωU, Y )

− g (H∇XωψU, Y ) − g (ωAXωU, Y ) + g (U, ϕX) η(Y ).
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Also, for the second equation of Theorem 3.12 we have
g′ ((∇F∗) (U, V ), F∗) = −g (∇UV,X) .

Then using the equations (2.8) and (2.9), we arrive

g (∇UV,X) =
(
cos2 θ2 − cos2 θ1

)
g (TUQV,X) − g (H∇UωψV,X)

+ g (TUωV,BX) + g (H∇UωV,CX)
which completes proof. �
Theorem 3.13. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. If ω is parallel
then

i) TUV = −(sec2 θ1)CTUψV
ii) TWZ = −(sec2 θ2)CTWψZ
iii) The fibers of F are (D1, D2)-mixed geodesic.

for U, V ∈ Γ(D1) and W,Z ∈ Γ(D2).

Proof. From the equation (3.7), if ω is parallel we have
TUψV = CTUV

for U, V ∈ Γ(D1). By writing ψV instead of V , we have (i). The proof of (ii) is calculated
by applying the same way. Morever if ω is parallel, from the equation (3.7) we arrive

C2TWU = C(TWψU) = − cos2 θ1TWU

and
C2TUW = C(TUψW ) = − cos2 θ2TUW

for U ∈ Γ(D1) and W ∈ Γ(D2). Then we get
cos2 θ1TWU = cos2 θ2TWU

Therefore the fibers are shown to be (D1, D2)-mixed geodesic. �

4. Decomposition theorems
In this section we give decompositions theorems using the existence of bi-slant ξ⊥-

Riemannian submersion. We assume that g is a Riemannian metric tensor on the manifold
M = M1 ×M2 and the canonical foliations DM1 and DM2 intersect vertically everywhere.
Then g is the metric tensor of a usual product of Riemannian manifold if and only if DM1
and DM2 are totally geodesic foliations.

Now we can write the following theorems by using Theorem 3.8-3.10,

Theorem 4.1. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then M is a
locally product manifold of the form MD1 ×MD2 ×M(kerF∗)⊥ if and only if

g (TUωψV,W ) =g (TUωV, ψW ) + g (H∇UωV, ωW ) ,
g (TUωV,BX) =g (H∇UωψV,X) − g (H∇UωV,CX) ,
g (TWωψZ,U) =g (TWωZ,ψU) + g (H∇WωZ, ωU) ,
g (TWωZ,BX) =g (H∇WωψZ,X) − g (H∇WωZ,CX)

and (
cos2 θ1 − cos2 θ2

)
g (AXY,QU) = −g (H∇XY, ωψU) + g (AXBY, ωU)

+ g (H∇XCY, ωU) + η(Y ) (X,ωU)
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for U, V ∈ Γ(D1), W,Z ∈ Γ(D2) and X,Y ∈ Γ
(
(kerF∗)⊥

)
.

Theorem 4.2. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2. Then M is a
locally product manifold of the form MkerF∗ ×M(kerF∗)⊥ if and only if(

cos2 θ1 − cos2 θ2
)
g (TUQV,X) = − g (H∇UωψV,X) + g (TUωV,BX)

+ g (H∇UωV,CX)
and (

cos2 θ1 − cos2 θ2
)
g (AXY,QU) = − g (H∇XY, ωψU) + g (AXBY, ωU)

+ g (H∇XCY, ωU) + η(Y ) (X,ωU)

for U, V ∈ Γ(D1), W,Z ∈ Γ(D2) and X,Y ∈ Γ
(
(kerF∗)⊥

)
.

Theorem 4.3. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian mani-
fold (M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2 such that
(kerF∗)⊥ = ωD1 ⊕ ωD2 ⊕ ⟨ξ⟩. Then M is a locally product manifold of the form MD1 ×
MD2 ×M(kerF∗)⊥ if and only if

g (TUωψV,W ) =g (TUωV, ψW ) + g (H∇UωV, ωW ) ,
g (TUωV, ϕX) =g (H∇UωψV,X) ,
g (TWωψZ,U) =g (TWωZ,ψU) + g (H∇WωZ, ωU) ,
g (TWωZ, ϕX) =g (H∇WωψZ,X)

and (
cos2 θ1 − cos2 θ2

)
g (AXY,QU) = − g (H∇XY, ωψU) + g (AXϕY, ωU)

+ η(Y ) (X,ωU)

for U, V ∈ Γ(D1), W,Z ∈ Γ(D2) and X,Y ∈ Γ
(
(kerF∗)⊥

)
.

Theorem 4.4. Let F be a bi-slant ξ⊥-Riemannian submersion from a Sasakian mani-
fold (M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′) with slant angles θ1, θ2 such that
(kerF∗)⊥ = ωD1 ⊕ωD2 ⊕ ⟨ξ⟩. Then M is a locally product manifold of the form MkerF∗ ×
M(kerF∗)⊥ if and only if(

cos2 θ1 − cos2 θ2
)
g (TUQV,X) = − g (H∇UωψV,X) + g (TUωV, ϕX)

and (
cos2 θ1 − cos2 θ2

)
g (AXY,QU) = − g (H∇XY, ωψU) + g (AXϕY, ωU)

+ η(Y ) (X,ωU)

for U, V ∈ Γ(D1), W,Z ∈ Γ(D2) and X,Y ∈ Γ
(
(kerF∗)⊥

)
.
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