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ABSTRACT 

 

Efficient nitrogen (N) use is one of the most crucial issues for crop management in developing countries. Since 

Turkish agricultural practices tends to use lower inputs of N  fertilizers, a field trial was carried out in 2007-08 

and 2008-09 cropping years to determine response of six oat genotypes (Seydisehir, Apak, Yesilkoy-330, 

Amasya, Checota and Yesilkoy-1779) to three N rates (0, 100 and 200 kg ha
-1

). According to the results, 

differences between the years were significantly important for all investigated traits except soil nitrogen 

content at planting (NCP), nitrogen content at maturity (NCM) and nitrogen accumulation in grain (NAG). 

Genotypes significantly varied for all traits except NCP, nitrogen in grain (NG) and NAG. However, 

differences among N rates were significant for all traits except NCP.Among the genotypes Checota had the 

highest nitrogen use efficiency (NUE) and grain yield (GY) (20.6 kg kg
-1

 N and 2590 kg ha
-1

, respectively).  
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INTRODUCTION 

Hexaploid oat (Avena sativa L. and Avena byzantina 

Coch.) is widely used for human food and animal feed. 

Despite oat production decreases gradually in the world as 

well as in Turkey, demand in oat for human consumption 
increased due to dietary benefits of whole grain and β-

glucan (soluble fiber) (Achleitner et al., 2008).  

In cereals N fertilization accounts for significant 

proportion of the total input costs and may affect plant 

growth, development, yield and quality (Mohr et al., 

2005). Reduced use of N fertilizer is likely to decrease 

both production costs and pollution, but could also result 

in reduced yields (Cassman et al., 2003). However, 

increasing N concentration does not always increase grain 

yield due to diminishing returns, and the excessive use of 

N raises potential adverse environmental and health 
concerns (Bohlool et al., 1992) and incidence of foliar 

pathogens and lodging of the plant (Samonte et al., 2006).  

Nitrogen use efficiency is a complex trait (Muurinen et 

al., 2007) that comprises N uptake efficiency and N 

utilization (Moll et al., 1982; Ortiz-Monasterio et al., 

1997). Studies have shown that genetic variation in cereals 

for nitrogen uptake efficiency (Kelly et al., 1995; Singh 

and Arora, 2001) and nitrogen utilization efficiency 

(Woodend et al., 1986; Papakosta, 1994; Singh and Arora, 

2001). Przulj and Momcilovic (2003) reported that grain 

N content in wheat mainly represents N accumulated in 

vegetative parts until anthesis and is translocated to the 

grain during the reproductive phase.  Nitrogen in the form 

of protein and amino acids is a component of the pre-

anthesis portion that is potentially available for grain 

filling (Schnyder, 1993). In barley, 10 to 100% of grain N 
is taken up during vegetative growth and translocated 

during the grain filling period (Carreck and Christian, 

1991; Bulman and Smith, 1994). Sanford and MacKown 

(1987) found that variation in final spike N may be 

associated with variation in total N uptake. Bulman and 

Smith (1994) reported that post-heading N uptake in 

barley was generally not related to N concentration and N 

per plant at heading instead, it was highly correlated with 

total dry matter accumulation after anthesis and total plant 

N and grain at harvest. Environmental conditions during 

the pre- and post-anthesis periods are likely to have 
different effects on N accumulation. N uptake is 

influenced by available water (Clarke et al., 1990), the 

supply of nitrate (Cox et al., 1985; Papakosta and 

Gagianas, 1991), genotype requirements and nitrogen use 

efficiency, and other properties of the genotype and 

growing conditions (Przulj and Momcilovic, 2003).  

Slafer and Peltonen-Sainio (2000) put targets on plant 

breeders to develop cultivars with increased yield 

potential associated with higher NUE-improved ability to 

absorb N more efficiently from the soil and partition the 

greater part of the absorbed N into the grain. Limited 

researches were devoted to determine NUE of oat 
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genotypes in literature. Therefore, the aims of the current 

study were to evaluate nitrogen fertilization response of 

six oat genotypes released between 1963 and 2004 for 

nitrogen use efficiency, its components and grain yield. 

MATERIALS AND METHODS 

Plant materials 

Oat genotypes Apak (registered in 1963), Yesilkoy-

1779 (registered in 1964), Yesilkoy-330 (registered in 

1975), Checota (registered in 1986), Seydisehir (registered 

in 2004) and Amasya (landrace) were evaluated for 

nitrogen fertilizers based on nitrogen use efficiency, its 

components and grain yield. 

Field trials 

Field experiments were carried out in 2007-08 and 

2008-09 cropping years in Kahramanmaras province of 

Turkey (East–Mediterranean Region of Turkey, located 

between 37° 53' N, 36° 58' E and 507 m above sea level). 
The experiment was arranged in a Randomized Complete 

Block Design with three replications. Climate of the 

region is typical of Mediterranean climate and some 

climatic data are shown in Table 1. Wheat plant was 

planted in previous years without fertilization to consume 

nitrogen amount in the experiment lands. Some chemical 

and physical traits of experiment soils sampled from 0-30 

and 30-60 cm topsoil and analyzed. According to analysis 

experiment soils were loamy and alkaline, high in lime, 

adequate in phosphate and potassium and low in organic 

matter. Soil pH varied from 7.54 to 7.64. Nitrogen content 

of the soil from each plots at planting (NCP) were also 

measured and are given in Table 2. The experiments are 

planted on the dates of 18 November 2007 and 2008. Plot 
sizes were arranged as 6 x1.2 m and there were six plant 

rows in each plot. The sowing density was 350 seeds m-

2.Besides different amount and application of N 

fertilization (0, 100 and 200 kg ha-1), a certain amount (80 

kg ha-1) of phosphorus (P) was applied at planting. Half of 

the nitrogen was applied at planting, while the rest was 

applied as top dressing on the dates of 10 March 2008 in 

the first year and 19 February 2009 in the second year at 

tillering. Herbicide (Tribenuron–Methyl 75%) was used 

for weed control. At the maturity stage four rows in the 

middle of plots were harvested. 

 

Table 1 Some average climatic data belong to experiment (2007-2009) and long-term years (1930–2009) of Kahramanmaras 
province. 

Months 

Rainfall (mm) Temperature (°C) Relative Humidity (%) 

2007-08 2008-09 
Long-

term 
2007-08 2008-09 

Long-

term 
2007-08 2008-09 Long-term 

November 105.9 105.9 90.2 13.2 13.2 11.4 64.1 64.0 64.0 

December 96.2 96.2 128.1 6.1 6.1 6.6 65.5 66.0 71.0 

January 78.6 107.5 122.6 3.3 4.5 4.9 55.0 69.0 70.0 

February 121.5 221.2 110.1 5.5 7.2 6.3 61.4 78.8 65.0 

March 69.5 158.0 95.0 14.4 9.4 10.4 59.6 67.2 60.0 

April 54.7 82.5 76.3 18.1 15.1 15.3 55.5 59.4 58.0 

May 23.7 43.4 39.9 20.2 20.5 20.4 56.5 51.9 54.0 

June 0.0 3.7 6.2 27.3 26.8 25.1 49.8 48.2 50.0 

Total 550.1 818.4 668.4       

Mean    13.5 12.8 12.6 58.4 63.0 61.5 

 

Investigated traits 

Experiment soil was sampled from 0-30 cm depth 

from each plots and nitrogen content in soil at planting 

(NCP) was determined by Dumas procedure (Barbottin et 

al., 2005). Nitrogen content at flowering (NCF) and 

nitrogen content at maturity (NCM) were determined by 

Dumas procedure (Pan et al., 2006). Grain samples after 

harvest were dried at 65 °C for 48 hours and hulls 

removed by hand. Grain samples ground and screened 

through 0.5 mm sieve then nitrogen in grain (NG) was 

determined by Dumas procedure (Barbottin et al., 2005). 
Nitrogen accumulation in grain (NAG) was calculated by 

the formula; total grain N content (NG) / grain filling 

period (GFP) (Pan et al., 2006). Nitrogen utilization 

efficiency (UTE) was calculated by the formula: grain 

yield / total above ground N (Muurinen et al., 2006; 

Dawson et al., 2008). Grain filling period was determined 

as days between anthesis and maturity. Nitrogen use 

efficiency (NUE) was determined as: grain yield / total 

available N (NCP plus N amount applied to the plots) 

(Muurinen et al., 2006).  Nitrogen remobilization  

efficiency (NRE) was calculated as: amount of 

remobilized N (grain N content) / N uptake at flowering 

(Barbottin et al., 2005) and nitrogen harvest index (NHI) 

was calculated by the equation: grain N yield / total above 

ground N (Muurinen et al., 2006; Peng and Bouman, 
2007). Grain yield (GY) was also determined by weighing 

of grain products obtained from the plot, harvested after 

excluding side effects of the plots. 

Data Analysis 

Factorial analyses of variance were conducted to 

determine the significance of the effects of year, genotype 

and nitrogen on NCP, NCF, NCM, NG, NAG, UTE, 

NUE, NRE, NHI and GY. The means of significant traits 

were analyzed and ranked by using the least significant 

difference (LSD) mean comparison test. Correlation 

analyses were used to determine the relationships among 

the investigated traits (SAS, 1999). In addition, linear 

regressions were used to calculate genetic improvements 

for grain yield and nitrogen use efficiency and to estimate 

relationship between grain yield and N rates. 
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RESULTS 

Average air temperature of the experiment years and 

long-term were similar. The amount of rainfall differed 

between years. In 2007-08, precipitation was lower than 

long-term. In 2008-09, precipitation was higher than in the 

first year and long-term average. The precipitation was 

mostly in spring (Table 1). 
 

Table 2. Average data belong to soil nitrogen content at planting (NCP, mg kg -1), nitrogen content at flowering (NCF, g N plant-1), 
nitrogen content at maturity (NCM, g N plant-1), nitrogen in grain (NG, g N grain-1), nitrogen accumulation in grain (NAG, mg N 
grain day-1) and grain filling period (GFP day). 

  NCP  NCF NCM NG NAG GFP 

Years 

 ns ** ns ** ns ** 

2007-08 0.19 4.19 a 2.52 1.66 b 0.060 27.3 b 

2008-09 0.18 3.30 b 2.56 2.15 a 0.064 34.6 a 

 LSD 0.01 0.17 0.12 0.09 0.003 1.21 

  ns ** ** ns ns * 

Genotypes 

Seydisehir 0.18 4.15 a 2.68 a 1.90 0.059 32.7 a 

Apak 0.20 3.88 ab 2.66 a 1.88 0.063 29.7 c 

Yesilkoy-330 0.18 3.72 bc 2.33 b 1.96 0.063 31.2 abc 

Amasya 0.19 3.40 d 2.30 b 1.88 0.062 30.2 bc 

Checota 0.19 3.76 bc 2.59 a 1.93 0.060 32.1 ab 

Yesilkoy-1779 0.19 3.54 cd 2.69 a 1.89 0.065 29.7 c 

LSD 0.02 0.30 0.20 0.16 0.006 2.10 

N Rates 

 ns ** ** ** ** ** 

0 0.19 3.32 c 2.39 b 1.75 c 0.055 c 32.1 a 

100 0.19 3.76 b 2.52 b 1.93 b 0.060 b 31.6 a 

200 0.19 4.15 a 2.72 a 2.05 a 0.071 a 29.2 b 

LSD 0.01 0.21 0.14 0.12 0.004 1.48 

 Mean 0.18 3.74 2.54 1.90 0.062  

 CV (%) 19.33 12.36 12.31 13.36 15.93 10.19 

Year x Genotype ns ** ** ns ** ** 

Year x N Rate ns ** ** ns ns Ns 

Genotype x N Rate ns ns ns ns ns Ns 

Year x Genotype x N Rate ns ns ** ns ns Ns 

** Significant at 1%, * significant at 5% and ns: not significant 

 

Mean values of NCP, NCF, NCM, NG, NAG and GFP 

are given in Table 2, mean values of UTE, NUE, NRE, 

NHI and GY in Table 3 and Pearson correlation 

coefficients of the investigated traits in Table 4. The plant 

breeding achievements of oat genotypes released between 

1963 and 2004, in respect to nitrogen use efficiency and 

grain yield are shown in Figure 1 and 2.  

 

 

Figure 1. The plant breeding achievements of oat genotypes 
released between 1963 and 2004, in respect to nitrogen use 

efficiency. Changes in nitrogen use efficiency with release year 
of six oat genotypes observed for two years. 

 

 

Figure 2. Genetic improvements for GY of six oat genotypes 
released between 1963 and 2004 evaluated with linear 
regression. Changes in grain yield with release year of six oat 
genotypes over two years data are illustrated. 

 

Nitrogen content at planting was not different for 

years, genotypes and N rates. There was no fertilizer 

application in previous years and wheat was planted to 

consume nitrogen amount in the experiment soils. 

Therefore, the experiment soils N content was almost zero 

before planting. No interaction occurred among years, 

cultivars and N rates.  
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Significant differences (P<0.01) were recorded for 

NCF between years, genotypes and N rates. Year x 

genotype and year x N rate interactions were also 

significant (P<0.01). Seydisehir genotype had the highest 

NCF amount (4.15 g N plant-1) and Amasya had the 

lowest NCF amount (3.40 g N plant
-1

). Nitrogen content at 

flowering in the first year (4.19 g N plant-1) was higher 

than the second year (3.30 g N plant-1). At 200 kg ha-1 N 

rate, NCF was the highest with 4.15 g N plant-1 (Table 2).  

Differences in NCM was significant for genotypes and 

N rates (P<0.01), whereas it was not significant for years 

(Table 2). In addition, year x genotype, year x N rate and 

year x genotype x N rate interactions were also significant 

for NCM (P<0.01). There was no significant differences 

between year one and year two, whereas 200 kg ha-1 N 

treatment had the highest NCM (2.72 g N plant-1) (Table 

2). Two groups occurred for genotypes, Yesilkoy-330 and 
Amasya genotypes were in the same group with lower 

NCM with 2.33 and 2.30 g N plant-1, while Yesilkoy-

1779, Seydisehir, Apak and Checota with higher NCM 

with 2.69, 2.68, 2.66 and 2.59 g N plant
-1

, 

respectively(Table 2). Genotypes were not different for 

NG, while years and N rates varied significantly 

(P<0.01). In addition, no interaction occurred among 

year, genotype and N rates for NG (Table 2). In the first 

experiment year NG (1.66 g N grain-1) was lower than 

second year (2.15 g N grain-1). Nitrogen in grain was the 

lowest in control  treatment (1.75 g N grain-1), whereas it 

was higher in 100 and 200 kg ha
-1

 N treatments with 1.93 

and 2.05 g N grain-1,respectively. The differences in NAG 

was significant for N rates (P<0.01), while did not vary 

over years and genotypes (Table 2). There was a year x 

genotype interaction for NAG (P<0.01). At 200 kg ha-1 N 

treatment 0.071 mg N grain day-1 was determined, while 
the other N rates had lower NAG (Table 2). Genotypes 

(P<0.05), years (P<0.01), nitrogen rates (P<0.01) and 

year x genotype interaction (P<0.01) were different for 

GFP (Table 2). Seydisehir genotype had the highest grain 

filling with 32.7 days, while Apak and Yesilkoy-1779 

genotypes were the earliest. In the first experiment year 

GFP was 27.3 days, while it was 37.6 days in the second 

experiment year. The nitrogen rates had significant effect 

on GFP. The earliest nitrogen rate was 200 kg ha-1 with 

29.2 days, while control treatment was the latest with 32.1 

days (Table 2). 

 

Table 3 Average data for nitrogen utilization efficiency (UTE, kg kg-1 N), nitrogen use efficiency (NUE, kg kg-1 N), nitrogen 
remobilization efficiency (NRE, kg N kg-1 N), nitrogen harvest index (NHI, kg N kg-1 N) and grain yield (GY, kg ha-1). 

  UTE NUE NRE NHI GY 

Years 
 ** ** ** ** ** 

2007-08 62.2 a 12.8 b 0.43 b 0.64 b 1623.2 b 
2008-09 32.3 b 23.9 a 0.75 a 0.72 a 2920.1 a 

 LSD 3.10 1.62 0.02 0.02 130.78 

  ** ** ** ** ** 

Genotypes 

Seydisehir 41.3 b 16.9 bc 0.55 c 0.68 bc 2050 b  
Apak 38.5 b 17.5 bc 0.58 bc 0.67 c 2080 b 
Yesilkoy-330 51.8 a 19.3 ab 0.60 ab 0.76 a 2480 a 
Amasya 48.5 a 15.5 c 0.64 a 0.71 b 2000 b 
Checota 51.4 a 20.6 a 0.57 bc 0.61 d 2590 a 
Yesilkoy-1779 52.2 a 19.5 ab 0.60 ab 0.64 cd 2430 a 
LSD 5.37 2.76 0.04 0.04 224.67 

N Rates 

 ** ** ** ** ** 
0 37.1 c # 0.54 b 0.61 c 1704.9 c 
100 50.0 b 22.6 a 0.61 a 0.69 b 2309.9 b 
200 54.7 a 13.8 b 0.62 a 0.74 a 2800 a 
LSD 3.79 1.62 0.02 0.02 158.65 

 Mean 47.2 18.35 0.59 0.68 2271.6 

 CV (%) 15.57 18.5 10.46 9.29 14.94 

Year x Genotype ** ns ns ** ** 
Year x N Rate ** ** ns ns ** 
Genotype x N Rate ns ns ns ns ns 
Year x Genotype x N Rate ns ns ns ns ns 

** Significant at 1%, ns: not significant and, # no measured data 

 

Nitrogen utilization efficiency was significant over 

years, genotypes and N rates (P<0.01). Year x genotype 

and year x N rate interactions were also significant 

(P<0.01) for UTE (Table 3). Nitrogen utilization 

efficiency was higher in the first year (62.2 kg kg-1 N) 

than second year (32.3 kg kg-1 N). In addition, UTE was 
affected by increasing of N rates. The highest UTE with 

54.7 kg kg-1 N was obtained from 200 kg ha-1 N treatment, 

while control  treatment had the lowest (37.1 kg kg-1 N). 

Within the genotypes Yesilkoy-1779, Yesilkoy-330, 

Checota and Amasya had the higher UTE with 52.2, 51.8, 

51.4and 48.5kg kg-1 N, respectively, while Apak and 

Seydisehir had lower UTE with 38.5 and 41.3 kg kg-1 N, 

respectively. Significant differences were recorded for 

NUE over years, genotypes and N rates (P<0.01). 

Interaction between year x N rate was significant for NUE 
(Table 3). In the first experiment year NUE was lower 

with 12.8 kg kg-1 N, while it was higher in the second year 

with 23.9 kg kg-1 N (Table 3). No data measured for 

control treatment due to nonexistent available N (very 
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small amount N content at planting). On the other hand, 

NUE of 100 kg ha-1 N treatment (22.6 kg kg-1 N)  was 

higher than 200 kg ha-1 N treatment (13.8 kg kg-1 N) 

(Table3). Nitrogen use efficiency differed markedly 

among the genotypes. Checota genotype had the highest 

NUE (20.6 kg kg
-1

 N), whereas Amasya genotype had the 

lowest (15.5 kg kg-1 N). Nitrogen remobilization 

efficiency varied for years, genotypes and N rates 

(P<0.01). However, there was no significant interaction 

for NRE (Table 3). Amasya genotype had the highest 

NRE value (0.64 kg N kg-1 N), while Seydisehir genotype 
was the lowest (0.55 kg N kg-1 N). Based on the LSD, 

there was no difference between Amasya, Yesilkoy-330, 

and Yesilkoy-1779 genotypes (Table 3).Nitrogen 

remobilization efficiency of the second year (0.75 kg N 

kg-1 N) was higher than the first year (0.43 kg N kg-1 N). 

Control treatment had lower NRE value (0.54 kg N kg-1 

N), whereas 100 and 200 kg ha-1 N rates had similar NRE 

values (0.61 and 0.62 kg N kg-1 N) (Table 3). Nitrogen 

harvest index was significantly different for years, 

genotypes and N rates (P<0.01). Also, year x genotype 

interaction of NHI was significant (P<0.01). Yesilkoy-
330 genotype had the highest NHI with 0.76 kg N kg-1 N 

and, Amasya and Seydisehir genotypes followed this 

genotype with 0.71 and 0.68 kg N kg-1N, respectively, 

whereas Checota had the lowest NHI with 0.61 kg N kg-1 

N (Table 3). Based on the LSD Checota and Yesilkoy-

1779 genotypes were similar. 

In the first year NHI value was 0.64 kg N kg-1 N, while 

0.72 kg N kg-1 N in the second year. Nitrogen harvest 

index differed for N rates, 200 kg ha-1 N treatment was the 

highest (0.74 kg N kg-1 N), while control treatment was 

the lowest (0.61 kg N kg-1 N). Grain yield varied for 

years, genotypes and N rates (P<0.01). Year x genotype 
and year x N rate interactions were also significant for GY 

(P<0.01). Checota genotype had the highest GY (2590 kg 

ha-1) and, Yesilkoy-330 and Yesilkoy-1779 genotypes 

followed this genotype (2480 and 2430 kg ha-1). However, 

Amasya, Seydisehir and Apak genotypes had lower GY 

with 2000, 2050 and 2080 kg ha-1, respectively (Table 3). 

Grain yield was lower in year one (1623.23 kg ha-1), while 

it was higher in year two (2920.1 kg ha-1). Nitrogen rates 

had significant effect on GY, the lowest GY was obtained 

from control treatment (1704.9 kg ha
-1

), whereas the 

highest GY was obtained from 200 kg ha-1 N treatment 

(2800 kg ha-1). 

Genetic improvements for NUE and GY of six oat 

genotypes released between 1963 and 2004 evaluated with 

linear regression (Figure 1 and Figure 2). There was a 

moderate relationship (R2= 0.204) between NUE and year 

of genotype releases except 2004. NUE was calculated 

15.5 and 17.5 kg kg-1 N for Amasya landrace and Apak 

cultivar which was released in 1963. Nitrogen use 

efficiency was improved to 20.6 kg kg-1 N in Checota 

which was registered in 1986 (Figure 1). The grain yield 
improvement of oat genotypes was intermediate (R2= 

0.145) between that lacks of improvement in Seydisehir 

which is released latest (Figure 2). It is noteworthy that 

Seydisehir genotype (2050 kg ha
-1

) released in 2004 

intercepts between Amasya genotype (2000 kg ha-1) and 

Apak genotype (2080 kg ha-1) released in 1963. On the 

other hand, grain yield improvement of Checota genotype 

released in 1986  

was the highest with 2590 kg ha-1 (Figure 2).  

According to Pearson correlation coefficients over the 

mean values of investigated traits, some of the traits were 

found highly correlated to each other (Table 4). Grain 

yield was highly correlated with NG, NAG, GFP, UTE, 

NUE, NRE and NHI (r= 0.61**, r= 0.32**, r= 0.33**, r= 

0.91**, r= 0.61**, r= 0.73** and r= 0.39**, respectively), 

while it was negatively correlated with NCF (r= -0.23*) 

(Table 4). On the other hand, NUE was highly correlated 
with NG, GFP, UTE, NRE and GY (r= 0.29*, r= 0.56**, 

r= 0.71**, r= 0.58** and r= 0.61**), while a negative 

relationship was determined with NCF (r= -0.56**).  

 

Table 4. Pearson Correlation Coefficients of investigated traits 

 1 2 3 4 5 6 7 8 9 10 11 

1. NCP ---           

2. NCF -0.01 ---          

3. NCM 0.0001 0.41** ---         

4. NG -0.03 -0.16 0.16 ---        

5. NAG 0.07 0.14 0.23* 0.64** ---       

6. GFP -0.09 -0.04** -0.05 0.38** -0.37** ---      

7. UTE -0.11 0.52** -0.14 0.48** 0.16 0.39** ---     

8. NUE -0.09 -0.56** -0.02 0.29* -0.17 0.56** 0.71** ---    
9. NRE -0.12 -0.52** 0.02 0.69** 0.25** 0.55** 0.75** 0.58** ---   

10. NHI -0.02 -0.03 -0.10 0.53** 0.38** 0.20* 0.33** -0.06 0.46** ---  
11.GY -0.10 -0.23* 0.17 0.61** 0.32** 0.33** 0.91** 0.61** 0.73** 0.39** --- 

 

DISCUSSION 

The two year experiment results indicate that oat 

genotypes varied in NCF due to differences in their 

vegetative periods. Differences in genotypes were 

influenced by genetics. Przulj and Momcilovic (2003) also 

reported differences among barley cultivars for NCF. 

Nitrogen content at flowering was also affected by N 

rates. Higher NCF was obtained from the highest N 

application. In addition, environmental influence was also 

significant for NCF. Lower rainfall in year one resulted in 

higher NCF when compared to higher rainfall in year two. 

Seasonal differences such as rainfall probably accounted 

for year x genotype and year x N rate interactions. Similar 
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results were also reported by Muurinen et al. (2007). 

Genotypes were found different for NCM because of 

genetic influence. Genotypes responded to higher N rates 

with higher NCM. In previous work, Muurinen et al. 

(2007) stated that oat had higher mean total plant N 

content at maturity. Experiment years were not found 

different, while year x genotype, year x N rate and year x 

genotype x N rate interactions were found significant. 

This situation may be due to different climatic conditions 

between year one and two. Muurinen et al. (2007) 

reported large variation over years for NCM, which was in 
contrast with our findings. This situation may be due to 

regional conditions. In addition, Przulj and Momcilovic 

(2003) stated N losses from anthesis to maturity in the 

above ground plant parts might be caused by loss of some 

plant parts during the post-anthesis period for instance old 

leaves. Nitrogen in grain was not significantly different 

for genotypes. However, genotypes responded to higher N 

rates with higher NG. In addition, experiment years were 

found different due to environmental influence for NG. In 

our study oat genotypes were not significantly different 

for NAG while Muurinen et al. (2007) reported 
differences among species for NAG. However, genotypes 

responded higher N rates with higher NAG. In addition, 

NAG was not affected by years while year x genotype 

interaction was significant, which may be caused by 

significant changes in GFP across the years due to 

environmental effects and which NAG was calculated by 

the formula (NG/GFP). Przulj and Momcilovic (2003) 

also reported that poor growing conditions suppressed N 

accumulation during pre-anthesis, diminished translocated 

N amount, and increased post-anthesis N uptake. 

Genotypes, years and nitrogen rates showed variation for 

grain filling period. This may be due to genetic influence 
and climatic conditions. Wych et al. (1982) and Peltonen-

Sainio and Rajala (2007) reported genetic influence for 

GFP.  

Oat genotypes varied for nitrogen utilization 

efficiency. Isfan (1993) defined UTE as an essential 

physiological parameter contributing to improved NUE, 

which is in agreement with our findings. Higher nitrogen 

rates also promoted the higher UTE. Experiment years 

differed for UTE and, year x genotype and year x N rate 

interactions were significant for UTE. This situation may 

be due to environmental influence. Przulj and Momcilovic 
(2003) indicated variation between years. Ortiz et al. 

(1998) reported that improvement in UTE was achieved 

through reduced plant height and lodging, which is 

resulted in higher grain yield due to improved harvest 

index in wheat. Differences in UTE for cereals were also 

reported in previous works (Woodend et al., 1986; 

Papakosta, 1994; Singh and Arora, 2001). There were 

differences in NUE among genotypes. Muurinen et al. 

(2006) reported differences among cultivars of oat, barley 

and wheat. Calderini et al. (1995) reported differences in 

NUE for wheat. Nitrogen use efficiency was the highest at 

100 kg ha-1 N rate (22.6 kg kg-1 N). Wetselaar and 
Farquhar (1980) and Papakosta and Gagianas (1991) 

reported N losses between anthesis to maturity under field 

conditions, which may explain the reason for lower N rate 

was the most efficient than the highest level of N rate. In 

contrast with our findings, Muurinen et al. (2006) 

indicated that cultivars responded to higher N rates with 

higher NUE. Differences in years were significant for 

NUE and year x N rate interaction was significant. In 

previous works, for barley and oat, authors reported that 

agronomic efficiency of N use rather than NUE and varied 

widely depending on growing conditions (Isfan, 1993; 

Delogu et al., 1998; Sinebo et al., 2003; Muurinen et al., 

2006). Oat genotypes differed for nitrogen remobilization 

efficiency, which demonstrates the ability of the crop to 
remove N from vegetative tissue. Nitrogen remobilization 

efficiency also increased with high level of N rates. In 

addition, experiment years varied for NRE. Nitrogen 

movement during grain filling in the soil might be limited 

by lower rainfall in year one as resulted in lower N 

content in grain. Muurinen et al. (2007) explained the 

differences with dry weather conditions during grain 

filling period, which is in line with our results. However, 

also reported that NRE might not be controlled by 

environment, which is not in agreement with our findings. 

Nitrogen harvest index varied for genotypes. Nitrogen 
harvest index ratios of the genotypes were 61 to 76% 

which is similar with the previous works (Rattunde and 

Frey, 1986; Welch and Leggett, 1997; McMullan et 

al.,1988). Nitrogen harvest index responded to high level 

of N rates. In addition, NHI was affected by years and 

year x genotype interaction was significant. This situation 

might be due to precipitation differences between years. 

Oat genotypes differed for grain yield. Grain yield was 

ranked between 2000 and 2590 kg ha-1. Grain yield of the 

genotypes was influenced by genetics. Checota genotype 

had the highest grain yield with the highest UTE and 

NUE. Genotypes responded higher grain yield with high 
level of N rates. In addition, grain yield varied in 

experiment years and year x genotype and year x N rate 

interactions were important.  

According to changes in NUE with year of six oat 

genotype releases, NUE improvement of Checota 

genotype was the highest with year of release of 1986. 

Genetic improvement for NUE was moderate that lacks of 

improvement in Seydisehir which had lower NUE than 

Apak, Yesilkoy-1779, Yesilkoy-330 and Checota even 

though released latest (Figure 1). On the other hand, 

changes in grain yield with the release year of six oat 
genotypes were intermediate. Seydisehir genotype lacks of 

improvement even though released latest while, grain 

yield improvement of Checota genotype was the highest 

that released in 1986 (Figure 2).  

Nitrogen in grain, NAG, UTE and NUE were 

positively correlated with GY, while NCF was negatively 

correlated. N accumulation and the ratio of translocated N 

in grain affected grain yield positively. In the second 

experiment year, growing conditions were favorable and 

highest N content came from pre-anthesis at the high level 

of nitrogen treatments, whereas in year one half of the N 

amount in grain accumulated during grain filling period. 
Also, there was a positive relationship between NG and 

NAG. Przulj and Momcilovic (2003) stated that low 
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temperature and water deficit, lead to the inhibition of N 

absorption even N is available in the soil. Higher 

efficiency of N utilization resulted in higher grain yield 

(Przulj and Momcilovic, 2003). There was also a positive 

correlation between UTE and NUE. Muurinen et al. 

(2006) reported positive correlation between UTE and 

NUE and also stated that NUE would be improved 

through UTE which is in line with our results. Nitrogen 

remobilization efficiency and NHI were also positively 

correlated with GY, while positively correlated to each 

other as well.  

CONCLUSIONS 

The current study determines the response of six oat 

genotypes to nitrogen fertilization based on NUE, its 

components and GY. Among the genotypes Checota had 

the highest NUE and GY. In addition, genetic 

improvement of Checota genotype for NUE and GY was 

the highest. The cultivars with high NCF, NRE and NHI 

could be used in the development of cultivars with the 

desired N balance. Oat breeders should take advantage of 

the variation among oat cultivars in NUE, NRE, UTE and 

NHI so that in the future selected genotypes are both high 
yields and efficient utilizes of N. 

LITERATURE CITED 

Achleitner, A., N.A. Tinker, E. Zechner, H. Buerstmayr, 2008. 
Genetic diversity among oat varieties of worldwide origin 

and associations of AFLP markers with quantitative. Theor. 
Appl. Genet. 117: 1041-1053. 

Bohlool, B.B., J.K. Ladha, D.P. Garrity, T. George, 1992. 
Biological nitrogen fixation for sustainable agriculture. A 
perspective. Plant Soil. 14: 1-11. 

Barbottin, A., C. Lecomte, C. Bouchard, M.H. Jeuffroy, 2005. 
Nitrogen remobilization during grain filling in wheat: 
genotypic and environmental effects. Crop Sci. 45: 1141-

1150. 
Bulman, P., D.L. Smith, 1994. Post-heading uptake, 

retranslocation, and partitioning in spring barley. Crop Sci. 
34: 977-984. 

Calderini, D.F., S. Torres-Leon, G.A. Slafer, 1995. 
Consequences of wheat breeding on nitrogen and 
phosphorus yield, grain nitrogen and phosphorus 
concentration and associated traits. Ann. Bot.76: 315-322. 

Carreck, N.L., D.G. Christian, 1991. Studies on the pattern of 
nitrogen uptake and translocation to grain of winter barley 
intended for malting. Ann. Appl. Biol. 119: 549-559. 

Cassman, K.G., A. Dobermann, D.T. Walters, H. Yang, 2003. 
Meeting cereal demand while protecting natural resources 
and improving environmental quality. Ann. Rev. Environ. 
Resour. 28: 315-358. 

Clarke, J.M., C.A. Campbell, H.W. Cutforth, R.M. De Pauw, 
G.E. Winkleman, 1990. Nitrogen and phosphorus uptake, 

translocation, and utilization efficiency of wheat in relation 
to environmental and cultivar yield and protein levels. Can. 
J. Plant Sci. 70: 965-977. 

Cox, M.C., C.Q. Qualset, D.W. Rains, 1985. Genetic variation 
for nitrogen assimilation and translocation in wheat. II. 
Nitrogen assimilation in relation to grain yield and protein. 
Crop Sci. 25: 435-440. 

Dawson, J.C., D.R. Huggins, S.S. Jones, 2008. Characterizing 

nitrogen use efficiency in natural and agricultural 
ecosystems to improve the performance of cereal crops in 

low-input and organic agricultural systems. Field Crops Res. 

107: 89-101. 
Delogu, G., L. Cattivelli, N. Pecchioni, D. DeFalcis, T. 

Maggiore, A.M. Stanca, 1998. Uptake and agronomic 
efficiency of nitrogen in winter barley and winter wheat. 
Eur. J. Agron. 9: 11-20. 

Isfan, D., 1993. Genotypic variability for physiological 
efficiency index of nitrogen in oats. Plant Soil. 154: 53-59. 

Kelly, J.T., R.K. Bacon, B.R. Wells, 1995. Genetic variability in 

nitrogen utilization at four growth stages in soft red winter 
wheat. J. Plant Nutr. 18: 969-982. 

McMullan, P.M., P.B.E McVetty, A.A. Urquhart, 1988. Dry 
matter and nitrogen accumulation and redistribution and 
their relationship to grain yield and grain protein in oats. 
Can. J. Plant Sci. 68: 983-993. 

Mohr, R.M., C.A. Grant, W.E. May, 2005. N, P and K: Fertilizer 
management for oats. Top Crop Manager. 5: 30. 

Moll, R.H., E.J. Kamprath, W.A. Jackson, 1982. Analysis and 

interpretation of factors which contribute to efficiency of 
nitrogen utilization. Agron. J. 74: 562-564. 

Muurinen, S., G.A. Slafer, P. Peltonen-Sainio, 2006. Breeding 
effects on nitrogen use efficiency of spring cereals under 
northern conditions. Crop Sci. 46: 561-568. 

Muurinen, S., J. Kleemola, P. Peltonen-Sainio, 2007. 
Accumulation and translocation of nitrogen in spring cereal 
cultivars differing in nitrogen use efficiency. Agron. J. 99: 

441-449. 
Ortiz-Monasterio, J.I., K.D. Sayre, S. Rajaram, M. McMahon, 

1997. Genetic progress in wheat yield and nitrogen use 
efficiency under four nitrogen rates. Crop Sci. 37: 898-904. 

Ortiz, R., S. Madsen, S.B. Anderson, 1998. Diversity in Nordic 
spring wheat cultivars (1901-93). Acta Agri. Scand. Sect. B. 
Soil Plant Sci. 48: 229-238. 

Pan, J., Y. Zhu, D. Jiang, T. Dai, Y. Li, W. Cao, 2006. Modeling 

plant nitrogen uptake and grain nitrogen accumulation in 
wheat. Field Crops Res. 97: 322-336. 

Papakosta, D.K., A.A. Gagianas, 1991. Nitrogen and dry matter 
accumulation, remobilization, and losses for Mediterranean 
wheat during grain filling. Agron. J. 83: 864-870. 

Papakosta, D.K., 1994. Analysis of wheat cultivar in grain yield, 
grain nitrogen yield and nitrogen utilization efficiency. J. 
Agron. Crop Sci. 172: 305-316. 

Peltonen-Sainio, P., A. Rajala, 2007. Duration of vegetative and 
generative development phases in oat cultivars released since 
1921. Field Crops Res. 101: 72-79. 

Peng, S., B.A.M. Bouman, 2007. Prospects for genetic 
improvement to increase lowland rice yields with less water 
and nitrogen. In:Spiertz, J.H.J., Struikand, P.C., Van Laar, 
H.H. (eds), Scale and Complexity in Plant Systems 
Research. Gene-Plant-Crop Relations. Springer, pp. 251-256. 

Przulj, N., V. Momcilovic, 2003. Dry matter and nitrogen 

accumulation and use in spring barley. Plant Soil Environ. 
49(1): 36-47. 

Rattunde, H.F., K.J. Frey, 1986. Nitrogen harvest index in oats: 
Its repeatability and association with adaptation. Crop Sci. 
26: 606-610. 

Samonte, S.O.P.B., L.T. Wilson, J.C. Medley, S.R.M. Pinson, 
A.M. McClung, J.S. Lales, 2006. Nitrogen utilization 
efficiency: Relationships with grain yield, grain protein, and 

yield-related traits in rice. Agron. J. 98: 168-176. 
Sanford, D.A., C.T. MacKown, 1987. Cultivar differences in 

nitrogen remobilization during grain fill in soft red winter 
wheat. Crop Sci. 27: 295-300.  

SAS Institute, 1999. SAS system for windows release 8.01. SAS 
Inst., Cary, NC. 

Schnyder, H., 1993. The role of carbohydrate storage and 
redistribution in the source-sink relations of wheat and 



 

184 

 

barley during grain filling-a review. New Phytol. 123: 233-

245. 
Singh, V.P., A. Arora, 2001. Intraspecific variation in nitrogen 

uptake and nitrogen utilization efficiency in wheat (Triticum 
aestivum L.). J. Agron. Crop Sci. 186: 239-244. 

Sinebo, W., R. Gretzmacher, A. Edelbauer, 2003. Genotypic 
variation for nitrogen use efficiency in Ethiopian barley. 
Field Crops Res. 85: 43-60. 

Slafer, G.A., P. Peltonen-Sainio, 2000. Yield trends of temperate 

cereals in high latitude countries from 1940 to1998. Agric. 
Food Sci. Finl. 10: 121-131. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Welch, R.W., J.M. Leggett, 1997. Nitrogen content, oil content 

and oil composition of oat cultivars (A. sativa) and wild 
Avena species in relation to nitrogen fertility, yield and 
partitioning of assimilates. J. Cereal Sci. 26: 105-120. 

Wetselaar, R., G.D. Farquhar, 1980. Nitrogen losses from tops of 
plants. Adv. Agron. 33: 263-302. 

Woodend, J.J., A.D.M. Glass, C.O. Person, 1986. Intraspecific 
variation for nitrate uptake and nitrogen utilization in wheat 
(T. aestivum L.) grown under nitrogen stress. J. Plant Nutr. 

9: 1213-1225. 
Wych, R.D., R.L. McGraw, D.D. Stuthman, 1982. Genotype x 

year interaction for length and rate of grain filling in oats. 
Crop Sci. 22: 1025-1028. 


