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1. INTRODUCTION

Let R3 denote a Euclidean space of dimension 3 with the canonical metric (, ) and (x, y, z) the rectangular coordinates
of R3. A surface M in R? is called translation surface if it can be written as the sum of two curves. Then, a local
parametrization o on M follows o (s1,52) = y1(s1) + y2(s2),fory; : [ CR — R i=1,2, [8]. In the special case
that the curves v; lie in orthogonal planes, up to a change of coordinates, the surface M can be locally expressed by the
explicit form z = f(x) + g(y) for smooth functions f, g of single variable. If such a surface is minimal, i.e. its mean
curvature vanishes identically, then it is either a plane or describes the Scherk surface [48].

While this sort of surfaces has been studied in classical manner since the former half of nineteenth century (see
[5,12-14,17,25-33,36,40,41,48-51,53-56, 59, 60]), their complete classification/characterization in R3 emposing
natural curvature conditions (e.g. minimality, flatness and having nonzero constant mean or Gaussian curvatures) have
been recently found, see [20-22]. Yet, in higher dimensions and different ambient spaces, there are still numerous
unsolved problems.

On the other hand, a semi-symmetric metric (resp. non-metric) connection on a Riemannian manifold was defined
by Hayden [23] (resp. Agashe [1]) and since then has been studied by many authors. For example, see [2,3,7,9, 15,18,
24,42-45,52,57,58,61].

As can be seen from the great number of published studies, the notions of translation surfaces and semi-symmetric
(non-) metric connection have great interest and very recently Wang [54] combined these seperate research areas into
one, which came up with a new perspective. In the cited paper, the author introduced and obtained minimal translation
surfaces in 3-dimensional space forms endowed with a certain semi-symmetric (non-)metric connection.

In this study we mainly concern with singular minimal surfaces in R, namely those surfaces satisfying an equation
of mean curvature type (see [11]). The notion of singular minimal surface is a generalization of two-dimensional ana-
logue of the catenary which is known as a model for the surfaces with the lowest gravity center, in other words, one has
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minimal potential energy [6]. In this context, the present study aims to contribute to Wang’s perspective by considering
singular minimal translation surfaces in R? endowed with a certain semi-symmetric (non-)metric connection.

In order to explicitly initiate the notion of singular minimality, we begin with the one-dimensional case: lety : [ C
R — R? be a parametrized curve and u € R? a fixed unit vector and  some real constant. Then the curve y is called
a—catenary (see [11]) if the following holds

(n(s),w
k(s) a(y(s),u)’ (1.1)
where « and n are the curvature and principle unit normal vector field of y. Up to a change of coordinates, one can
assumed as u = (0, 1) and y a graph locally given by y (s) = (s, f(s)), for f : I ¢ R — R*. Thereby, for @ = 1, Eq.
(1.1) writes
oo (1.2)
e f

for each s € I. The solution of Eq. (1.2) is the catenary f (s) = }1 cosh(As +w), L,ueR, A +0,see [39].

As its two-dimensional analogue, Eq. (1.2) has a remarkable a physical point of view, which can be initiated as
follows: let the direction of gravity be choosen as y—axis. Then Eq. (1.2) defines a configuration in which a uniform
chain, whose two ends are fixed and hanged under its own weight, is in balance with the effect of the gravitational field.
So, a catenary actually minimizes potential energy under the influence of gravity force, in other words has the lowest
center of gravity (e.g. [16]).

Let us now consider the smooth immersion o : M — R3 (u) of an oriented surface M in the halfspace

R} (w) = {p e B, (p,w) > 0},

for a fixed unit vector u € R3. Then, the potential @—energy of ¢ in the direction of u is defined by ( [37,38])
E@ = [ (@@ dm gem, (13)
M

where dM refers to the measure on M with respect to the induced metric tensor from R>. If o is a critical point of Eq.
(1.3), it then follows

¢ w
(oyw)’
where H and £ are the mean curvature and unit normal vector field on M. A surface in R? fulfilling Eq. (1.4) is called
singular minimal surface or a-minimal surface see [10, 11].

Eq. (1.4) is clearly an equation of mean curvature type and reduces to the classical minimal surface equation when
a =01[34, p. 17]. If we take u = (0,0, 1) and @ = 1 in Eq. (1.4), then the surface M is said to be two—dimensional
analogue of the catenary [6].

Lépez [37] proved that a singular minimal translation surface in R with respect to a horizontal or a vertical direction
is a a—catenary cylinder, namely a generalized cylinder (see [19, p. 439]) whose base curve is a a—catenary. This
result was generalized to higher dimensions by the present authors [4].

Noting that the mean curvature H in Eq. (1.4) is given with respect to the Levi-Civita connection on R?, we modify
it by considering the mean curvatures arising via special semi-symmetric metric and non-metric connections V and
D given by Egs. (2.1) and (2.2). We call the modified concepts V— and D-singular minimality and these allow us
non-trivial and new problems. One of the problems is to find V- and D—singular minimal translation surfaces with
respect to a horizontal direction and we solve it completely.

2H = a (1.4)

2. PRELIMINARIES
Let (M , g) be a Riemannian manifold of dimension 3 and V an affine connection on M. Let us denote the set of
sections of a vector bundle E — M by I' (E) and the set of tensor fields of type (r, s) on M by F(TM(’*S)). Then the
torsion tensor field T € T (TM(1’2)) of V is defined by
TXY)=VyY-VyX-[X,7Y],
forX,YeT (T]VI) Then the connection V is called (see [42,58])

(1) a (resp. non-) symmetric connection if T (resp. does not) vanishes identically;
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(2) a(resp. non-) metric connection if g is (resp. not) parallel;
(3) a semi-symmetric connection if the following holds

TX,Y)=mn(NX-n(X)Y,
forr(X)=g(X,W), € F(TM(O’”), W e r(TM);
(4) a Levi-Civita connection if it is both symmetric and metric.
Let M = R3 and {6x, 0y, 8z} the standard basis on R?. Consider the certain semi-symmetric metric and non-metric
connections, respectively [54]
VxY = VY +¢(Y,0.) X - g (X.Y) 0, 2.1)
and
DxY = V4Y + g(Y,0,) X, (2.2)
where V% is the Levi-Civita connectionon R* and X, Y € T (TR3). For Egs. (2.1) and (2.2), the nonzero derivatives are
given by
Vaﬁx =-0,, Vﬁxaz =0, Vﬁvay = -0, V[)vaz =0,
and
Daxaz = ax, D[)yaz = a}“ Dazaz = az-

Let M be an oriented immersed surface into R*. For any X,Y € T (TR3) andé el (TR3L), the Gauss formulae with

respect to V and D follow

VxY = (VxY)T + A" (X, V)&,
and

DxY = (VxV)" + h” (X, V)&,
where 7 is the projection on the tangent bundle of M and 4" and hP” are so-called the second fundamental forms with
respect to V and D, respectively. Let {e}, e;} be an orthonormal tangent frame on M. Then the mean curvatures of M
with respect to V and D are defined by

1
H = 2 [17 (er.e0) + 17 (er. )]

and |
HY = 2 [1 (er.e) + WP (2, 0)].

The surface M is said to be minimal with respect to V (resp. D) if HY (resp. H”) vanishes.
Let g;j, 1 <1, j <2, denote the components of the induced metric tensor on M from the canonical metric. Then the
mean curvatures H' and HP are respectively given by

- gzzhlvl -gn (h + h21) + g11h22
a ZdCtg,‘j

and
gnh? — g1 (h + h21) +guhd,
2det g;;

where hV (Vg, ej, g) and hD <De, ej, §> , for some basis {e,, e,} of [(T M).

We utterly enable to 1ntr0duce the notion of singular minimality with respect to the connections V and D: let
o : M — R3 be a smooth immersion of an oriented surface M and u € R? a fixed unit vector. The surface M is called
V—singular minimal surface with respect to the vector u if it holds

2HY =« (&u >< u)# 0 (2.3)

(ovu)’
where £ is the unit normal vector field on M and « a real constant. Accordingly the surface M is called D—singular
minimal surface with respect to the vector u if it holds

21 = & (w20, 2.4)
(o)’

HP =

)
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It is obvious that these notions coincide with the usual minimality with respect to V and D when @ = 0 and so @ # 0 is
assumed throughout the study.

3. V—SINGULAR MINIMAL TRANSLATION SURFACES

In this section, we characterize V—singular minimal translation surfaces in R?. As the translation property of the
surface changes, Eq. (2.3) generates different tasks. Because there are three types of translation surfaces as follows

2= f)+g0), y = f(0) +g(@), x = f(y) + &),

we state three separate results.

Theorem 3.1. A V-singular minimal translation surface in R of type z = f(x) + g(y) with respect to a horizontal
vector u is a generalized cylinder and one of the following occurs

(1) f(x)=cyand g(y) = —%1n|cos 2y + c2)| + c3,
(2) g(y) = ca + csy and f is a solution of the ordinary differential equation (ODE)

2
= (I + s P = 2f +2 (3.1)
5

—a
(1 + cg) b

where ¢y, ...,cs € Rand f = ==, etc.

Proof. The unit normal vector field and mean curvature are computed by
—f'0x—g'dy+0;

&=
I+ + ()
and
o [1+ @]+ 1+ e = 2[1+ () + (g')z]’
2[1+ (7 + @)
where g’ = and so. Without of loss of generality, we may assume that u = d,. Then Eq. (2.3) gives
1 N2\ ¢ 1 N2 | o 201 7\2 "2 ,
|1+ @2 +[1+ e 2| +<f>+(g>]:_af__ a2
L+ () + (@) x

To solve Eq. (3.2), we distinguish several cases: the first case is that f(x) = fy € R. Thus, Eq. (3.2) reduces to
g’ =2(g)* + 2. Solving this implies the first statement of the theorem. The second case is that f’ = f; # 0. Hence,
Eq. (3.2) reduces to the following polynomial equation on x

{g"(l +f02) - 2[1 +fo+ (g’)z]}x+afo [1 +fo+ (g’)z] =

which means that this case is false because the constant term of the polynomial equation cannot be zero. The last case
is that f”” # 0. Then taking partial derivative Eq. (3.2) with respect to y leads to

2( 24 f//)g/ 2 [1 + (f/)Z] g/// — za,g/ //f (3.3)
That g’ = go, go € R, is clearly a solution of Eq. (3.3). Then Eq. (3.2) reduces to
[-2-2g5+ (1 +85) £ - 2(f’)2]x+ af [1+g+(f)] =
or

f = () -

(l + go)
which gives the second statement of the theorem. Then the proof finishes if we show that Eq. (3.3) has no solution for

f"g"” # 0. By contradiction, assume that "/ g"" # 0. Dividing Eq. (3.3) with 2¢’g”, we get

[1+(f)] +f”+oz£—2 0, (3.4)

2///



Singular Minimal Translation Surfaces in Euclidean Spaces Endowed with Semi—symmetric Connections 274

yielding
g =2cg'g", ceR. (3.5)
Integrating Eq. (3.5) gives
¢ =c(g) +d, deR. (3.6)
Substituting Eq. (3.6) to Eq. (3.2) leads to
£+ (—2+d+af;) =0. (3.7)

From Egs (3.4) and (3.7), we conclude two equations

2+al)(-2+d+al
//:( X)( X

f - (33)
2+c—-d-as
and ;
(- 2—c+d)(f) +oz(f) +d-c=0. 3.9)

Notice that the denominator in Eq. (3.8) is not zero because the contradiction f”’ = 0 is obtained otherwise. Taking
derivative of Eq. (3.9) leads to
3af £y
[2( 2—c+d)+ ]f =a(—) . (3.10)

X

Considering Eq. (3.8) to Eq. (3.10) gives a polynomial equation of f—
o (1+3e) (£ ) +afa(=16—-2c+5d) -2 -c+dl (L )

(3.11)
20[(-4+d)(-2-c+d)-3(— 2+d)]— -4(2-c+d)(-2+4d) =
in which the fact that the leading coefficient vanish yields @ = = and therefore Eq. (3.11) reduces
= d f
%() 3[(4+d)(2—c+d) 3(=2+d)]L 3.12)

—4(=2—c+d)(=2+d)=0

The constant term must be zero and for this reason assume that d = 2. Then Eq. (3.12) gives the contradiction ¢ = 6
and ¢ = 0. This means that d # 2 and —2 — ¢ + d = 0 and therefore the coefficient of the term of degree 1 cannot vanish,
a contradiction. |

The ODE (3.1) admits a reduction of order
- 2
W= — i+ ——i? - Zut2, (3.13)
(1 + cg) X I+ ¢ X

where u = u (x) = f’(x) and ¥’ (x) = f”(x). Due to a # 0, the ODE (3.13) is an Abel equation of the first kind given by

u = p3 (X) 1’ + pa (X)u* + py (xX)u+ po (%)

and no admits a general solution in terms of known functions, excepting very special cases depending on the functions
po (X), ..., p3 (x). We refer to [46, 47] for more details. Notice also that the surface given by the first statement of
Theorem 3.1 is both V—singular minimal and V—minimal.

Theorem 3.2. A V—singular minimal translation surface in R? of type y = f(x) + g(z) with respect to a horizontal
vector W is either a plane parallel to u or a generalized cylinder satisfying one of the following

(1) f(x) =c1and
1 1
g(@)= iz arctan(a \Jer — c%) +c3,

(2) g(2) =cq4 + cszand f is a solution of the ODE
7 —a /
e () -
(1 +c )x

where cy,...,cs €R, ¢y #0, and f' = =, etc.

26‘5

(f) ——f 2cs,
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Proof. The unit normal vector field and mean curvature are given by
f/ax - av + g,az

YL+ + (@)

iy = _[1 + (g/)Z] S+ [1 + (f’)z] g’ +2 [1 + (f/)Z i (g,)g] g
[1 + (M) + (g/)z]%

where g’ = Z—‘i and so. Without of loss of generality we may assume that u = d,. Therefore, Eq. (2.3) implies

frirv@?] v [t 2t+ e+ @ g
= —q—

é::

and

. (3.14)

L+ (f) +(g) x
To solve Eq. (3.14), we distinguish several cases: the first case is that f(x) = fy € R. Then, Eq. (3.14) reduces to
g =-2 [1 + (g,)z] g’. That g’ = 0 is a trivial solution of this equation and leads the surface to a plane parallel to u.

Otherwise, g’ # 0, after solving it, we obtain the first statement of the theorem. The second case is that /' = fy # 0.
Then Eq. (3.14) reduces to a polynomial equation on

{[1+ /5] +2[1+ 7+ @]} x+afo(1+ £ +()) =0,
which implies that this case is false because the constant term of the polynomial equation cannot be zero. The last case
is that f”” # 0. Taking partial derivative Eq. (3.14) with respect to z, we get

6 (g/)Z g// +2 (f// + a[%) g/g// + [1 + (f/)Z] (Zg// + gu/) =0. (315)
That g’ = go € R is clearly a solution to Eq. (3.15). So, Eq. (3.14) reduces to
44 3 4 zgo 4 @ ’
Frb e () B () + S 4250 =0,
(1 + go)x 1+g; X

which gives the second statement of the theorem. Then the proof finishes if we show that Eq. (3.15) has no solution
for f”g" # 0. By contradiction, assume that f”’g"” # 0. Dividing Eq. (3.15) with 2g’g"", we have

7’ 1 4
( & +—,)[1+(f’)2]+f”+af_+3g’ =0. (3.16)

2g'g" & X
Taking partial derivative of Eq. (3.16) with respect to x and z leads to

" 1 4
(s 5 =0
2¢'¢" 8

or, owing to f’ f” # 0, the term g"”/ (2¢’g"’) + 1/g’ becomes a constant. Therefore, the partial derivative of Eq. (3.16)
with respect to z gives g” = 0, a contradiction O

Note that, as in previous result, the surface given by the first statement of Theorem 3.2 is both V—singular minimal
and V-minimal.

Theorem 3.3. A V—singular minimal translation surface in R? of type x = f(y) + g(z) with respect to a horizontal
vector u is a generalized cylinder and one of the following occurs

(1) f(y) =cy and g is a solution of the autonomous ODE

g’ = (Clcig - 2g’) [1+@)], & #0;

(2) g(@) =cpand

y= if[03 (f +c)™ + 04]_1/2 df,

forci,..,ca €R,c3#0,and g’ = %, etc.
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Proof. The unit normal vector field and mean curvature are

_ (ax - flay - glaz)

VI+ (7 + ()

and
- |1+ @]+ |1+ (g +2 [1 + (P + (e )2]g
[1+ (7 + @]
where f’ = and so. Without of loss of generality we may assume that u = d,. Hence Eq. (2.3) turns to
[+ @]+ 1+ +2[1 + (P + @] ¢ 1
2 2 =a > (317)
L+ ()" + () f+e

in which both f and g cannot be constant simultaneously because the situation @ = 0 is obtained otherwise. We
distinguish the remaining cases: the first case is that f(y) = fy € R. Eq. (3.17) writes

’” ’ ’ 1+(g/)2
g +2[1 +(g)2]g ZQW.

in which g must be non-linear because the situation @ = 0 is obtained otherwise. This concludes the first statement of
the theorem. The second case is that f (y) =d + ¢y, ¢,d € R, ¢ # 0. Then Eq. (3.17) turns to
(1 + cz) g”

1+c2+(g)°
By taking partial derivative of Eq. (3.18) with respect to y, we obtain the contradiction ac = 0. The third case is that
f” #0and g = g9 € R. Then Eq. (3.17) reduces to

17 1
A (3.19)
1+ (f") f+8o

By multiplying Eq. (3.19) with 2f” and taking first integral, we obtain

f=t+Jc(f+80)* -1, ceR, c#0. (3.20)

Taking derivative of Eq. (3.20), we can conclude
[ =ac(f+g0)* ",
which is known as Emden—Fowler equation (see [47]) and the solution follows

y= if[c(f+g0)2“+d]_l/2df+e, d.ecR,

which proves the second statement of the theorem. The fourth case is that f” # O and g(z) =d + cz,¢,d € R, c # 0.
Then Eq. (3.17) reduces to

1
28 =qq—. 3.18
T8 ad+cy+g ( )

(147 |
—— Stk =a—.
1+c+(f) d+cz+f

By taking partial derivative of Eq. (3.21) with respect to z, we obtain the contradiction ac = 0. Therefore the proof

finishes if we show that Eq. (3.17) has no solution for f”’g” # 0. By contradiction, assume that f”g” # 0. Then Eq.

(3.17) can be rewritten as

(3.21)

(3.22)

=a

F+f[1+ @] +[1+ e +2[1+ () + @] g}
L+ () +@].

If we take partial derivative of Eq. (3.22) with respect to y and z and afterwards divide the generated equation with

f'f"g'g"”, we can deduce

1+(g) L+(f)*
4+ ff,,[ z +2g]+(—,,+ )[ G +2f]
£ 288" 4g 4g 68 _
tom e Tt + g = 0.

(3.23)
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The partial derivative of Eq. (3.23) with respect to y and z leads to
(f”)1+@f gﬂ%g”+3)1+0¥
f/fl/ glg/I gl
We have subcases:

17 fll
(1) f” = fo €R, fo # 0. Then the partial derivative of Eq. (3.23) with respect to y leads to

6gIIfNI
(f"?

+2 +2 f] - =0. (3.24)

7’ 2
£ _+Z o (3.25)
88 8
Therefore Eq. (3.23) reduces to
2¢’ 3¢’
248 .28 . (3.26)
fo
On the other hand, a first integration of Eq. (3.25) gives
g =-2¢"+¢c, ceR (3.27)

By substituting Eq. (3.27) into Eq (3.26), we obtain a polynomial equation on g’ whose leading coefficient
coming from the term (g’)? is f , a contradiction.
Q) f" =2cf'f", c €R,c#0. A first integration yields f”” = ¢ (f')* + d, d € R. Then Eq. (3.24) reduces to

nr 2d
(é: ,,+_,) [——1+(f)} 6g" =0,
g8 gllc

which implies (ggT + gl)/ = 0. This gives from Eq. (3.24) the contradiction g” f"" = 0
B) (f”/f f"Y # 0.Eq. (3.24) can be rewritten by dividing g” (f"”//f'f") as

AB(@)=CH)+D(@), (3.28)
where
P L i L N
= I 7Y B(x)=(g""/g'g" +2/¢') /g
and . -
Cy = 6% D@ =-[{1+(@)} /g +2] /8"

The functions A, B,C, D from Eq. (3.28) must be all constant. Let us put B(z) = By and D(z) = —Dy,
By, Dy € R. Therefore, we get

" 2 4
[ . —,} = Bog” (3.29)
88 §
and
4g' —[1+(g) ] “)2 = Dog” (3.30)
A first integration of Eq. (3.29) yields
17’ 2
& Z - By +d. (33D
88 8

for d; € R. Multiplying Eq. (3.31) with g’ " and then taking first integration the generated equation gives

g" ( 'y’ +4 (g ) -2¢ +ds, (3.32)
for d, € R. By considering Eq. (3.32) into Eq. (3.31), we deduce that

2
1"

B() "S5
§" =5 (g’) + rest terms. (3.33)

Substituting Eqs. (3.32) and (3.33) into Eq. (3.30), we have a polynomial equation on g’ whose coefficient
2
coming from (g’)’ is %, yielding By = 0. It follows from Eq. (3.31)

7 = (_2 + dlgl)gll
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and plugging it into Eq. (3.30)
4g'g" = [1+ (@] (-2 +dig") = Do (¢")*. (3.34)

Considering Eq. (3.32) into Eq. (3.34) leads to a polynomial equation on g’ whose coefficient coming from
(g’)3 is d; which must vanish. Therefore Eqs. (3.32) and (3.34) reduce to

g =-28"+d
and
4g'g" +2(¢) +2=Do ("),
respectively. From these two equations, we can conclude a polynomial equation on g’
4Dy +6)(g')* = 4(Dy + d2) g + Dod3 —2 = 0,

which gives a contradiction because the constant term cannot vanish.

4. D—SINGULAR MINIMAL TRANSLATION SURFACES

As in previous section, we characterize translation surfaces in R3 of each type to be D—singular minimal through
the following results.

Theorem 4.1. A D—singular minimal translation surface in R> of type z = f(x) + g(y) with respect to a horizontal
vector u is either a plane parallel to u or a generalized cylinder satisfying g(y) = c| + ¢y and

Fx) = %] MI(XM 3 Cg)—l/z "

Proof. The unit normal vector field and mean curvature follow
—f'0— g0y + 0,

I+ + ()
HD:f"D+@Wﬂ+g{1+y¥L
21+ (M + @)
d

where [’ = %, g = d—g and so. Without of loss of generality we may assume that u = d,. Hence Eq. (2.4) turns to

‘
R A LR S

where c1,c3,¢3 €R, ¢3 # 0.

§:

and

. “.1)
1+ () +(g) x
Eq. (4.1) has no solution if g” # 0, see [37, Theorem 5]. Therefore, we have g’ = go € R and Eq. (4.1) reduces to
1+g2)f”
(1+5) g 4.2)

flr+g+a] x
where being f a constant is a trivial solution, implying M is a plane parallel to the vector u. Assume that f is no

constant and then we can easily infer from Eq. (4.2) that f cannot be a linear function, i.e. f” = 0, due to @ # 0.
Hence, a first integration of Eq. (4.2) yields

; =cx % ceR, c#0,
JI+g+()?
or
/1 +g(2)
=%l (4.3)

ﬂx2ry _ C2

A first integration of Eq. (4.3) completes the proof. O
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For a translation surface of type y = f(x) + g(z), the unit normal vector field and mean curvature follow
f'0x— 0, + g0,

I+ + @)
. f// [l + (gl)Z] +g// [l + (f/)Z]
- 3
2[1+ (M + @]
where f’ = %, g = f]—i and so. Then, with respect to the horizontal vector u = d,, the D—singular minimality equation

is similar to Eq. (4.1) up to a sign. Thereby, for such a surface, we can state a similar result to Theorem 4.1 without
proof by replacing @ with —a.

é‘::

and

>

Theorem 4.2. A D—singular minimal translation surface in R> of type y = f(x) + g(z) with respect to a horizontal
vector u is either a plane parallel to u or a generalized cylinder satisfying g(z) = ¢ + caz and

J(x) = %cs] mfx"(l _ chza)—l/Z dx.

Theorem 4.3. A D-singular minimal translation surface in R3 of type x = f() + g(z) with respect to a horizontal
vector 0 is a generalized cylinder satisfying f (y) = ¢ and

-1/2
7=+ f [cg(cl +g)2“—1] dg, 4.4)

where c1,cr,¢3 €ER, ¢3 #0.

forci,co €R,cr #0.
Proof. Without of loss of generality we may assume that u = d,. Then Eq. (2.4) implies
[1+ @’ +[1+]e”  «
L+ () + (g f+g
in which the roles of f and g are symmetric. Eq. (4.4) has a solution provided that f or g is a constant, see [35, Theorem
4.1]. Thanks to the symmetry, we can assume f = f; € R. Thereby, Eq. (4.5) reduces to

17

8 (01

4.5)

= : (4.6)
L+(gy fo+s
Put dod .,
g =4q q’=—q—g=g—,,q=q(g)- (4.7)
dgdz g
By considering Eq. (4.7) into Eq. (4.6) we get
a4’ @
= —, 4.8
R “o
A first integration of Eq. (4.8) with respect to g yields 1 + ¢* = ¢ (fy + g)** or
d
dz =+ g
Ve (fo+ )~ 1
and the proof is completed by a first integration. O

5. CONCLUSIONS

In this study, new perspectives on the singular minimality of immersed surfaces in R were introduced. These, in
particular the V—singular minimality, provided us non—trivial and different results from the obtained one with respect
to the Levi-Civita connection on R3, see [35,37]. Our results were found with respect to a horizontal vector and it
will not make big difference when the vector is assumed to be vertical. Yet, the problem of finding V- and D—singular
minimal translation surfaces in R with respect to an arbitrary vector is open.
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