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Abstract: 

Many security applications like face recognition and iris recognition developed to ensure the safety of the critical or 

personal data. Reliability of these applications are highly depending over the reliability of machine vision algorithms. 

Along with the development of the generative models standard machine vision dependent data security 

measurement systems became vulnerable. Currently, generating fake data to bypass machine vision dependent 

security systems is possible with a personal computer. In order to ensure the reliability of security measurements 

depending on the machine vision techniques it is critical to recognize fake images. In this research, possible use 

case of a quantum computer to ensure the reliability of machine vision dependent security systems is investigated. 

A hybrid quantum-classical hybrid model with the transfer learning approach is proposed to recognize whether if a 

face is fake or not. Effects of the quantum model’s depth over the accuracy is explored. ResNet-18 architecture is 

used as the classical part and a custom quantum neural network architecture built with the dressed quantum circuits 

is used as quantum part. This research is aimed to extend the use cases of quantum neural networks to security 

applications. Accuracies of quantum neural networks with different depths are reported. A simulated quantum 

computer is used to train the models. Along with the proposed approach it is concluded that it is possible to apply 

classical-quantum neural networks to improve the reliability of machine vision dependent security systems after the 

quantum co-processors become available in daily life. 
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1. INTRODUCTION 

Recently, Deep Learning algorithms are integrated with the machine vision technologies. Artificial Neural 

Networks made applications like object detection, image classification, object tracking and synthetic 

image generation more efficient and accurate. Many state of the art results are achieved with the recent 

development in Deep Learning in image processing [1]. Also, deep learning algorithms used to create 

synthetic human faces in a normal looking image. This technology is a potential threat to the security 

systems depending on the face recognition. Thus, face recognition systems should also understand 

whether if an image is fake or real. 

Convolutional Neural Networks (CNN) are mainly focused on the machine vision applications. Their 

working principle is inspired from the pattern of interconnection between neurons similar to the 

organization of the animal visual cortex which proposed by Hubel and Wiesel [2]. It is possible to 

describe the general architecture of CNNs as one input layer, one output layer and the hidden layers. A 

hidden layer in a CNN could be a convolutional layer, pooling layer, batch normalization layer or fully 

connected layer. The working principle of a convolutional layer is like a reaction of a neuron in the visual 

cortex to a specific stimulus. These layers are consisting of filters to create a feature map in order to 

detect features of an input. Pooling layers are consisting of kernels in order to reduce the size of an 

image by using the output features of convolutional layer. Batch normalization layers are used to prevent 

over-fitting. They add specific amount of randomness to the architecture. Fully connected layers are the 

layers where all neurons in a layer are connected to all neurons in the next layer. Generally, using a fully 

connected layer instead of a convolutional layer is possible. But it would require many connections 

between neurons. Instead by using a convolutional layer, creating a deeper network with less parameters 

with decreasing amount of free parameters in a network is possible. 

Quantum neural networks are using principles of the quantum mechanics in order to improve neural 

network architecture. For improving the architecture, quantum parallelism and effects of quantum 

entanglement, quantum interference features of quantum computing are used as resources. Mostly, a 

quantum neural network is used along with a classical neural network to improve the performance of 

the general network. Training and testing these hybrid architectures on IBM Quantum Experience by 

using quantum computers with IBM Qiskit is possible. Also, simulating quantum circuits to train and 

validate quantum-classical neural network architectures on classical computers could be very useful for 

most cases. There are many limitations about quantum neural networks, related to the continuing 

development of quantum computers. There are only a limited number of available quantum computers 

in world. Thus, many works are for research purposes only. 

In this work, several quantum-classical hybrid neural network architectures are developed and tested to 

recognize fake human face images. This work is mainly focused on understanding the effect of a 

quantum computer on fake image recognition. It is important to understand relationship between 

accuracy and architecture of a quantum-classical hybrid neural network’s quantum neural network part 

in fake human face recognition to develop a methodology for future quantum-security applications. 

 

2. RELATED WORK 

2.1. Quantum Neural Networks 

Along with the current developments in Quantum Computing, now it is possible for a Quantum 

computer to solve problems which is almost impossible to solve for many classical computers [3][4][5]. 

A realistic near-term quantum device [6] has a potential to find a solution for many optimization and 

sampling problems by handling memory and time consuming operations for a classical computer. 
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Lewestein, has introduced the first quantum based perceptron [7]. In Lewestein’s research a unitary 

operator used to map inputs and outputs of a classical perceptron to use advantages of quantum 

computing. Then Chrisley introduced a practical quantum learning model [8][9]. But this approach does 

not test with a simulation instead Chrisley used double slit equipment for explaining a feed-forward 

quantum artificial neural network. Chrisley’s approach has been extended by Menneer and Narayanan 

for designing a single pattern quantum neural network [10][11]. In 2018, Pierre-Luc Dallaire-Demers and 

Nathan Killoran has proposed the Quantum Generative Adversarial Networks [12]. They used quantum 

circuits to create a generator and discriminator. They successfully generated fake data by using a 

Quantum Generative Adversarial Network. In 2019, Nathan Killoran et al. proposed a continuous variable 

quantum neural network [13]. 

Nowadays, it became possible to use quantum neural networks as a part of a classical neural network 

like a co-processor. By using a Quantum-Classical Hybrid network some can use the advantages of 

quantum supremacy only in some particular operations in a classical neural network. A hybrid quantum-

classical neural network has been developed to calculate ground state energies of molecules as an 

example. [14]. A model to use transfer learning approach in quantum-classical hybrid neural networks 

has been proposed by Andrea Mari et al. [15]. 

 

3. MATERIALS AND METHODS 

3.1. Proposed Model 

3.1.1. Classical neural network 

A pre-trained residual network (ResNet-18) model is used as classical part of a Quantum-Classical Hybrid 

Neural Network in this research. ResNet-18 is a deep convolutional neural network with pooling, 

convolutional, fully connected and softmax layers. 

In order to define an image as a tensor eq. (1) is used. 

dim(𝑖𝑚𝑎𝑔𝑒) = (𝑛𝐻 , 𝑛𝑊 , 𝑛𝐶) (1) 

Where 𝑛𝐻 is the size of height, 𝑛𝑊 is the size of width and 𝑛𝐶 is the number of channels. A filter should 

have same number of channels with the image. Thus, in order to define a filter, it is possible to use eq. 

(2).  

dim(𝑓𝑖𝑙𝑡𝑒𝑟) = (𝑓, 𝑓, 𝑛𝐶) (2) 

Convolutional product between an image and a filter is a 2D matrix. Every value in this matrix is the 

result of sum of elementwise multiplication of filter and representation of image in each channel. It is 

possible to get convolutional product by using eq. (3).  

conv(𝐼, 𝐾)𝑥,𝑦 = ∑∑∑ 𝐾𝑖,𝑗,𝑘𝐼𝑥+𝑖−1,𝑦+𝑗−1,𝑘
𝑛𝐶

𝑘=1

𝑛𝑊

𝑗=1

𝑛𝐻

𝑖=1

 (3) 

In order to find the dimensions of a convolutional product between an image and a filter (4) is used by 

considering the eqs. (1), (2) and (3).  
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dim⁡(conv(𝐼, 𝐾)) = (⌊
𝑛𝐻 + 2𝑝 − 𝑓

𝑠
+ 1⌋ , ⌊

𝑛𝑊 + 2𝑝 − 𝑓

𝑠
+ 1⌋) ; 𝑠 > 0

= (𝑛𝐻 + 2𝑝 − 𝑓, ⁡𝑛𝑊 + 2𝑝 − 𝑓); 𝑠 = 0 

(4) 

Where p is padding and s is stride.  

It is possible to use pooling operation to down sample the features of an image. Pooling process does 

not affect the number of channels 𝑛𝐶 but instead it affects only 𝑛𝐻 and⁡𝑛𝑊. It is possible to define pooling 

operation as (5). 

dim⁡(pooling(𝑖𝑚𝑎𝑔𝑒)) = (⌊
𝑛𝐻 + 2𝑝 − 𝑓

𝑠
+ 1⌋ , ⌊

𝑛𝑊 + 2𝑝 − 𝑓

𝑠
+ 1⌋ , 𝑛𝐶) ; 𝑠 > 0

= (𝑛𝐻 + 2𝑝 − 𝑓, ⁡𝑛𝑊 + 2𝑝 − 𝑓, 𝑛𝐶); 𝑠 = 0 
(5) 

Two widely used types of pooling are: Max pooling and average pooling. When using the max pooling 

only the maximum value in a filter will return. In average pooling average value in a filter will return.  

Many convolutional products are applied along with the many filters in a convolutional layer. A 

mathematical representation of a convolutional layer is shown in eq. (6) where ∀𝑛 ∈ [1,2,3, … 𝑛𝑐
[𝑙}] 

conv(𝑎[𝑙−1], 𝐾𝑛)𝑥,𝑦 = 𝜓[𝑙} ( ∑ ∑ ∑ 𝐾𝑖,𝑗,𝑘
𝑛 𝑎𝑥+𝑖−1,𝑦+𝑗−1,𝑘

[𝑙−1]
𝑛𝐶
[𝑙−1}

𝑘=1

𝑛𝑊
[𝑙−1}

𝑗=1

𝑛𝐻
[𝑙−1}

𝑖=1

+ 𝑏𝑛
[𝑙]
) (6) 

Where l is the layer as an integer value, 𝑎[𝑙−1] is the input with the size of (𝑛𝐻
[𝑙−1]

, 𝑛𝑊
[𝑙−1]

, 𝑛𝐶
[𝑙−1]

), padding 

is the 𝑝[𝑙], stride is 𝑠[𝑙], 𝜓[𝑙} is the activation function, 𝑏𝑛
[𝑙]

 is the bias at nth convolution, 𝑛𝐶
[𝑙−1]

 is the 

number of filters where 𝐾𝑛 has a dimension of (𝑓[𝑙], 𝑓[𝑙], 𝑛𝐶
[𝑙]
). It is possible to represent the dimensions 

of a convolutional layer as eq. (7). 

dim⁡(conv(𝑎[𝑙−1], 𝐾𝑛)) = (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙]) (7) 

It is possible to create a fully connected layer with finite number of neurons. A fully connected layer 

takes a vector as input and returns another vector. The mathematical modelling of a fully connected 

layer is eq. (8). 

𝑧𝑗
[𝑖]
= ∑𝑤𝑗,𝑙

[𝑖]
𝑎𝑙
[𝑖−1]

+ 𝑏𝑗
[𝑖]

𝑛𝑖−1

𝑙=1

 (8) 

Where the 𝜙 is activation function, w is the weight, A is the input matrix and b is the bias. It is possible 

to define layer 𝑎𝑗
[𝑖]

 as eq. (9). 

𝑎𝑗
[𝑖]
= 𝜓[𝑖}(𝑧𝑗

[𝑖]
) (9) 

Sometimes a neural network could be very deep and thus result may become too stable. So, it becomes 

too difficult to increase the accuracy of a very deep model. There are short-cut layers in ResNet 
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architecture. These layers inject the previous layer’s residuals into the network. It is possible to express 

the layer of a network with a residual block as eq. (10) instead of eq. (9).  

𝑎𝑗
[𝑖]
= 𝜓[𝑖}(𝑧𝑗

[𝑖]
+ 𝑎𝑗

[𝑖−2]
) (10) 

The used ResNet-18 architecture is shown in Table 1.  

Table 1. ResNet-18 Architecture. 

Layer Name Filter Size Stride Padding Number of Filters Output Feature Map Size 

Input - - - - 120x240x3 

Convolutional  7x7x3 2 3 64 60x120x64 

BN - - - - - 

Max Pooling 3x3 2 1 - 30x60x64 

Convolutional 3x3x64 1 1 64 30x60x64 

Convolutional 3x3x64 1 1 64 30x60x64 

Convolutional 3x3x64 1 1 64 30x60x64 

Convolutional 3x3x64 1 1 64 30x60x64 

Convolutional 3x3x64 2 1 128 15x30x128 

Convolutional 3x3x128 1 1 128 15x30x128 

Convolutional (Short cut) 1x1x64 2 0 128 15x30x128 

Convolutional 3x3x128 1 1 128 15x30x128 

Convolutional 3x3x128 1 1 128 15x30x128 

Convolutional 3x3x128 2 1 256 8x15x256 

Convolutional 3x3x256 1 1 256 8x15x256 

Convolutional (Short cut) 1x1x128 2 0 256 8x15x256 

Convolutional 3x3x256 1 1 256 8x15x256 

Convolutional 3x3x256 1 1 256 8x15x256 

Convolutional 3x3x256 2 1 512 4x8x512 

Convolutional 3x3x512 1 1 512 4x8x512 

Convolutional (Short cut) 1x1x256 2 0 512 4x8x512 

Convolutional 3x3x512 1 1 512 4x8x512 

Convolutional 3x3x512 1 1 512 4x8x512 

Average Pooling 4x8 - 0 - 1x1x512 

3.1.2. Quantum neural network 

Using variational quantum circuits as a quantum generalization of feed-forward neural network is 

possible [13][16][17][18][19][20][21][22] . The definition of a quantum layer is a unitary operation which 

is physically realizable by a low-depth variational circuit which acts on the input |x〉of quantum 

subsystems for producing the output state |y〉as shown in eq. (11). 

L:⁡|x〉 →⁡ |y〉 = 𝑈(𝑤)|x〉 (11) 

Where w is an array of classical variational parameters. In Quantum Neural Networks a quantum layer 

preserves Hilbert space dimension of the input states. A variational quantum circuit with a depth of q is 

a series of quantum layers which corresponds to the product of unitaries parameterized by several 

different weights. 

In order to use classical data in a Quantum Neural Network by embedding a real vector x into a quantum 

state |x〉. It can be achieved by using a variational embedding layer depending on x and applied over a 

reference state with eq. (12). 

ε:⁡x → |x〉 = 𝐸(𝑥)|0〉 (12) 
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In order to parameterize single qubit rotations or single mode displacements, X is used. Y is The output 

vector obtained from the quantum circuit by measuring the expectation values of nq local observables 

where ŷ = [ŷ𝟏, ŷ𝟐…ŷ𝒏𝒒]. Measurement layer maps a quantum state to a classical vector. This layer is 

mathematically expressed as eq. (13).  

M:⁡|x〉 → y =〈x|ŷ|x〉 (13) 

In eq. (14) a complete quantum network with initial embedding layer and final measurement layer is 

expressed.  

Q = M◦Q⁡◦ ε (14) 

Where the Q is defined by the series of quantum layers which corresponds to the product of unitaries 

parameterized by different weights. 

Dressed quantum circuits are used to connect a classical network to a quantum network. Input and 

output data is processed by adding classical layers at the beginning and ending of a quantum circuit. By 

considering the Equation (14), it is possible to express a dressed quantum circuits as (15). 

�̃� = 𝐿𝑛𝑞→𝑛𝑜𝑢𝑡 ◦ Q◦ 𝐿𝑛𝑖𝑛→𝑛𝑞 (15) 

Where 𝐿𝑛→𝑛′ is defined as eq. (16) by considering the eqs. (8) and (9). 

𝐿𝑛→𝑛′: x → y = 𝜓(𝑤𝑥 + 𝑏) (16) 

When the e1. (16) is considered, proposed quantum circuit is not working as a co-processor to the 

classical processor since the main computation is done in quantum processor and only data embedding 

and readout processes are held in classical layers. 

3.1.3. Loss function and optimizer 

Cross entropy loss function is used in order to measure the performance of the proposed model. There 

are only 2 classes thus eq. (17) is used to calculate cross entropy. 

Loss = −[ylog(p) + (1 − 𝑦)𝑙𝑜𝑔⁡(1 − 𝑝)] (17) 

Adam optimization algorithm is used for model optimization. It is an extension of classical stochastic 

gradient descent. Used equation to calculate weights by using Adam optimization eq. (18) is used.  

𝑤𝑡 = 𝑤𝑡−1 − η(
�̂�𝑡

√�̂�𝑡 + 𝜀
) (18) 

Where 𝛈 is the step size �̂� is the w is the weight, is the bias corrected estimator of first moment and �̂� 

is the bias corrected estimator of second moment. 

3.1.4. Experimental models 

Two different architectures with different depths of quantum networks are developed. Architectures 

developed to conducts experiments are given in Table 2. 
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Table 2. Models used in experiments. 

Classical 

Network 

Number of 

Qubits in Each 

Quantum Layer 

Depth of 

Quantum 

Network 

ResNet-18 4 2 

ResNet-18 4 4 

3.2. Environment 

When the e1. (16) is considered, proposed quantum circuit is not working as a co-processor to the 

classical processor since the main computation is done in quantum processor and only data embedding 

and readout processes are held in classical layers. 

Experiments are conducted on Google Collaboratory environment. Python language is used to develop 

code of conduct. For building the proposed architecture Torch library is used along with the Torchvision 

library to load visual data. Pennylane library is used to build, train and test the quantum neural network 

in a simulation environment.  

3.3. Dataset 

In this research, a fake human face dataset with several different difficulty levels are used. The dataset is 

named as Real and Fake Face Detection by Computational Intelligence and Photography Lab of Yonsei 

University which consists a total of 2041 fake and real face [23]. 960 of them was fake and 1,345 of them 

was real. 30 random images are used as test set. 

 

4. RESULTS 

Several experiments are conducted in order to show the proposed quantum-classical hybrid neural 

network architecture’s success to determine whether if an image is real or fake. In these experiments 

each model is trained for 20 epochs. Used hyperparameters with the 4 qubits and 2-layer model are 

given in Table 3. 

Table 3. Hyperparameters. 

Hyperparameter Value 

Learning Rate 0.0001 

Batch Size 8 

Gamma Learning 

Rate Scheduler 
0.1 

Q_delta 0.01 

Used hyperparameters with the 4 qubits and 2-layer model are given in Table 4. 

Table 4. Hyperparameters. 

Hyperparameter Value 

Learning Rate 0.0004 

Batch Size 8 

Gamma Learning 

Rate Scheduler 
0.1 

Q_delta 0.01 
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Firstly, experiments on an architecture with 4 qubits with a depth of 2 quantum layers is conducted. Train 

and validation accuracies according to each epoch are given in Fig. 1. and train and validation loss values 

according to each epoch are given in Fig. 2. 

  
Figure 1. Train and Validation Accuracy. Figure 2. Train and Validation Loss. 

According to the Fig. 1 and Fig. 2 it is observed that after the epoch 3 validation accuracy of the model 

decreases but training accuracy increases. 

Secondly, experiments on an architecture with 4 qubits with a depth of 4 quantum layers is conducted. 

Train and validation accuracies according to each epoch are given in Fig. 3. and train and validation loss 

values according to each epoch are given in Fig. 4. 

  
Figure 3. Train and Validation Accuracy. Figure 4. Train and Validation Loss. 

According to the Fig. 3 and Fig. 4 it is observed that after the epoch 2 training accuracy of the model 

increases but no change in validation accuracy is observed. 

 

5. DISCUSSION 

Currently there are many security applications like face recognition and iris recognition based on the 

machine vision. Thus, it could be stated that the machine vision algorithms might be an essential part of 

the future of modern data security systems. Recent developments in the Generative Artificial Neural 

Network Models show that there is an emergent need for fake image recognition technologies to ensure 

the reliability of security systems since it became more easy to generate fake data. In this research we 
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proposed to use a quantum-classical hybrid deep learning architecture with transfer learning approach 

to recognize whether if an image is fake or real. 

This research shows that it is possible to use quantum computers in security systems. By considering the 

several limitations due to the ongoing research on quantum computers or quantum co-processors can 

be used along with classical processors to improve the reliability of security systems in the future. When 

quantum co-processors become realizable there will be a need to develop more complex hybrid 

architectures to improve the accuracy of the results. 

This research could be furthered by combining different classical and quantum networks to achieve 

better performance. Hyperparameter optimization can solve the overfitting problem and increase the 

validation and test accuracies. Also training and testing the proposed model on a real quantum 

computer is possible. 

 

6. CONCLUSION 

This research show that usage of quantum-classical hybrid deep learning models can increase the 

reliability of machine vision based security systems. It can be concluded that the architecture is too deep 

and hyperparameters should be optimized further to prevent overfitting especially for quantum models. 

In this research both training and validation processes took place in simulation of a quantum computer. 

Training a Quantum-Classical Hybrid Neural Network architecture on a real quantum computer may 

slightly affect the results due to the noise but for training in simulation it is possible to conclude that 

quantum networks are not immune to the over-fitting problem. 
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