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Abstract
Let AΦ be a matrix valued truncated Toeplitz operator – the compression of multiplication
operator to the vector valued model space H2(E) ⊖ ΘH2(E), where Θ is a matrix valued
non constant inner function. Under supplementary assumptions, we find necessary and
sufficient condition that the product AΦAΨ is itself a matrix valued truncated Toeplitz
operator.
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1. Introduction
Toeplitz operators are the compressions of multiplication operator to the usual Hardy

Hilbert space H2. In [3], Brown and Halmos describe the algebraic properties of Toeplitz
operators. Among other things, they found necessary and sufficient conditions for the
product of two Toeplitz operators to itself be a Toeplitz operator, namely that either the
first operators symbol is antiholomorphic or the second operators symbol is holomorphic.
In either case, the symbol of the product is the product of the symbols.
In the last decade, a large amount of research has concentrated on a generalization of
Toeplitz matrices, namely truncated Toeplitz operators. These are the compressions of
multiplication operator to subspaces of the Hardy space which are invariant under the
backward shift operator. They have been formally introduced in [11]; see [6] for a more
recent survey. Sarason [11] found equivalents to several of Brown and Halmoss results
for truncated Toeplitz operators on the model spaces Kθ = H2 ⊖ θH2, where θ is some
non-constant inner function. The model spaces are the backward-shift invariant subspaces
of H2 (that they are backward shift invariant follows easily from the fact that θH2 is
clearly shift invariant). We refer the reader to [1,2,6] (see also [5]) for the general theory
of these operators. It is well known that the product of two truncated Toeplitz operators
is not a truncated Toeplitz operator. In particular, in [12] Sedlock has investigated when
a product of truncated Toeplitz operators is itself a truncated Toeplitz operator.
Most recently, the basics of corresponding matrix valued truncated Toeplitz operators
(MTTOs), which are compressions to KΘ of multiplications with matrix valued functions
on H2(E) has been developed in [9]. In view of the result of [12], there arises a basic
question related to the product of matrix valued truncated Toeplitz operators that is
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when the product of two MTTOs is still an MTTO? But there is no such simple result in
the general case, and we need some supplementary assumptions to obtain the main result
Theorem 4.6. The purpose of the present paper is to adapt the approach in [4] to the case
of MTTOs on an arbitrary model space.
The plan of the paper is following: By means of Section 2, we want to make sure that
the reader has become acquainted to model spaces and their operators and other useful
facts from this area, needed when we are going to start the main work in section 4.
In Section 3 we will introduce truncated Toeplitz operators (TTOs) and matrix valued
truncated Toeplitz operators (MTTOs). The last section contains a particular case of
MTTOs namely the Block Toeplitz matrices.

2. Model spaces and operators
Let C denote the complex plane, D the unit disc in C and T one dimensional torus in C.

In the sequel E will denote a fixed Hilbert space of dimension d. We designate the algebra
of bounded linear operators on E by L(E) and by L(E,K) the space of all bounded linear
operators from a Hilbert space E to a Hilbert space K. The space L2(E) is defined as
usual, by

L2(E) :=
{
f : T −→ E : f(eit) =

∞∑
n=−∞

ane
int : an ∈ E,

∞∑
n=−∞

∥an∥2 < ∞
}

endowed with the inner product

⟨f, g⟩L2(E) =
∫
T
⟨f(eit), g(eit)⟩Edm

where dm = dt
2π is the normalized Lebesgue measure on T . The norm induced by the inner

product is given by

∥f∥L2(E) =
∫
T

∥f∥2
Edm.

If dimE = 1 (i.e., E = C) then L2(E) consists of scalar-valued functions and is denoted
by L2.

The Hardy space H2(E) is the subspace of L2(E) formed by the functions with vanishing
negative Fourier coefficients; it can be identified with a space of E- valued functions
analytic in D, from which the boundary values can be recovered almost everywhere through
radial limits. One can also view H2(E) as the direct sum of d standard H2 spaces. We
have the orthogonal decomposition

L2(E) = H2(E) ⊕ (zH2(E))∗.

The spaces L∞(E) ⊂ L2(E) is formed by the essentially bounded functions with values
in E; then H∞(E) ⊂ H2(E) are the functions in L∞(E) with vanishing negative Fourier
coefficients.

Taking into account that L(E) is a Hilbert space endowed with the Hilbert-Schmidt
norm, we may similarly define H2(L(E)) ⊂ L2(L(E)) and H∞(L(E)) ⊂ L∞(L(E)).
Note, however, that we prefer to consider on L∞(L(E)) and H∞(L(E)) the equivalent
norm obtained by considering on L(E) the operator norm instead of the Hilbert-Schmidt
norm.

The space L2(L(E)) may be identified with the matrices with all the entries in L2. We
have an orthogonal decomposition

L2(L(E)) = [zH2L(E)]∗ ⊕H2(L(E)).

The space L∞(L(E)) acts on L2(E) by means of multiplication: to Φ ∈ L∞(L(E)) we
associate the operator MΦ defined by MΦ(f) = Φf for all f ∈ L2(E).
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Let S denote the forward shift operator (Sf)(z) = zf(z) on H2(E) ; it is the restriction
of Mz to H2(E). Its adjoint (the backward shift) is the operator

(S∗f)(z) = f(z) − f(0)
z

.

One sees easily that I − SS∗ is precisely the orthogonal projection onto the space of
constant functions.

The main object of study is formed by the model spaces and the operators acting on
them. These are defined as follows. First, an inner function is an element Θ ∈ H2(L(E))
whose boundary values are almost everywhere unitary operators in L(E). The inner
function is called pure if ∥Θ(0)∥ < 1; this is equivalent to requiring that Θ has no constant
unitary part.

Consider then a pure inner function Θ, with values in L(E). The model space associated
to a pure inner function Θ, denoted by KΘ and is defined by

KΘ = H2(E) ⊖ ΘH2(E).

Just like the Beurling-type subspaces ΘH2(E) constitute nontrivial invariant subspaces
for the unilateral shift S on H2(E), the subspaces KΘ play an analogous role for the
backward shift S∗. The orthogonal projection onto KΘ will be denoted by PΘ. It is also
known that KΘ ∩H∞(E) is dense in KΘ.

The analogous space of matrix-valued functions is denoted by MΘ; it is the orthogonal
complement of ΘH2(L(E)) in H2(L(E)).

The model operator SΘ ∈ L(KΘ) is defined by the formula

(SΘf)(z) = PΘ(zf).

The adjoint of SΘ is given by

(S∗
Θf)(z) = f(z) − f(0)

z
;

it is the restriction of the left shift in H2(E) to the S∗ -invariant subspace KΘ.
Let us assume that Θ(0) = 0, so Θ = zΘ1, which is the case we will consider in

the sequel. Then I − SΘS
∗
Θ is the projection P0 onto the constant functions, which are

contained in KΘ, while I−S∗
ΘSΘ is the projection PD∗ onto the space D∗ = {Θ1x : x ∈ E}

(which is also contained in KΘ).
The scalar valued model spaces and operators are obtained when dimE = 1; that is,

when E = C. We have then the classical spaces H2 ⊂ L2 and L∞. The inner function is
a scalar inner function θ, and the model space is Kθ = H2 ⊖ θH2. In particular, in case
θ(z) = zn, Kθ becomes the n-dimensional space of polynomials of degree at most n− 1.

Definition 2.1. A conjugation on a complex Hilbert space H is a function C : H −→ H

that is
(i) conjugate linear: that is C(αx+ βy) = αCx+ βCy for all x, y ∈ H and α, β ∈ C,
(ii) involutive: C2 = I,
(iii) isometric: ∥Cx∥ = ∥x∥ for all x ∈ H.

The following result is an immediate consequence of a theorem in [9].

Lemma 2.1. Suppose Θ(0) = 0, so Θ = zΘ1. Let Γ be a conjugation on E, and suppose
that Θ(eit)∗ = ΓΘ(eit)Γ a.e. on T. Then the map CΓ defined by

CΓ(f) = zΘ1Γf (2.1)

is a conjugation on zKΘ1.
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3. Truncated Toeplitz operators and matrix valued truncated Toeplitz
operators

If ϕ ∈ L∞, then the compression of the multiplication operator Mϕ to H2 is called a
Toeplitz operator and is denoted by Tϕ. That means that Tϕ = PH2Mϕ|H2, where PH2 is
the orthogonal projection of L2 onto H2. More than a decade ago, Sarason has introduced
in [11] the so-called truncated Toeplitz operators. Remember that Pθ is the orthogonal
projection onto the model space Kθ. If ϕ ∈ L∞, then the truncated Toeplitz operator
Aθ

ϕ is defined to be the compression of Mϕ to Kθ. That means that Aθ
ϕ = PθMϕ|Kθ. In

particular, we see that with this notation Sθ = Aθ
z.

Let us now remember that for θ(z) = zn the space Kθ is formed by the polynomials of
degree not greater than n− 1. The monomials zk, k = 0, . . . , n− 1 form an orthonormal
basis of Kzn . If we write the matrix of an operator with respect to this basis, then one
can see that truncated Toeplitz operators correspond precisely to Toeplitz matrices.

Passing now beyond the scalar case, suppose that Θ is a pure inner function. The
analogue of truncated Toeplitz operators have been defined in [9], where they are called
matrix valued truncated Toeplitz operators.

Suppose then that Φ ∈ L2(L(E)). Consider the linear map f −→ PΘ(Φf), defined on
KΘ ∩H∞(E). If it is bounded, then it uniquely determines an operator in L(KΘ), denoted
by AΘ

Φ , and called a matrix valued truncated Toeplitz operator (MTTO). The function Φ is
then called a symbol of the operator. We will usually drop the subscript Θ, as we consider
a fixed inner function. We denote by T(KΘ) the space of all MTTOs on the model space
KΘ.

Note that if Φ ∈ L∞(L(E)) (that is, it is bounded), then it follows that f −→ PΘ(Φf)
defines a bounded linear operator on the whole of KΘ, and thus AΘ

Φ ∈ T(KΘ). But we may
have bounded MTTOs which have no bounded symbols, which is one of the complications
of the theory. However, a result of [9] tells that any operator in T(KΘ) has a symbol in
MΘ + (MΘ)∗; this is why we will restrict in the sequel to considering operators AΘ

Φ with
Φ ∈ MΘ + (MΘ)∗.

The operator SΘ is a simple example of MTTO; it is obtained by taking Φ(z) = zIE .
This example is rather special because the symbol is scalar valued.

It is immediate that
A∗

Φ = AΦ∗ ,

so T(KΘ) is a self adjoint linear space.
In section 5 we will see that if Θ(z) = zNIE , then the MTTOs obtained are actually

familiar objects, namely block Toeplitz matrices of dimension N , in which the entries are
the matrices of dimension d. The theory of Block Toeplitz matrices has been an inspiration
for research in the domain of matrix valued truncated Toeplitz operators. In particular, it
should be mentioned that some of the classes of block Toeplitz matrices which are closed
to multiplication are found in [7] and [8].

As supposed above, we will consider a fixed inner function Θ and different MTTOs
acting on KΘ. The symbols of these operators will be Φ,Ψ, . . . .

Before the ending of this section we need to quote a result from [10, Chapter VI].

Proposition 3.1. Suppose Θ be an inner function, and Φ ∈ H∞(L(E)) such that ΦΘ =
ΘΦ. Then

(1) ΘH2(L(E)) is invariant with respect to MΦ (and consequently KΘ is invariant
under M∗

Φ).
(2) AΦSΘ = SΘAΦ and consequently A∗

ΦS
∗
Θ = S∗

ΘA
∗
Φ.

For an operator A on KΘ, define

∆(A) = A− SΘAS
∗
Θ.
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Note, in particular, that P0 = ∆(I). The next result from [9] characterizes MTTOs among
all operators on KΘ.

Proposition 3.2. A bounded operator A on KΘ belongs to T(KΘ) if and only if there
exist operators B,B′ on KΘ such that

∆(A) = BP0 + P0B
′

In this case A = AΦ+Φ′∗, where Φ,Φ′ ∈ H2(L(E)).

4. Main results
In view of the result of Sedlock [12], a natural question is to determine when is the

product of two MTTOs still an MTTO. However, there is no such simple result in the
general case, and we need some supplementary assumptions to obtain the main result,
Theorem 4.4. The path we take is suggested by [4], but the matrix valued situation is
much more complicated.

We will consider in the rest of this section a fixed inner function Θ ∈ H∞(E) subjected
to the condition Θ(0) = 0. Then Θ = zΘ1, where Θ1 ∈ H∞(E) is also inner. Remember
that in this case the constants belong to KΘ, and P0 is the projection onto the constants.
We have the orthogonal decomposition

KΘ = E ⊕ zKΘ1 . (4.1)
Take now Φ ∈ MΘ + (MΘ)∗. We can write then

Φ = zΦ+ + z̄Φ∗
− + Φ0 (4.2)

with Φ± ∈ MΘ1 and Φ0 ∈ L(E). If Φ(eit) =
∞∑

n=−∞
Φne

int with Φn ∈ L(E), then

Φ+(z) =
∞∑

n=1
Φnz

n =
∞∑

n=1

(∫
Φ(eit)e−int dt

)
zn

=
∫

Φ(eit)
( ∞∑

n=1
e−intzn

)
dt =

∫
Φ(eit) eitz

1 − eitz
dt.

(4.3)

Remember that two operators A,B are said to doubly commute if AB = BA and
AB∗ = B∗A (whence it follows that also A∗B∗ = B∗A∗ and A∗B = BA∗).

Lemma 4.1. Suppose that Θ(0) = 0 and Φ,Ψ ∈ MΘ + (MΘ)∗ such that Φ(eit)Ψ(eis) =
Ψ(eis)Φ(eit) for any s, t.

(i) For any s, t we have Φ+(eit)Ψ(eis) = Ψ(eis)Φ+(eit) and Φ−(eit)Ψ(eis) = Ψ(eis)Φ−(eit).
(ii) If the values of Φ,Ψ doubly commute with those of Θ, then the same is true for

Φ±,Ψ±.
(iii) If Γ is a conjugation on E such that Φ(eit)∗ = ΓΦ(eit)Γ, then Φ±(eit)∗ = ΓΦ±(eit)Γ.

Proof. We will give the proof only for one of the equalities in (ii); the rest are similar.
Using (4.3), we have

Ψ(eis)Φ+(z) = Ψ(eis)
∫

Φ(eit) eitz

1 − eitz
dt =

∫
Ψ(eis)Φ(eit) eitz

1 − eitz
dt

=
∫

Φ(eit)Ψ(eis) eitz

1 − eitz
dt =

(∫
Φ(eit) eitz

1 − eitz
dt

)
Ψ(eis)

= Φ+(z)Ψ(eis).
By taking radial limits in z a.e., one obtains the required commutativity. �

The next lemma gives an identification of elements in MΘ.
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Lemma 4.2. The map Φ 7→ JΦ, defined by
JΦ(x)(z) = Φ(z)x (4.4)

is a bijection between MΘ and L(E,KΘ).
Proof. Fix a basis e1, · · · , ed in E. If J : E −→ KΘ, then define

ϕk = J(ek), 1 ≤ k ≤ d, (4.5)
where ϕk ∈ KΘ for every 1 ≤ k ≤ d. If we arrange ϕk as a column vectors then we obtain
Φ ∈ MΘ. Conversely, if we start with Φ ∈ MΘ, then the map JΦ : E −→ KΘ, which sends
ek to kth column of Φ for every 1 ≤ k ≤ d, is defined by

JΦ(x)(z) = Φ(z)x. �
We denote by J0 the embedding of E in KΘ; that is for every x ∈ E, J0(x) = x. It is

easy to see that in a given basis the matrices of functions in zMΘ1 are characterized by
the fact that columns are functions in zKΘ1 .

Finally, we define CΓ(Φ) by giving the action of JΦ on x ∈ E as
JCΓ(Φ)x = CΓ(ΦΓx), (4.6)

where CΓ is defined by (2.1).
In the rest of this section we assume that F is a commutative algebra of functions

contained in MΘ + (MΘ)∗, such that all the elements of F doubly commute with those of
Θ. The next lemma is the main technical result of this section.
Lemma 4.3. Suppose that Θ(0) = 0 and Φ,Ψ ∈ F. Then there exist operators X,Y ∈ MΘ
such that

∆(AΦAΨ) = JzΦ+J
∗
zΨ− − JCΓ(zΦ−)J

∗
CΓ(zΨ+) +XP0 + P0Y.

Proof. For any Φ ∈ MΘ + (MΘ)∗ we will denote Φ̂ = Φ − Φ0. It follows easily from
Lemma 4.1 that Φ0Ψ(eis) = Ψ(eis)Φ0 and Φ0Ψ̂(eis) = Ψ̂(eis)Φ0. In the same way one
can obtain Ψ0Φ(eis) = Φ(eis)Ψ0 and Ψ0Φ̂(eis) = Φ̂(eis)Ψ0. A similar argument works for
double commutation with Θ.
Since Φ0,Ψ0 ∈ H2(L(E)) commutes with Θ, then by using Proposition 3.1 SΘ commutes
with AΦ0 and AΨ0 , and therefore

∆(AΦAΨ) = ∆(AΦ̂AΨ̂) + ∆(AΦ̂AΨ0) + ∆(AΦ0AΨ̂) + ∆(AΦ0AΨ0).
= ∆(AΦ̂AΨ̂) + Ψ0∆(AΦ̂) + Φ0∆(AΨ̂) + Φ0Ψ0∆(I)
= ∆(AΦ̂AΨ̂) + Ψ0∆(AΦ̂) + Φ0∆(AΨ̂) + Φ0Ψ0P0.

By Proposition 3.2 there exist operators B = zΦ+ and B′ = zΦ− such that ∆(AΦ̂) =
zΦ+P0 + P0z̄Φ∗

− with Φ± ∈ MΘ1 . Similarly ∆(AΨ̂) = zΨ+P0 + P0z̄Ψ∗
− and Ψ± ∈ MΘ1 .

Using Lemma 4.1, we have
∆(AΦAΨ) = ∆(AΦ̂AΨ̂) + Ψ0(zΦ+P0 + P0z̄Φ∗

−) + Φ0(zΨ+P0 + P0z̄Ψ∗
−) + Φ0Ψ0P0

= ∆(AΦ̂AΨ̂) + (Ψ0zΦ+ + Φ0zΨ+ + Φ0Ψ0)P0 + (Ψ0P0z̄Φ∗
− + Φ0P0z̄Ψ∗

−).
Since P0 is the projection onto the constants then it must commute with Φ0 and Ψ0.
Therefore

∆(AΦAΨ) = ∆(AΦ̂AΨ̂) + (Ψ0zΦ+ + Φ0zΨ+ + Φ0Ψ0)P0 + P0(Ψ0z̄Φ∗
− + Φ0z̄Ψ∗

−). (4.7)
Now, by using the definition of ∆,

∆(AΦ̂AΨ̂) = AΦ̂AΨ̂ − SΘAΦ̂AΨ̂S
∗
Θ

= AΦ̂AΨ̂ −AΦ̂SΘAΨ̂S
∗
Θ +AΦ̂SΘAΨ̂S

∗
Θ − SΘAΦ̂AΨ̂S

∗
Θ

= AΦ̂∆(AΨ̂) + ∆(AΦ̂)SΘAΨ̂S
∗
Θ − SΘAΦ̂PD∗AΨ̂S

∗
Θ

= AΨ̂(zΦ+P0 + P0z̄Ψ∗
−) + (zΦ+P0 + P0z̄Φ∗

−)SΘAΨ̂S
∗
Θ − SΘAΦ̂PD∗AΨ̂S

∗
Θ
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or
∆(AΦ̂AΨ̂) = AΦ̂zΨ+P0 +AΦ̂P0z̄Ψ∗

− + zΦ+P0SΘAΨ̂S
∗
Θ

+ P0z̄Φ∗
−SΘAΨ̂S

∗
Θ − SΘAΦ̂PD∗AΨ̂S

∗
Θ.

(4.8)

Since the constant functions are in KΘ , we have P0PΘ = PΘP0. Also since P0zf = 0,
then

P0SΘf = P0PΘzf = PΘP0zf = 0,
So the third term in the left hand side of (4.8) is 0. The second term is

AΦ̂P0z̄Ψ∗
− = PΘ(zΦ+ + z̄Φ∗

−)P0z̄Ψ∗
−.

But, since Φ+ ∈ MΘ1 , we have, for any constant function x, Φ+x ∈ KΘ1 , zΦ+x ∈ KΘ,
and therefore PΘzΦ+P0 = zΦ+P0. Also, for any constant function x, z̄Φ∗

−x ⊥ H2(E), so
PΘz̄Φ∗

−P0 = 0. So

∆(AΦ̂AΨ̂) = AΦ̂zΨ+P0 + zΦ+P0z̄Ψ∗
− + P0z̄Φ∗

−SΘAΨ̂S
∗
Θ − SΘAΦ̂PD∗AΨ̂S

∗
Θ. (4.9)

Since J0 is the embedding of the constants into KΘ, we have, for f ∈ KΘ and x ∈ E,

⟨J∗
0f, x⟩ = ⟨f, J0x⟩ = ⟨f(0), x⟩

whence J∗
0f = f(0). So

JΦJ
∗
0f = JΦf(0) = Φ(z)f(0) = ΦP0f, for any f ∈ KΘ.

By taking adjoints we have J0J
∗
Φ = P0Φ∗. Therefore we can write (4.9) as

∆(AΦ̂AΨ̂) = AΦ̂JzΨ+J
∗
0 + JzΦ+P0J

∗
zΨ− + P0z̄Φ∗

−SΘAΨ̂S
∗
Θ − SΘAΦ̂PD∗AΨ̂S

∗
Θ. (4.10)

Since D∗ is the space spanned by Θ1E, we can define an isometry V : E → KΘ by the
formula V x = Θ1x, and, moreover, PD∗ = V V ∗. Also, we have

AΦ̂V x = PΘΦ̂V x = PΘzΦ+V x+ PΘz̄Φ∗
−V x. (4.11)

Then, using the commutativity between Θ and Φ+,

zΦ+V x = zΦ+Θ1x = zΘ1Φ+x = ΘΦ+x ⊥ KΘ,

and so the first term in (4.11) is 0.
We have also

z̄Φ∗
−V x = z̄Φ∗

−Θ1x = Θ1z̄Φ∗
−x = Θ1z̄Φ∗

−ΓΓx
= z̄(zΘ1Γ(zΦ−Γx)) = z̄CΓ(zΦ−Γx). = z̄JCΓ(zΦ−)x.

Since CΓ is a conjugation on zKΘ1 , z̄CΓ(zΦ−Γx) ∈ KΘ, and therefore

PΘz̄Φ∗
−V x = z̄Φ∗

−V x = z̄CΓzΦ−Γx = z̄JCΓ(zΦ−)x.

So
SΘAΦ̂V x = zz̄CΓzΦ−Γx = CΓzΦ−Γx = JCΓ(zΦ−)x.

Similarly, we obtain
SΘAΨ̂∗V x = CΓzΨ+Γx = JCΓ(zΨ+)x.

Consequently,
SΘAΦ̂V = JCΓ(zΦ−), SΘAΨ̂∗V = JCΓ(zΨ+),

Finally, the last term in (4.9) is

SΘAΦ̂PD∗AΨ̂S
∗
Θ = SΘAΦ̂V V

∗AΨ̂S
∗
Θ = JCΓ(zΦ−)J

∗
CΓ(zΨ+). (4.12)

Combining (4.10) and (4.12) we get

∆(AΦ̂AΨ̂) = AΦ̂JzΨ+J
∗
0 + JzΦ+P0J

∗
zΨ− + J0J

∗
zΦ−SΘAΨ̂S

∗
Θ − JCΓ(zΦ−)J

∗
CΓ(zΨ+)
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so we have
∆(AΦAΨ) = AΦ̂JzΨ+J

∗
0 + JzΦ+P0J

∗
zΨ− + J0J

∗
zΦ−SΘAΨ̂S

∗
Θ − JCΓ(zΦ−)J

∗
CΓ(zΨ+)

+ (Ψ0zΦ+ + Φ0zΨ+ + Φ0Ψ0)P0 + P0(Ψ0z̄Φ∗
− + Φ0z̄Ψ∗

−)
(4.13)

Now we have the relations
JϕJ

∗
0 = ΦP0, J0JΦ = P0Φ∗

So the second term in (4.13) becomes
zΦ+P0(zΦ)∗ = JzΦ+J

∗
0J0J

∗
zΦ− = JzΦ+J

∗
zΦ−

Also, since J0 : E −→ KΘ is the embedding of the constants, while P0 : KΘ −→ KΘ is the
projection onto the constant functions, it follows immediately that

P0J0 = J0, J
∗
0P0 = J∗

0

Therefore we can write the first and third term in (4.13) as
AΦ̂JzΨ+J

∗
0 = AΦ̂JzΨ+J

∗
0P0, J0J

∗
zΦ−SΘAΨ̂S

∗
Θ = P0J0J

∗
zΦ−SΘAΨ̂S

∗
Θ.

So we have
∆(AΦAΨ) = AΦ̂JzΨ+J

∗
0P0 + JzΦ+J

∗
zΨ− + P0J0J

∗
zΦ−SΘAΨ̂S

∗
Θ − JCΓ(zΦ−)J

∗
CΓ(zΨ+)

+ (Ψ0zΦ+ + Φ0zΨ+ + Φ0Ψ0)P0 + P0(Ψ0z̄Φ∗
− + Φ0z̄Ψ∗

−)
= JzΦ+J

∗
zΨ− − JCΓ(zΦ−)J

∗
CΓ(zΨ+)

+ [AΦ̂JzΨ+J
∗
0 + Ψ0zΦ+ + Φ0zΨ+ + Φ0Ψ0]P0

+ P0[J0J
∗
zΦ−SΘAΨ̂S

∗
Θ + Ψ0z̄Φ∗

− + Φ0z̄Ψ∗
−]

= JzΦ+J
∗
zΨ− − JCΓ(zΦ−)J

∗
CΓ(zΨ+) +XP0 + P0Y

(4.14)

where X = AΦ̂JzΨ+J
∗
0 + Ψ0zΦ+ + Φ0zΨ+ + Φ0Ψ0 and Y = J0J

∗
zΦ−

SΘAΨ̂S
∗
Θ + Ψ0z̄Φ∗

− +
Φ0z̄Ψ∗

−. �
Theorem 4.4. Suppose Θ(0) = 0 and Φ,Ψ, χ, ζ ∈ F. Then AΦAΨ − AχAζ ∈ T(KΘ) if
and only if

JzΦ+J
∗
zΨ− − JCΓ(zΦ−)J

∗
CΓ(zΨ+) = Jzχ+J

∗
zζ− − JCΓ(zχ−)J

∗
CΓ(zζ+).

Proof. By Lemma 4.3 there exists operators X,Y ∈ MΘ such that
∆(AΦAΨ −AχAζ) = JzΦ+J

∗
zΨ− − JCΓ(zΦ−)JCΓ(zΨ+) − Jzχ+J

∗
zζ− + JCΓ(zχ−)JCΓ(zζ+)

+XP0 + P0Y.

By Proposition 3.2, we have AΦAΨ − AχAζ ∈ T(KΘ) if and only there exist operators
B,B′ such that

∆(AΦAΨ −AχAζ) = BP0 + P0B
′.

The last two equations say that AΦAΨ − AχAζ ∈ T(KΘ) if and only if there exist X ′, Y ′

such that
JzΦ+J

∗
zΨ− − JCΓ(zΦ−)JCΓ(zΨ+) − Jzχ+J

∗
zζ− + JCΓ(zχ−)JCΓ(zζ+) = X ′P0 + P0Y

′. (4.15)

Since Θ(0) = 0 then we can write KΘ = E ⊕ zKΘ1 . With respect to this decomposition,
the left hand side of (4.15) has zeros on the first row and column, while the right hand
side is the general form of an operator that has zeros in the lower right corner. Now it is
clear that for (4.15) to be true both sides have to be zero, which proves the theorem. �

The following result is the main result of this paper: it gives the answer to the question
stated at the beginning of this section, namely when is the product of two MTTOs also
an MTTO.

Theorem 4.5. Suppose Θ(0) = 0, Φ,Ψ ∈ F and AΦ, AΨ,∈ T(KΘ). Then AΦAΨ ∈ T(KΘ)
if and only if JzΦ+J

∗
zΨ−

= JCΓ(zΦ−)J
∗
CΓ(zΨ+).
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Proof. Applying Theorem 4.4 to the case χ = ζ = 0. �

Remark 4.6. One sees that our results are valid only under some restrictive assump-
tions. First, the commutation of the values of Φ and Ψ is natural if we want to obtain a
commutation of the operators that have them as symbols.

Secondly, we assume that the values of Φ,Ψ doubly commute with those of Θ. This
is a more restrictive assumption that we would like to avoid, but up to now we have not
been able to obtain a smooth result in the general case. However, even this restrictive
assumption covers various classes of model spaces and matrix valued truncated Toeplitz
operators, as is seen by the examples below.

(1) Suppose Θ(z) = θ(z)Id. Then the values of Θ are scalar matrices of dimension
d, which doubly commute with any other matrix. The assumptions of the theorem
are therefore verified for any commuting Φ,Ψ. A particular case of such a Θ is
discussed in detail in the next section.

(2) An opposite case appears when Θ is arbitrary, but Φ(z) = ϕ(z)Id, Ψ(z) = ψ(z)Id—
that is, Φ and Ψ are ampliations of scalar symbols. Again the assumptions of the
theorem are valid.

5. A particular case: block Toeplitz matrices
In this section let Θ(z) = zNIE for some fixed positive integer N . Then KΘ is the

Hilbert space of all polynomials in z of degree at most N − 1 with coefficients from E,i.e.,

KΘ = {a0 + a1z + · · · aN−1z
N−1; a0, a1, · · · , aN−1 ∈ E}.

One can also identify this space with the direct sum of N copies of E by mapping
N−1∑
k=0

akz
k

into
⊕N−1

k=0 ak. Take then AΦ, with Φ ∈ L2(L(E)) having Fourier expansion Φ(eit) =
∞∑

n=−∞
Φ(n)eint, with Φ(n) ∈ L(E). Then it can easily be seen that with respect to the

direct decomposition given above AΦ has a natural representation as the block Toeplitz
matrix 

Φ(0) Φ(1) · · · Φ(N − 1)
Φ(−1) Φ(0) · · · Φ(N − 2)

...
... . . . ...

Φ(1 −N) Φ(2 −N) · · · Φ(0)


So T(KΘ) becomes in this decomposition the space of all block Toeplitz matrices with
entries in L(E).

Suppose now that Φ,Ψ belong to a commutative algebra F. Since Θ is a scalar valued
inner function the double commutation assumption on Φ,Ψ is satisfied. As stated in
section 4, we can write the symbol Φ ∈ F of any MTTO as

Φ = zΦ+ + z̄Φ− + Φ0,

where Φ± ∈ MΘ1 and Φ0 ∈ L(E). Let Φ+(k) and Φ−(k) denote the Fourier coefficients of
Φ+ and Φ− respectively then we have

AzΦ+ =


0 0 · · · 0

Φ+(0) 0 · · · 0
...

... . . . ...
Φ+(N − 2) Φ+(N − 3) · · · 0
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and

Az̄Φ∗
−

=


0 Φ∗

−(0) · · · Φ∗
−(N − 2)

0 0 · · · Φ∗
−(N − 3)

...
... . . . ...

0 0 · · · 0

 .

Therefore

AΦ = AzΦ++z̄Φ−+Φ0 =


Φ0 Φ∗

−(0) · · · Φ∗
−(N − 2)

Φ+(0) Φ0 · · · Φ∗
−(N − 3)

...
... . . . ...

Φ+(N − 2) Φ+(N − 3) · · · Φ0

 .

Similarly,

AΨ = AzΨ++z̄Ψ−+Ψ0 =


Ψ0 Ψ∗

−(0) · · · Ψ∗
−(N − 2)

Ψ+(0) Ψ0 · · · Ψ∗
−(N − 3)

...
... . . . ...

Ψ+(N − 2) Ψ+(N − 3) · · · Ψ0

 .

Since Θ(z) = zNIE , MΘ is the space of all polynomials in z of degree at most N − 1
with coefficients from L(E), while MΘ1 is the space of polynomials in z with coefficients
from L(E) but of degree not greater than N − 2. For any x ∈ E, JzΦ+x = zΦ+x, where
Φ+ ∈ L(E), and for any f ∈ KΘ, J∗

zΨ−
f = z̄Ψ∗

−f , with Ψ− ∈ L(E). Now we have

JzΦ+J
∗
zΨ−f = zΦ+z̄Ψ∗

−f = Φ+Ψ∗
−f =

(
N−2∑
k=0

Φ+(k)zk

)(
N−2∑
k=0

Ψ∗
−(k)z̄k

)
f

=
(N−2∑

k=0
Φ+(k)Ψ∗

−(k) +
N−3∑
k=0

Φ+(k)Ψ∗
−(k + 1)z̄

+ · · · Φ+(0)Ψ∗
−(N − 2)z̄N−2

)
f

+
(N−3∑

k=0
Φ+(k + 1)Ψ∗

−(k)z +
N−4∑
k=0

Φ+(k + 2)Ψ∗
−(k)z2

+ · · · Φ+(N − 2)Ψ∗
−(0)zN−2

)
f

=
0∑

m=N−2

m∑
k=0

Φ+(k)Ψ∗
−(k + (N − 2) −m)z̄N−2−mf

+
0∑

m=N−3

m∑
k=0

Φ+(k −m+N − 2)Ψ∗
−(k)zN−2−mf,

JzΦ+J
∗
zΨ−f =

0∑
m=N−2

m∑
k=0

Φ+(k)Ψ∗
−(k + (N − 2) −m)z̄N−2−mf+

+
0∑

m=N−3

m∑
k=0

Φ+(k + (N − 2) −m)Ψ∗
−(k)zN−2−mf,

(5.1)
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and for any f in KΘ

JCΓ(zΦ−)J
∗
CΓ(zΨ+)f = Φ∗

−Ψ+f =
0∑

m=N−2

m∑
k=0

Φ∗
−(k)Ψ+(k + (N − 2) −m)z̄N−2−mf+

+
0∑

m=N−3

m∑
k=0

Φ∗
−(k −m+N − 2)Ψ+(k)zN−2−mf.

(5.2)

By Theorem 4.5 AΦAΨ ∈ T(KΘ) if and only if JzΦ+J
∗
zΨ−

= JCΓ(zΦ−)J
∗
CΓ(zΨ+). Comparing

corresponding coefficients we get

z̄N−2 : Φ+(0)Ψ∗
−(N − 2) = Φ−(0)∗Ψ+(N − 2) =⇒ Φ∗

+(0)Ψ−(N − 2) = Φ∗
−(0)Ψ+(N − 2),

(5.3)
z̄N−3 : Φ+(0)Ψ∗

−(N −2)+Φ+(1)Ψ∗
−(N −3) = Φ∗

−(0)Ψ+(N −2)+Φ∗
−(1)Ψ+(N −3), (5.4)

Using (5.3) in (5.4) we have Φ+(1)Ψ∗
−(N − 3) = Φ∗

−(1)Ψ+(N − 3). In general

Φ+(i)Ψ∗
−(N − 2 − i) = Ψ+(N − 2 − i)Φ∗

−(0) for every i = 0, · · · , N − 2. (5.5)

In the same way comparing coefficients of z, z2, · · · zN−2 we obtain

Ψ+(i)Φ∗
−(N − 2 − i) = Φ+(N − 2 − i)Ψ∗

−(i) for every i = 0, 1, · · · , N − 2. (5.6)

If we take Ai = Φ∗
−(i − 1), Ai−N = Φ+(i − (N − 1)) and Bi = Ψ∗

−(i − 1), Bi−N =
Ψ+(i− (N − 1)) for every i = 1, 2, · · · , N − 1 then Lemma 3.1(i) of [8] imply that AΦAΨ is
a block Toeplitz matrix. Thus the condition JzΦ+J

∗
zΨ−

= JCΓ(zΦ−)J
∗
CΓ(zΨ+) is equivalent

to the condition in Lemma 3.1(i) of [8] or Proposition 2.1 in [13].
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