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Abstract − In this study, we introduce a new moving frame on regular surfaces for trajectories

with non-vanishing angular momentum and give the angular velocity vector for this frame. Then,

we consider the special trajectories generated by Smarandache curves according to this frame in

three-dimensional Euclidean space and investigate the Serret-Frenet apparatus of them. Moreover,

we provide an illustrative example explaining how this frame is constructed and how the aforemen-

tioned special trajectories are generated. This moving frame is a new contribution to the field and

we expect that it will be useful in some specific applications of differential geometry and kinematics

in the future.

Subject Classification (2020): 70B99, 70B05, 57R25, 53A05, 53A04.

1. Introduction

In differential geometry, the theory of surfaces in 3-dimensional Euclidean space has an important place.

Although the theory of surfaces in 3-dimensional Euclidean space had already been developed widely when

the Serret-Frenet frame was introduced by Serret and Frenet, Serret-Frenet frame helped developing this

theory further by researchers. This theory is still an issue of interest despite its long history. The approaches

followed by Serret and Frenet led to the success of adapting the method of moving frames to the surface

curves. This was carried out by Jean Gaston Darboux. He introduced a moving frame which is constructed

on a surface. It is called as Darboux frame. At all non-umbilic points of a surface, Darboux frame exists.

Thus, it exists at all the points of a curve on a regular surface [9, 12]. Darboux frame is a useful tool for

investigating the theory of surfaces. From the discovery of this frame until now, many researchers have

carried out lots of interesting studies on this theory by using this frame. Some of these studies can be found

in [2, 7, 8, 10, 14, 17].

In Euclidean 3-space, a point particle of constant mass moving on a regular surface curve has a position

vector according to Darboux frame of this curve. So, an arbitrary point of the trajectory can be represented

by the aforesaid particle. As a result of this case, there is a very close relationship between the differential

geometry of the trajectory, the differential geometry of the surface and the kinematics of the moving parti-

cle. This relationship has motivated us to prepare this study. In this study, a new moving frame on regular
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surfaces for trajectories with non-vanishing angular momentum has been constructed by considering the

Darboux frame of the trajectory. It is expected that this moving frame will enable more convenient observa-

tion environment for the researchers studying on modern robotics. Note that we carried out a similar study

[11] for trajectories, not necessarily lying on a surface, by considering Serret-Frenet frame. The present

study includes similar techniques and approaches given in [11].

Let E 3 be endowed with the standard inner product 〈D,E〉 = d1e1 +d2e2 +d3e3 where D = (d1 , d2 , d3), E =
(e1 , e2 , e3) are arbitrary vectors in this space. The norm of the vector D is stated as ‖D‖ = p〈D , D〉. If a

differentiable curve χ = χ (s) : I ⊂ R → E 3 satisfies the equality
∥∥∥dχ

d s

∥∥∥ = 1 for all s ∈ I , this curve is called

a unit speed curve. In this case, s is said to be arc-length parameter of χ. A differentiable curve is called

regular curve if its derivative is nonzero along the curve. Regular curves can be reparameterized by the arc-

length [13]. In the rest of the paper, the differentiation with respect to the arc-length parameter s will be

shown with a dash.

The Serret-Frenet frame of the curve χ = χ (s) is denoted by {T (s) ,N (s) ,B (s)}. The unit vectors T (s) , N (s)

and B (s) are called the unit tangent, unit principal normal and unit binormal vectors, respectively. On the

other hand, the Serret-Frenet formulas are given by
T′

N′

B′

 =


0 κ 0

−κ 0 τ

0 −τ 0




T

N

B

 (1.1)

where κ (s) = ∥∥T ′ (s)
∥∥ is the curvature function and τ (s) =−〈

B ′ (s) ,N (s))
〉

is the torsion function [13].

Suppose that χ : I ⊂ R → M ⊂ E 3 is a unit speed curve which lies on a regular surface M . In that case, there

exists Darboux frame denoted by {T,Y,U} along the curve χ. T is the unit tangent vector of χ, U is the unit

normal vector of M restricted to χ and Y is the unit vector given by Y = U×T. The derivative formulas of

Darboux frame are as follows: 
T′

Y′

U′

 =


0 kg kn

−kg 0 τg

−kn −τg 0




T

Y

U

 . (1.2)

Here, the functions kg , kn and τg are called geodesic curvature, normal curvature and geodesic torsion of

the curve χ, respectively [6, 9].

This study is organized as follows. In Section 2, we explain how our frame is constructed and give the relation

matrix between this frame and Darboux frame. Afterwards, we obtain derivative formulas and complete the

set of apparatus of this frame. Also, angular velocity vector is obtained for this frame. In Section 3, we study

the special trajectories generated by Smarandache curves according to this frame in three-dimensional Eu-

clidean space.

2. Positional Adapted Frame on Regular Surfaces

In E 3, let a point particle of constant mass m move on a curve which lies on a regular surface M . Denote

by x the position vector of this particle relative to fixed origin O at time t . Let the curve χ= χ(s) be the unit

speed parametrization of the trajectory of the particle where the arc-length s of χ corresponds to time t . In
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that case, the unit tangent vector, velocity vector and linear momentum vector at the point χ(s) (at time t )

are given by

T(s) = dx

d s

v(t ) = dx

d t
=

(
d s

d t

)
T(s) (2.1)

p(t ) = mv(t ) = m

(
d s

d t

)
T(s),

respectively [4]. Also, we can write

x = 〈
χ(s),T(s)

〉
T(s)+〈

χ(s),Y(s)
〉

Y(s)+〈
χ(s),U(s)

〉
U(s) (2.2)

at the point χ(s) (at time t ) with respect to Darboux frame. By vector product of x and p(t ), the angular

momentum vector (at time t ) of the particle about O is found as:

HO = m
〈
χ(s),U(s)

〉(
d s

d t

)
Y(s)−m

〈
χ(s),Y(s)

〉(
d s

d t

)
U(s). (2.3)

Throughout the paper, we suppose that angular momentum vector of the aforementioned particle never

vanishes. In other words, we restrict ourselves to the trajectories having non-vanishing angular momentum.

This assumption ensures that the coefficient functions
〈
χ(s),Y(s)

〉
and

〈
χ(s),U(s)

〉
of the position vector are

not zero simultaneously. That is, we ensure that the tangent line never passes through the origin along the

trajectory. Let us return to the position vector. The opposite of this vector is given as in the following:

−x = 〈−χ(s),T(s)
〉

T(s)+〈−χ(s),Y(s)
〉

Y(s)+〈−χ(s),U(s)
〉

U(s). (2.4)

The projections of it on the instantaneous planes Sp {T(s),Y(s)} and Sp {T(s),U(s)} yield two vectors playing

important roles to construct a new moving frame on M along χ. These roles are stated in detail below.

The vector, whose starting point is χ (s) and endpoint is the foot of perpendicular (from O to Sp {T(s),Y(s)}),

can be given by

r(s) = 〈−χ(s),T(s)
〉

T(s)+〈−χ(s),Y(s)
〉

Y(s) (2.5)

and corresponds to the aforementioned projection on Sp {T(s),Y(s)}. On the other hand the vector, whose

starting point is χ (s) and endpoint is the foot of the perpendicular (from origin to Sp {T(s),U(s)}), can be

given by

r∗(s) = 〈−χ(s),T(s)
〉

T(s)+〈−χ(s),U(s)
〉

U(s) (2.6)

and corresponds to the aforementioned projection on Sp {T(s),U(s)}. From the Equation 2.5 and Equation

2.6, we can get the vector

r(s)− r∗(s) = 〈−χ(s),Y(s)
〉

Y(s)+〈
χ(s),U(s)

〉
U(s) (2.7)

whose starting point is χ (s) and which lies on the instantaneous plane Sp {Y(s),U(s)}. We must empha-



Kahraman Esen Özen et al. / IKJM / 3(1) (2021) 20-34 23

size that the vector r(s) − r∗(s) is equivalent to the vector whose starting point is the aforesaid foot on

Sp {T(s),U(s)} and endpoint is the other aforesaid foot on Sp {T(s),Y(s)} (see Figure 1).

Let us talk about the determination of unit vector in direction r(s)− r∗(s). If both planes Sp {T(s),Y(s)} and

Sp {T(s),U(s)} do not contain the origin, the foots are distinct from each other and from the origin. There-

fore, two distinct foots generate the non-zero vector r(s)− r∗(s). In this case, the desired unit vector can be

obtained. When only one of the planes Sp {T(s),Y(s)} and Sp {T(s),U(s)} passes through the origin, the foot

of the perpendicular on the plane, containing origin, is taken as the origin. Certainly, the other foot is dis-

tinct from the origin. In that case, the desired unit vector is determined similarly. The case both the planes

Sp {T(s),Y(s)} and Sp {T(s),U(s)} include the origin simultaneously causes not to be determined of the de-

sired unit vector because the both of the aforesaid foots correspond to the origin. This situation occurs only

when the tangent line contains the origin. Fortunately, the assumption on the angular momentum vector

averts this. Let the unit vector in direction r(s)− r∗(s) be denoted by H(s). Namely,

H(s) = r(s)− r∗(s)

‖r(s)− r∗(s)‖ =
〈−χ(s), Y(s)

〉√〈
χ(s), Y(s)

〉2 +〈
χ(s), U(s)

〉2
Y(s)+

〈
χ(s), U(s)

〉√〈
χ(s), Y(s)

〉2 +〈
χ(s), U(s)

〉2
U(s). (2.8)

By vector product H(s) and T (s), we can get the another basis vector. We show it with G(s). Then we obtain

G(s) = H(s)∧T (s) =
〈
χ(s), U(s)

〉√〈
χ(s), Y(s)

〉2 +〈
χ(s), U(s)

〉2
Y(s)+

〈
χ(s), Y(s)

〉√〈
χ(s), Y(s)

〉2 +〈
χ(s), U(s)

〉2
U(s). (2.9)

This completes the positively oriented orthonormal moving frame {T (s) ,G(s),H(s)}.

Since the vectors Y(s),U(s),G(s) and H(s) lie on the plane {T (s)}⊥, there is a relation between the Darboux

frame and this frame as follows:
T (s)

G(s)

H(s)

=


1 0 0

0 cosΩ(s) −sinΩ(s)

0 sinΩ(s) cosΩ(s)




T(s)

Y(s)

U(s)

 (2.10)

whereΩ(s) is the angle between the vectors U(s) and H(s) which is positively oriented from U(s) to H(s) (see

Figure 1). By using the Equation 1.2 and Equation 2.10, we can write

G′(s) = (cosΩ(s)Y(s)− sinΩ(s)U(s))′

= −Ω′(s)sinΩ(s)Y(s)+cosΩ(s)
(−kg (s)T(s)+τg (s)U(s)

)
−Ω′(s)cosΩ(s)U(s)+ sinΩ(s)

(
kn(s)T(s)+τg (s)Y(s)

)
= (−kg (s)cosΩ(s)+kn(s)sinΩ(s)

)
T(s)+ (

τg (s)−Ω′(s)
)

[sinΩ(s)Y(s)+cosΩ(s)U(s)]

= (−kg (s)cosΩ(s)+kn(s)sinΩ(s)
)

T(s)+ (
τg (s)−Ω′(s)

)
H(s)
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and

H′(s) = (sinΩ(s)Y(s)+cosΩ(s)U(s))′

= Ω′(s)cosΩ(s)Y(s)+ sinΩ(s)
(−kg (s)T(s)+τg (s)U(s)

)
−Ω′(s)sinΩ(s)U(s)−cosΩ(s)

(
kn(s)T(s)+τg (s)Y(s)

)
= (−kg (s)sinΩ(s)−kn(s)cosΩ(s)

)
T(s)+ (

Ω′(s)−τg (s)
)

[cosΩ(s)Y(s)− sinΩ(s)U(s)]

= (−kg (s)sinΩ(s)−kn(s)cosΩ(s)
)

T(s)+ (
Ω′(s)−τg (s)

)
G(s).

In that case, differentiating the vector G(s)∧H(s) gives us the following:

T′(s) = (G(s)∧H(s))′

= G′(s)∧H(s)+G(s)∧H′(s)

= [(−kg (s)cosΩ(s)+kn(s)sinΩ(s)
)

T(s)+ (
τg (s)−Ω′(s)

)
H(s)

]∧H(s)

+G(s)∧ [(−kg (s)sinΩ(s)−kn(s)cosΩ(s)
)

T(s)+ (
Ω′(s)−τg (s)

)
G(s)

]
= (

kg (s)cosΩ(s)−kn(s)sinΩ(s)
)

G(s)+ (
kg (s)sinΩ(s)+kn(s)cosΩ(s)

)
H(s).

Therefore, the derivative formulas are given by
T′(s)

G′(s)

H′(s)

 =


0 k1(s) k2(s)

−k1(s) 0 k3(s)

−k2(s) −k3(s) 0




T(s)

G(s)

H(s)

 (2.11)

where

k1(s) = kg (s)cosΩ(s)−kn(s)sinΩ(s)

k2(s) = kg (s)sinΩ(s)+kn(s)cosΩ(s) (2.12)

k3(s) = τg (s)−Ω′(s).

Based on the relationship of the frame {T(s),G(s),H(s)} to the position vector, we call it as "Positional Adapted

Frame on Regular Surface". We will use the abbreviation PAFORS for it in the rest of the study. Also, we call

the set {T(s),G(s),H(s),k1(s),k2(s),k3(s)} as PAFORS apparatus of the regular surface curve χ=χ (s).
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O 

r(s) 

r*(s) 

χ(s) 
χ 

T(s) ‒r*(s) 

‒x(s) 

U(s) 

Y(s) 

Ω(s) 

Sp{T(s),Y(s)} 

M 

H(s) 

(a)

 U(s) 

Y(s) 

H(s) 

‒Y(s) 

‒U(s) 

Ω(s) 

H(s)ʌT(s)=G(s) 

χ(s) 

Sp{Y(s),U(s)} 

(b)

Figure 1. An illustration for explaining the construction of PAFORS

From the Equation 2.8, Equation 2.9 and Equation 2.10, the followings can be written easily:

sinΩ(s) = −〈
χ(s),Y(s)

〉√〈
χ(s),Y(s)

〉2 +〈
χ(s),U(s)

〉2
(2.13)

cosΩ(s) =
〈
χ(s),U(s)

〉√〈
χ(s),Y(s)

〉2 +〈
χ(s),U(s)

〉2
. (2.14)

Then we obtain

tanΩ(s) =−
〈
χ(s),Y(s)

〉〈
χ(s),U(s)

〉 . (2.15)

Taking into consideration Figure 1 and Equations 2.13, 2.14, 2.15, the rotation angleΩ(s) is determined as

Ω(s) =



arctan
(
− 〈χ(s),Y(s)〉

〈χ(s),U(s)〉
)

i f
〈
χ(s),U(s)

〉> 0

arctan
(
− 〈χ(s),Y(s)〉

〈χ(s),U(s)〉
)
+π i f

〈
χ(s),U(s)

〉< 0

−π
2 i f

〈
χ(s),U(s)

〉= 0 ,
〈
χ(s),Y(s)

〉> 0

π
2 i f

〈
χ(s),U(s)

〉= 0 ,
〈
χ(s),Y(s)

〉< 0.

(2.16)

When
〈
χ(s),U(s)

〉 = 0,
〈
χ(s),Y(s)

〉 > 0, PAFORS apparatus {T(s),G(s),H(s),k1(s),k2(s),k3(s)} correspond to{
T(s),U(s),−Y(s),kn(s),−kg (s),τg (s)

}
. Similar to above, in the case

〈
χ(s),U(s)

〉= 0,
〈
χ(s), Y(s)

〉< 0,

{T(s), G(s), H(s), k1(s), k2(s), k3(s)} correspond to the apparatus
{

T(s),−U(s),Y(s),−kn(s), kg (s),τg (s)
}
.
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Now, we will get the angular velocity vector for PAFORS. A better insight into the structure of the derivative

formulas, given in (2.11), is presented by the help of the angular velocity vector ω(s). The evolution of

PAFORS {T(s),G(s),H(s)} is specified by its angular velocity via

T′(s) = ω(s)∧T(s)

G′(s) = ω(s)∧G(s) (2.17)

H′(s) = ω(s)∧H(s).

Let us obtain the vector ω(s). Assume that it is written with respect to PAFORS as follows:

ω(s) =λ1(s)T(s)+λ2(s)G(s)+λ3(s)H(s)

where λ1(s), λ2(s) and λ3(s) are real-valued functions of s. In this case, (2.17) becomes

T′(s) = −λ2(s)H(s)+λ3(s)G(s)

G′(s) = λ1(s)H(s)−λ3(s)T(s) (2.18)

H′(s) = −λ1(s)G(s)+λ2(s)T(s).

By comparing (2.11) with (2.18) we find

λ1(s) = k3(s)

λ2(s) = −k2(s)

λ3(s) = k1(s).

Consequentially, the angular velocity vector is given as

ω(s) = [
τg (s)−Ω′(s)

]
T(s)− [

kg (s)sinΩ(s)+kn(s)cosΩ(s)
]

G(s)+ [
kg (s)cosΩ(s)−kn(s)sinΩ(s)

]
H(s)

for PAFORS.

3. Some Special Trajectories Generated by Smarandache Curves According to PAFORS

In the study [1], author defined special Smarandache curves in the Euclidean space. Author considered a

unit speed regular curve γ= γ(s) with its Serret-Frenet frame {T, N, B} and defined TN, NB, TNB− Smaran-

dache curves as follows:

β(s∗) = 1p
2

(T+N)

β(s∗) = 1p
2

(N+B)

β(s∗) = 1p
3

(T+N+B),

respectively. There can be found some studies [1, 3, 5, 15, 16, 18] on Smarandache curves in the literature.

In this section, we investigate special trajectories generated by Smarandache curves according to PAFORS

in 3-dimensional Euclidean space.
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3.1. Special Trajectories Generated by TG Smarandache Curves

Definition 3.1. In E 3, assume that a point particle P of constant mass moves on the regular surface M along

the trajectory χ = χ(s) which is a unit speed curve. Let PAFORS be shown with
{

Tχ, Gχ, Hχ

}
for χ = χ(s).

Then, special trajectories generated by TχGχ−Smarandache curves may be defined as follows:

σ(s∗) = 1p
2

(
Tχ+Gχ

)
. (3.1)

For convenience, we call these trajectories as TχGχ−Smarandache trajectories.

Note that PAFORS apparatus of χ= χ (s) will be denoted by
{

Tχ(s),Gχ(s),Hχ(s),k1(s),k2(s),k3(s)
}

in the rest

of the paper.

Now, we will discuss Serret-Frenet apparatus of TχGχ−Smarandache trajectories. Differentiating the Equa-

tion 3.1 with respect to the arc-length parameter s of χ=χ(s), we obtain

σ′ = dσ

d s∗
d s∗

d s
= 1p

2

(−k1Tχ+k1Gχ+ (k2 +k3)Hχ

)
and so

Tσ
d s∗

d s
= 1p

2

(−k1Tχ+k1Gχ+ (k2 +k3)Hχ

)
. (3.2)

From the Equation 3.2, one can easily find

d s∗

d s
=

√
k1

2 + (k2 +k3)2

2
. (3.3)

Thus, we can rewrite the Equation 3.2 as

Tσ

√
k1

2 + (k2 +k3)2

2
= 1p

2

(−k1Tχ+k1Gχ+ (k2 +k3)Hχ

)
. (3.4)

The Equation 3.4 gives us the tangent vector of σ:

Tσ = 1√
2k1

2 + (k2 +k3)2

(−k1Tχ+k1Gχ+ (k2 +k3)Hχ

)
. (3.5)

Differentiating the last equation with respect to the arc-length parameter s of χ=χ(s), we get

dTσ
d s∗

d s∗

d s
= (

2k1
2 + (k2 +k3)2)−3/2 (

ξ1Tχ+ξ2Gχ+ξ3Hχ

)
(3.6)

where

ξ1 = (k2 +k3)
[
k1k ′

2 +k1k ′
3 −k1

2k2 −k1
2k3 −k ′

1 (k2 +k3)−k2
(
2k1

2 + (k2 +k3)2)]−2k1
4

ξ2 = (k2 +k3)
[−k1k ′

2 −k1k ′
3 −k1

2k2 −k1
2k3 +k ′

1 (k2 +k3)−k3
(
2k1

2 + (k2 +k3)2)]−2k1
4

ξ3 = k1 (k2 +k3)
[−2k ′

1 −k2
2 +k3

2]+2k1
2 [

k ′
2 +k ′

3 +k1k3 −k1k2
]

.
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Considering the Equation 3.3 in the Equation 3.6, we find

dTσ
d s∗

=p
2
(
2k1

2 + (k2 +k3)2)−2 (
ξ1Tχ+ξ2Gχ+ξ3Hχ

)
.

In that case, the curvature and principal normal vector of σ are obtained as in the following:

κσ =
∥∥∥∥dTσ

d s∗

∥∥∥∥=
√

2
(
ξ1

2 +ξ2
2 +ξ3

2)(
2k1

2 + (k2 +k3)2)2

and

Nσ = 1√
ξ1

2 +ξ2
2 +ξ3

2

(
ξ1Tχ+ξ2Gχ+ξ3Hχ

)
.

Where

ζ1 = k1ξ3 −k2ξ2 −k3ξ2

ζ2 = k2ξ1 +k3ξ1 +k1ξ3

ζ3 = −k1ξ2 −k1ξ1,

we can get the binormal vector of σ as

Bσ = 1√(
2k1

2 + (k2 +k3)2)(ξ1
2 +ξ2

2 +ξ3
2)

∣∣∣∣∣∣∣∣
Tχ Gχ Hχ

−k1 k1 k2 +k3

ξ1 ξ2 ξ3

∣∣∣∣∣∣∣∣
= 1√(

2k1
2 + (k2 +k3)2)(ξ1

2 +ξ2
2 +ξ3

2) (
ζ1Tχ+ζ2Gχ+ζ3Hχ

)

by vector product of Tσ and Nσ.

3.2. Special Trajectories Generated by TH Smarandache Curves

Definition 3.2. In E 3, suppose that a point particle P of constant mass moves on the regular surface M along

the trajectory χ= χ(s) which is a unit speed curve. Let PAFORS be denoted by
{

Tχ, Gχ, Hχ

}
for χ= χ(s). In

this case, special trajectories generated by TχHχ−Smarandache curves may be defined by

σ(s∗) = 1p
2

(
Tχ+Hχ

)
. (3.7)

For convenience, we call these trajectories as TχHχ−Smarandache trajectories.

Now, we will investigate Serret-Frenet apparatus of TχHχ−Smarandache trajectories. Differentiating the

Equation 3.7 with respect to the arc-length parameter s of χ=χ(s), we find

σ′ = dσ

d s∗
d s∗

d s
= 1p

2

(−k2Tχ+ (k1 −k3)Gχ+k2Hχ

)
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and so

Tσ
d s∗

d s
= 1p

2

(−k2Tχ+ (k1 −k3)Gχ+k2Hχ

)
. (3.8)

From the Equation 3.8, one can easily obtain

d s∗

d s
=

√
k2

2 + (k1 −k3)2

2
. (3.9)

Therefore we can rewrite the Equation 3.8 as in the following:

Tσ

√
k2

2 + (k1 −k3)2

2
= 1p

2

(−k2Tχ+ (k1 −k3)Gχ+k2Hχ

)
. (3.10)

The Equation 3.10 yields the tangent vector of σ:

Tσ = 1√
2k2

2 + (k1 −k3)2

(−k2Tχ+ (k1 −k3)Gχ+k2Hχ

)
. (3.11)

Differentiating the Equation 3.11 with respect to s, we get

dTσ
d s∗

d s∗

d s
= (

2k2
2 + (k1 −k3)2)−3/2 (

µ1Tχ+µ2Gχ+µ3Hχ

)
(3.12)

where

µ1 = (k3 −k1)
[−k2

(
k ′

1 −k ′
3
)+2k1k2

2 −k ′
2 (k3 −k1)−k2

2 (k3 −k1)+k1(k3 −k1)2]−2k2
4

µ2 = k2 (k1 −k3)
[−2k ′

2 −k1
2 +k3

2k2
(
k ′

1 −k ′
3
)]+2k2

2 [
k ′

1 −k ′
3 −k1k2 −k2k3

]
µ3 = (k3 −k1)

[
k2

(
k ′

1 −k ′
3
)−2k3k2

2 +k ′
2 (k3 −k1)−k2

2 (k3 −k1)−k3(k3 −k1)2]−2k2
4.

Taking into consideration the Equation 3.9 in the Equation 3.12, we find

dTσ
d s∗

=
p

2
(
2k2

2 + (k1 −k3)2)−2 (
µ1Tχ+µ2Gχ+µ3Hχ

)
.

In this case, the curvature and principal normal vector of σ are obtained as follows:

κσ =
∥∥∥∥dTσ

d s∗

∥∥∥∥=
√

2
(
µ1

2 +µ2
2 +µ3

2
)

(
2k2

2 + (k1 −k3)2)2

and

Nσ = 1√
µ1

2 +µ2
2 +µ3

2

(
µ1Tχ+µ2Gχ+µ3Hχ

)
.
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Where

η1 = k1µ3 −k3µ3 −k2µ2

η2 = k2µ1 +k2µ3

η3 = −k2µ2 +k3µ1 −k1µ1,

we can immediately obtain the binormal vector of σ as

Bσ = 1√(
2k2

2 + (k1 −k3)2)(µ1
2 +µ2

2 +µ3
2
)
∣∣∣∣∣∣∣∣

Tχ Gχ Hχ

−k2 k1 −k3 k2

µ1 µ2 µ3

∣∣∣∣∣∣∣∣
= 1√(

2k2
2 + (k1 −k3)2)(µ1

2 +µ2
2 +µ3

2
) (
η1Tχ+η2Gχ+η3Hχ

)

by vector product of Tσ and Nσ.

3.3. Special Trajectories Generated by GH Smarandache Curves

Definition 3.3. In E 3, assume that a point particle P of constant mass moves on the regular surface M along

the trajectory χ = χ(s) which is a unit speed curve. Let
{

Tχ, Gχ, Hχ

}
be PAFORS for χ = χ(s). Then, special

trajectories generated by GχHχ−Smarandache curves can be defined as follows:

σ(s∗) = 1p
2

(
Gχ+Hχ

)
. (3.13)

For convenience, we call these trajectories as GχHχ−Smarandache trajectories.

Now, we will investigate Serret-Frenet apparatus of GχHχ−Smarandache trajectories. Differentiating the

Equation 3.13 with respect to the arc-length parameter s of χ=χ(s), we get

σ′ = dσ

d s∗
d s∗

d s
= 1p

2

(
(−k1 −k2)Tχ−k3Gχ+k3Hχ

)
and so

Tσ
d s∗

d s
= 1p

2

(
(−k1 −k2)Tχ−k3Gχ+k3Hχ

)
. (3.14)

From the Equation 3.14, one can easily obtain

d s∗

d s
=

√
k3

2 + (k1 +k2)2

2
. (3.15)

Therefore we can rewrite the Equation 3.14 as in the following:

Tσ

√
k3

2 + (k1 +k2)2

2
= 1p

2

(
(−k1 −k2)Tχ−k3Gχ+k3Hχ

)
. (3.16)
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The Equation 3.16 yields the tangent vector of σ:

Tσ = 1√
2k3

2 + (k1 +k2)2

(
(−k1 −k2)Tχ−k3Gχ+k3Hχ

)
. (3.17)

Differentiating the Equation 3.17 with respect to s, we get

dTσ
d s∗

d s∗

d s
= (

2k3
2 + (k1 +k2)2)−3/2 (

υ1Tχ+υ2Gχ+υ3Hχ

)
(3.18)

where

υ1 = k3 (k1 +k2)
[
2k ′

3 +k1
2 −k2

2]+2k3
2 [

k1k3 −k2k3 −k ′
1 −k ′

2
]

υ2 = (k1 +k2)
[
k3

(
k ′

1 +k ′
2
)−2k1k3

2 −k ′
3 (k1 +k2)−k3

2 (k1 +k2)−k1(k1 +k2)2]−2k3
4

υ3 = (k1 +k2)
[−k3

(
k ′

1 +k ′
2
)−2k2k3

2 +k ′
3 (k1 +k2)−k3

2 (k1 +k2)−k2(k1 +k2)2]−2k3
4.

Taking into consideration the Equation 3.15 in the Equation 3.18, we find

dTσ
d s∗

=p
2
(
2k3

2 + (k1 +k2)2)−2 (
υ1Tχ+υ2Gχ+υ3Hχ

)
.

In this case, the curvature and principal normal vector of σ are obtained as follows:

κσ =
√

2
(
υ1

2 +υ2
2 +υ3

2
)

(
2k3

2 + (k1 +k2)2)2

Nσ = 1√
υ1

2 +υ2
2 +υ3

2

(
υ1Tχ+υ2Gχ+υ3Hχ

)
.

By vector product of Tσ and Nσ, we can immediately obtain the binormal vector of σ as

Bσ = 1√(
2k3

2 + (k1 +k2)2)(υ1
2 +υ2

2 +υ3
2
)
∣∣∣∣∣∣∣∣

Tχ Gχ Hχ

−k1 −k2 −k3 k3

υ1 υ2 υ3

∣∣∣∣∣∣∣∣
= 1√(

2k3
2 + (k1 +k2)2)(υ1

2 +υ2
2 +υ3

2
) (
ψ1Tχ+ψ2Gχ+ψ3Hχ

)

where

ψ1 = −k3υ3 −k3υ2

ψ2 = k3υ1 +k2υ3 +k1υ3

ψ3 = −k1υ2 −k2υ2 +k3υ1.

Note that the torsions of TχGχ, TχHχ, GχHχ-Smarandache trajectories can be obtained by following the

similar steps given in this section. We leave this to the readers.

Example 3.4. In E 3, assume that a point particle P of constant mass moves on the regular surface

M = {(
x, y, z

)
: x2 + y2 = 64, z ≥ 0

}
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along the trajectory

δ : (0, 255) → M ⊂ E 3, δ (t ) =
(
8cos

t

17
,8sin

t

17
,

t

17

)
.

Reparameterization of δ= δ(t ) in terms of arc-length parameter is given as follows:

χ(s) =
(
8cos

sp
65

, 8sin
sp
65

,
sp
65

)

where s =
p

65
17 t . One can easily calculate Darboux apparatus of this trajectory as in the following:

T(s) =
( −8p

65
sin

sp
65

,
8p
65

cos
sp
65

,
1p
65

)
U(s) =

(
cos

sp
65

, sin
sp
65

, 0

)
Y(s) =

(
1p
65

sin
sp
65

,
−1p

65
cos

sp
65

,
8p
65

)
kg (s) = 0

kn(s) = −8

65

τg (s) = 1

65
.

Then,
〈
χ(s), Y(s)

〉= 8
65 s and

〈
χ(s), U(s)

〉= 8 are obtained. Since
〈
χ(s), U(s)

〉> 0 for all the values of param-

eter, we getΩ(s) = arctan
(− s

65

)
. The above information yields the PAFORS apparatus as follows:

T(s) =
( −8p

65
sin

sp
65

,
8p
65

cos
sp
65

,
1p
65

)

G(s) =


1p
65

sin sp
65

cos
(
arctan

(−s
65

))−cos sp
65

sin
(
arctan

(−s
65

))
,

−1p
65

cos sp
65

cos
(
arctan

(−s
65

))− sin sp
65

sin
(
arctan

(−s
65

))
,

8p
65

cos
(
arctan

(−s
65

))


H(s) =


1p
65

sin sp
65

sin
(
arctan

(−s
65

))+cos sp
65

cos
(
arctan

(−s
65

))
,

−1p
65

cos sp
65

sin
(
arctan

(−s
65

))+ sin sp
65

cos
(
arctan

(−s
65

))
,

8p
65

sin
(
arctan

(−s
65

))


k1(s) = 8

65
sin

(
arctan

(−s

65

))
k2(s) = − 8

65
cos

(
arctan

(−s

65

))
k3(s) = 1

65
+ 65

s2 +652

in the light of the Equation 2.10 and Equation 2.12. We can give the following figure for this example:



Kahraman Esen Özen et al. / IKJM / 3(1) (2021) 20-34 33

(a) The trajectory of the particle P (b) TχGχ−Smarandache trajectory

(c) TχHχ−Smarandache trajectory (d) GχHχ−Smarandache trajectory

Figure 2. An illustration including special Smarandache trajectories
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principal normal according to Frenet frame. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi,

10(1):251-260.
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