Some Properties of Amply Weak Essential Supplemented Modules

Berna KOŞAR^{1*}

¹Department of Health Management, Uskudar University, Üsküdar-İstanbul/Turkey Geliş / Received: 20/02/2021, Kabul / Accepted: 03/11/2021

Abstract

An investigation on the features of amply weak essential supplemented modules are presented in this paper. Assume that *K* is a weakly essential supplemented and projective *R*-module and *M* is a finitely *K*-generated *R*-module. Then *M* gets amply weak essential supplemented. Assume that *R* is a ring. In this case each finitely generated *R*-module is amply weak essential supplemented iff $_{R}R$ is weakly essential supplemented. If the module *K* is amply weak essential supplemented, then each e-supplement submodule in *K* is amply weak essential supplemented.

Keywords: Small Submodules , Essential Submodules, Supplemented Modules, Essential Supplemented Modules.

Bol Zayıf Büyük Tümlenmiş Modüllerin Birtakım Özellikleri

Öz

Bu çalışmada bol zayıf büyük tümlenmiş modüllerle ilgili birtakım özellikler araştırıldı. Eğer K projektif ve zayıf büyük tümlenmiş bir R-modül ve M sonlu K-üretilmiş bir R-modül olsun. Bu durumda M bol zayıf büyük tümlenmiştir. Kabul edelim ki R bir halka olsun. Bu durumda $_RR$ modülü zayıf büyük tümlenmiştir gerek ve yeter şart her sonlu üretilmiş R-modülü bol zayıf büyük tümlenmiştir. Eğer K bir bol zayıf büyük tümlenmiş modül ise K modülünde her e-tümleyen alt modül bol zayıf büyük tümlenmiştir.

Anahtar Kelimeler: Büyük Tümlenmiş Modüller, Tümlenmiş Modüller, Küçük Alt Modüller, Büyük Alt Modüller.

1. Introduction

All rings are associative with an identity element, in this study. Unless otherwise specified, R represents an arbitrary ring and every module will be a left unitary R-module. We refer to a submodule L of K as $L \le K$ in this section. A submodule N of K is said to be a *small* (or *superfluous*) in K, *if* T=K for every submodule T of K such that K=N+T. This submodule of K is indicated by the symbol $N \ll K$. $T \le K$ is referred to as an *essential* (or *large*), and it is indicated by $T \le K$, in this case $M \cap T \ne 0$ for every submodule $M \ne 0$, or equivalently, $T \cap X=0$ for

 $X \le K$ implies that X=0. Let $T, L \le K$. If K=T+L and L is minimal with respect to this property, or alternatively, if K=T+L and $T \cap L \ll L$, then L is called a *supplement* of T in K. If each submodule of K has a supplement in K, then K is referred to as *supplemented*. From now on, we will use the *sM* notation instead of the supplemented module. K is called *essential*

^{*}Corresponding Author: bernak@omu.edu.tr

supplemented (or, shortly, esM) if it has a supplement for each of its essential submodules. Let $U \leq K$. If for each $U' \leq K$ with K = U + U', there exists $X \leq U'$ which X is a supplement of U in K, it is said that U has ample supplements in K. K is referred to as amply supplemented if each submodule of K has ample supplements in K. From now on, we will use the asM notation instead of the amply supplemented module. K is termed amply essential supplemented (or shortly, aesM) if each essential submodule of K gets ample supplements in K. Let $T,L \leq K$. If K=T+L and $T \cap L << K$, then L is referred to as a *weak supplement* of T in K. K is referred to as *weakly* supplemented provided that each submodule of K has a weak supplement in K. From now on, we will use the wsM notation instead of the weakly supplemented module. K is said to be weakly essential supplemented (or shortly, we-sM) provided that each essential submodule of K has a weak supplement in K. The radical of K, represented by RadK, is the intersection of all maximal submodules of K. We indicate RadK=K if K have no maximal submodules. We define as β^* relation on the set of submodules of K by $T\beta^*L$ with $T \leq K$ and $L \leq K$ if and only if for each $B \leq K$ with T+B=K then L+B=K and for each $M \leq K$ with L+M=K then T+M=K. Let $M \leq L \leq K$, if L/M << K/M, then it is called L lies above M in K. An R-module K is said to be π -projective if for every $T,L \leq K$ with K=T+L there exists an *R*-module homomorphism $f: K \rightarrow K$ such that $f(K) \leq T$ and $(1-f)(K) \leq L$. Assume K and N be R-modules. If there exists an R-module epimorphism $f: K^{(\Lambda)} \rightarrow N$ with the index set Λ , then N is referred to as a K-generated module. If there is an *R*-module epimorphism $f: K^{(\Lambda)} \to N$ with a finite index set Λ , then N is said to be finitely K-generated.

Additional details regarding (amply) supplemented modules are in Clark et al. (2006), Nebiyev and Pancar (2003b), Nebiyev and Pancar (2013), Nebiyev and Sökmez (2010) and (Wisbauer, 1991). The statement of β^* relation and some features of this relation are in Birkenmeier et al. (2010) and (Sökmez et al., 2008). Additional details regarding π -projective modules are in Nebiyev and Pancar (2003a) and (Wisbauer, 1991). More details about weakly supplemented modules are in Lomp (1999) and (Nebiyev, 2005). More informations about (amply) *e-sM* are in Nebiyev (2016a), Nebiyev (2017) and (Nebiyev et al., 2018a and b). The definition of *we-sM* are in Nebiyev (2016b) and (Nebiyev and Koşar, 2018).

In this part, we will provide the definitions and propositions required for our work.

Lemma 1.1. Assume that *K* is an *R*-module.

(1) If $M \leq L \leq K$, then $M \leq K$ if and only if $M \leq L \leq K$.

(2) For $M \leq L \leq K$, if $L/M \leq K/M$, then $L \leq K$.

(3) Assume that N is an R-module and $h: K \rightarrow N$ be an R-module homomorphism. If $M \leq N$, then $h^{-1}(M) \leq K$.

(4) If $M_1 \trianglelefteq L_1 \le K$ and $M_2 \trianglelefteq L_2 \le K$, then $M_1 \cap M_2 \trianglelefteq L_1 \cap L_2$.

(5) If $M_1 \trianglelefteq K$ and $M_2 \trianglelefteq K$, then $M_1 \cap M_2 \trianglelefteq K$.

Proof. See Wisbauer (1991), 17.3.

Definition 1.2. Assume that *K* is an *R*-module and $T \leq K$. *T* is referred to as an *e*-supplement (shortly, *e*-s) submodule in *K* provided that there exists $L \leq K$ which *T* is a supplement of *L* in *K*

(See (Nebiyev et al., 2018a)).

Definition 1.3. Assume that *K* is an *R*-module and $T \leq K$. *T* is referred to as a *weak e-supplement* (shortly, *we-s*) submodule in *K* if there exists $L \leq K$ which *T* is a weak supplement of *L* in *K* (See (Nebiyev and Koşar, 2018)).

Lemma 1.4. Suppose *K* is an *R*-module, *L* is a supplement of *T* in *K* and *S*,*F* \leq *L*. If *F* is a weak supplement of *T*+*S* in *K*, then *F* is a weak supplement of *S* in *L*.

Proof. Due to the fact that *F* is a weak supplement of T+S in *K*, K=T+S+F and $(T+S)\cap F << K$. Because K=T+S+F and $S+F \le L$ and *L* is a supplement of *T* in *K*, L=S+F. Since $S \cap F \le (T+S) \cap F << K$ and *L* is a supplement of *T* in *K*, $S \cap F << L$. Thus *F* is a weak supplement of *S* in *L*, as desired.

Lemma 1.5. Suppose that K is an R-module. K is we-sM provided that for each $T \leq K$, T is β^*

equivalent to a weak supplement submodule in K (See Nebiyev and Koşar (2018), Lemma 2.13).

2. Amply Weak Essential Supplemented Modules (awe-sM)

Definition 2.1. Assume that *K* is an *R*-module and $T \le K$. If for each $L \le K$ with K = T + L, *T* has a weak supplement *X* in *K* with $X \le L$, we say *T* has *ample weak supplements* in *K* (See (Nebiyev, 2005). *K* is referred to as *amply weak essential supplemented* (or shortly, *awe-sM*) provided that for each $T \le K$, *T* has ample weak supplements in *K* (See also (Nebiyev and Ökten, 2017)).

Every *awe-sM* is clearly a *we-sM*, as can be shown.

Lemma 2.2. Assume that K is an *awe-sM* and L be an *e-s* submodule in K. Then L is also an *awe-sM*.

Proof. Let $T \trianglelefteq K$ and L be a supplement of T in K. Let L=S+F with $S \trianglelefteq L$ and $F \le L$. Then

K=T+L=T+S+F. Due to fact that K is *awe-sM* and $T+S \leq K$, T+S has a weak supplement Z in K

with $Z \leq F$. By Lemma 1.4, Z is a weak supplement of S in L. Moreover, $Z \leq F$. Hence S has ample weak supplements in L and L is an *awe-sM*.

Corollary 2.3. Assume that K is an *awe-sM* and V be an *e-s* submodule in K. Then V is a *we-sM*.

Proof. From Lemma 2.2, it's clear.

Lemma 2.4. Every factor module of an *awe-sM* is an *awe-sM* (See also (Nebiyev and Ökten, 2017)).

Proof. Assume that K is an *awe-sM* and K/Z is a factor module of K. Let $T/Z \leq K/Z$ and

K/Z=T/Z+L/Z with $L/Z \leq K/Z$. Due to the fact that $T/Z \leq K/Z$, by Lemma 1.1, $T \leq K$. Due to the

fact that K/Z=T/Z+L/Z=(T+L)/Z, K=T+L and since K is an *awe-sM* and $T \leq K$, T has a weak

supplement N in K with N \leq L. Since N is a weak supplement of T in K, (N+Z)/Z is a weak supplement of T/Z in K/Z. Moreover, $(N+Z)/Z \leq L/Z$. As a result, K/Z is an *awe-sM*.

Corollary 2.5. Each homomorphic image of an *awe-sM* is an *awe-sM* (See also (Nebiyev and Ökten, 2017)).

Proof. It is clear from Lemma 2.4.

Proposition 2.6. Assume that *K* is a *we-sM* and $T,L \leq K$ with K=T+L. Then *T* has a weak supplement *N* in *K* with $N \leq L$.

Proof. Since $T,L \trianglelefteq K$, by Lemma 1.1, $T \cap L \trianglelefteq K$. Due to the fact that K is a we-sM, $T \cap L$ has a

weak supplement N in K. Here $K=T\cap L+N$ and $T\cap L\cap N << K$. Due to the fact that $K=T\cap L+N$, $L=T\cap L+L\cap N$. Let $Z=L\cap N$. Thus, $K=T+L=T+T\cap L+L\cap N=T+Z$ and $T\cap Z=T\cap L\cap Z << K$. As a result, Z is a weak supplement of T in K with $Z \leq L$.

Lemma 2.7. Assume that *K* is a module. *K* is an *awe-sM* provided that every submodule of *K* is a *we-sM* (See also (Nebiyev and Ökten, 2017)).

Proof. Let $U \trianglelefteq K$ and K = U + V with $V \le K$. Since $U \trianglelefteq K$, $U \cap V \trianglelefteq V$. By hypothesis, V is a we-sM.

Hence $U \cap V$ has a weak supplement X in V. Here $V=U \cap V+X$ and $U \cap V \cap X << V$. Then $K=U+V=U+U \cap V+X=U+X$ and $U \cap X=U \cap V \cap X << K$. Therefore, X is a weak supplement of U in K. Moreover, $X \le V$. As a result, K is an *awe-sM*.

Lemma 2.8. Assume that *R* is any ring. Then each *R*-module is a *we-sM* iff each *R*-module is an *awe-sM*.

Proof. (\Rightarrow) Assume that *K* is any *R*-module. Since each *R*-module is a *we-sM*, each submodule of *K* is a *we-sM*. Then from Lemma 2.7, *K* is an *awe-sM*, as desired.

 (\Leftarrow) It is clear, since each *awe-sM* is a *we-sM*.

Lemma 2.9. Assume that *K* is a π -projective and *we-sM*. Then *K* is an *awe-sM*.

Proof. Let K=T+L with $T \leq K$ and $L \leq K$. Because K is a *we-sM*, T has a weak supplement N in K.

Here K=T+N and $T \cap N << K$. Since K is π -projective, there exists an R-module homomorphism $f: K \to K$ such that $f(K) \le L$ and $(1-f)(K) \le T$. We can see here that $f(T) \le T$. Then K=f(K)+(1-f)(K)=T+f(T+N)=T+f(T)+f(N)=T+f(N). Let $t \in T \cap f(N)$. Then $t \in T$ and $t \in f(N)$. Since $t \in f(N)$, there exists $z \in N$ with t=f(z). Since $(1-f)(z) \in T$, $z=z-f(z)+f(z)=(1-f)(z)+t \in T$. Hence $z \in T \cap N$ and $t=f(z) \in f(T \cap N)$. Therefore, $T \cap f(N) \le f(T \cap N)$. Because, $T \cap T << K$, $f(T \cap N) << K$. Hence $T \cap f(N) << K$ and f(N) is a weak supplement of T in K. Furthermore, $f(N) \le L$. Hence K is an *awe-sM*.

Corollary 2.10. Assume that *K* is a projective and *we-sM*. Then *K* is an *awe-sM*.

Proof. It is obvious from Lemma 2.9, since each projective module is π -projective.

Lemma 2.11. Assume that *K* is a π -projective module. In this case when for every $T \leq K$ there

exists a weak supplement submodule Z in K with $T\beta^*Z$, then K is an *awe-sM*.

Proof. Since for every $T \trianglelefteq K$ there exists a weak supplement submodule Z in K with $T\beta^*Z$, from

Lemma 1.5, K is an we-sM. From Lemma 2.9, K is an awe-sM.

Corollary 2.12. Assume that *K* is a π -projective module. *K* is an *awe-sM* provided that each essential submodule of *K* is β^* equivalent to a *we-s* in *K*.

Proof. The proof is obvious from Lemma 2.11.

Corollary 2.13. Assume that *K* is a π -projective module. *K* is an *awe-sM* provided that each essential submodule of *K* lies above a weak supplement submodule in *K*.

Proof. The proof is obvious from Lemma 2.11.

Corollary 2.14. Assume that *K* is a π -projective module. *K* is an *awe-sM* provided that each essential submodule of *K* is a weak supplement submodule in *K*.

Proof. The proof is obvious from Lemma 2.11.

Lemma 2.15. Assume that *K* is a projective and *we-sM*. Then $K^{(\Lambda)}$ is an *awe-sM* for every finite index set Λ .

Proof. Since *K* is projective, $K^{(\Lambda)}$ is also projective. Since *K* is a *we-sM*, by Nebiyev and Koşar (2018) Corollary 2.8, $K^{(\Lambda)}$ is also a *we-sM*. Then, in accordance with Corollary 2.10, $K^{(\Lambda)}$ is an *awe-sM*.

Corollary 2.16. Assume that K is a projective and *we-sM*. Then every finitely *K*-generated module is an *awe-sM*.

Proof. Assume *N* is any finitely *K*-generated *R*-module. Then there exists an *R*-module epimorphism $f: K^{(\Lambda)} \rightarrow N$ with finite index set Λ . $K^{(\Lambda)}$ is an *awe-sM* according to Lemma 2.15. Then in accordance with Corollary 2.5, *N* is an *awe-sM*, as desired.

Proposition 2.17. Assume that *R* is a ring. The statements below are equivalent.

- (i) $_{R}R$ is a we-sM.
- (ii) $_{R}R$ is an *awe-sM*.
- (iii) $_{R}R^{(\Lambda)}$ is a *we-sM*, for each finite index set Λ .
- (iv) $_{R}R^{(\Lambda)}$ is an *awe-sM*, for each finite index set Λ .
- (v) Each finitely generated *R*-module is a *we-sM*.
- (vi) Each finitely generated *R*-module is an *awe-sM*.

Proof. (i) \Rightarrow (ii) It is obvious from Corollary 2.10, because _{*R*}*R* is projective.

(ii) \Rightarrow (i) It is obvious from definitions.

(i)⇒(iii) It is obvious from Nebiyev and Koşar (2018), Corollary 2.8.

(iii)⇒(v) Clear from Nebiyev and Koşar (2018), Corollary 2.10.

 $(v) \Rightarrow (i)$ Clear.

(i) \Rightarrow (iv) Clear from Lemma 2.15, since _RR is projective.

(iv) \Rightarrow (vi) Clear from Corollary 2.5.

 $(vi) \Rightarrow (ii)$ Clear.

References

Birkenmeier, G. F., Mutlu, F. T., Nebiyev, C., Sökmez, N. and Tercan, A. 2010. "Goldie*-Supplemented Modules", *Glasgow Mathematical Journal*, 52A, 41-52.

Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R. (2006). "Lifting Modules: Supplements and Projectivity In Module Theory", *Frontiers in Mathematics*, Birkhauser, Basel.

Lomp, C. 1999. "On Semilocal Modules and Rings", *Communications in Algebra*, 27(4), 1921-1935.

Nebiyev, C. 2005. "Amply Weak Supplemented Modules", *International Journal of Computational Cognition*, 3(1), 88-90.

Nebiyev, C. 2016a. "E-Supplemented Modules", *Antalya Algebra Days XVII*, Şirince-İzmir-Türkiye.

Nebiyev, C. 2016b. "Weakly E-Supplemented Modules", *VII International Joint Conference of Georgian Mathematical Union & Georgian Mechanical Union*, Batumi Shota Rustaveli State University, Batumi-Georgia.

Nebiyev, C. 2017. "Amply E-Supplemented Modules", *Caucasian Mathematics Conference II*, Van Yüzüncü Yıl Univesity, Van-Türkiye.

Nebiyev, C. and Koşar, B. 2018. "Weakly Essential Supplemented Modules", *Turkish Studies Information Technologies & Applied Sciences*, 13(29), 89-94.

Nebiyev, C. and Ökten, H. H. 2017. "Amply Weak E-Supplemented Modules", *VIII International Conference of the Georgian Mathematical Union*, Batumi Shota Rustaveli State University, Batumi-Georgia.

Nebiyev, C., Ökten, H. H. and Pekin, A. 2018a. "Essential Supplemented Modules", *International Journal of Pure and Applied Mathematics*, 120(2), 253-257.

Nebiyev, C., Ökten, H. H. and Pekin, A. 2018b. "Amply Essential Supplemented Modules", *Journal of Scientific Research & Reports*, 21(4), 1-4.

Nebiyev, C. and Pancar, A. 2003a. "On π -projective Modules", *International Journal of Applied Mathematics*, 12(1), 51-57.

Nebiyev, C. and Pancar, A. 2003b. "On Amply Supplemented Modules", *International Journal of Applied Mathematics*, 12(3), 213-220.

Nebiyev, C. and Pancar, A. 2013. "On Supplement Submodules", *Ukrainian Mathematical Journal*, 65(7), 961-966.

Nebiyev, C. and Sökmez, N. 2010. "Modules Which Lie Above a Supplement Submodule", *International Journal of Computational Cognition*, 8(2), 17-18.

Sökmez, N., Nebiyev, C. and Koşar, B. 2008. "Equivalent Submodules of Any Module", *International Conference on Ring and Module Theory*, Hacettepe University, Ankara-Türkiye.

Wisbauer, R. (1991). "Foundations of Module and Ring Theory", Gordon and Breach, Philadelphia.