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Abstract
Biocompatibility is described as an appropriate biological response of a biomaterial in a living organism. It is known that
biomaterials are not inert and the materials should be tested before they are allowed to be used in clinical practice.
Various test methods have been developed and protocols have been determined for this purpose. Resin-based restorative
materials are extensively used in dentistry due to the increased aesthetic demands of patients and the ease of use in
clinical practice. As the restorative materials function in the mouth for long years, concerns about the biocompatibility of
resin-based restorative materials become more important. Regarding the importance of this issue, the purpose of this
review was to evaluate the local and systemic potential toxicity of resin-based restorative materials, toxicity test
methods, and the mechanism of the cytotoxicity in living tissues.
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Definition of biocompatibility and test meth-
ods

Biocompatibility is described as an ability of a biomaterial to
perform its desired property without any adverse reactions in
the beneficiary of the material. 1 When the material is placed
in the living organism, interactions occur with the complex
biologic system of the host which results in a biological
response. Biocompatibility is a dynamic process and the
biological response may change over time depending on the
interactions between the host, material and the function of the
material.2,3 Dental materials are considered as biomaterials
and they are expected to be nontoxic in living tissues. The
materials are strictly tested by regulatory agencies before
they are allowed to be used in clinical practise. The test
methodologies are specified as in vitro, animal and usage
tests.2

1- In vitro tests: In vitro tests are conducted outside of
a living organism in laboratory conditions. ISO 10993 series
for medical devices and 7045 series, which are specialized for
devices used in dentistry have been developed for standard-
ization of in vitro tests. These series include the biological
evaluation of materials, the classification and description
of test methods for biocompatibility evaluation in different

aspects. The disadvantage of in vitro tests is their disputable
relevance to the final usage of the material in a biological sys-
tem.4,5 In vitro cytotoxicity assays measure viability, plating
efficiency or metabolic activity of the cells. Several tests such
as lactate dehydrogenase (LDH) assay, 2-(4-iodophenyl)-
3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium
(WST-1) assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2H tetrazolium bromide (MTT) assay, neutral red uptake,
trypsin blue test are used to assess the biocompatibility of
dental materials.4,6 However, these tests are in the format
of end-point tests that continuous monitoring of the cell
response is not possible. Recently, real time assay systems
are devised for dynamic measurement of cell growth and
viability.6 These systems allow the measurement through
many time points and create line graph that reflect the
biological status of the cells. It is reported that real time cell
assay systems help to obtain more realistic results compared
to single end-point values of conventional cytotoxicity tests.7

2- Animal tests: If the results obtained through in vitro
tests meet the material requirements, more extensive research
is performed on experimental animals. Animal tests enable
the observation of more complex reactions between the
recipient and the tested material. However, it is difficult to
control variables, time consuming, expensive and ethically
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controversial.3,5,8

3- Usage tests: In the final stage, the material determined
to be biocompatible as a result of laboratory and animal exper-
iments are used on volunteers. The usage tests are accepted as
gold standard and give decisive result for investigation of the
biocompatibility of the material.4,5 Parameters such as pulpal
and periodontal reactions, gingiva and oral mucosa irritations
are evaluated in usage tests for dental materials.9

Biocompatibility evaluation of resin-based
restorative materials

Resin-based restorative materials consist of an organic poly-
merizable matrix, filler materials, molecules initiating the
polymerization reaction and silane coupling agents. 10 Mainly
used components of the organic matrix are methacylate
resin monomers such as bisphenol-A-glycidyldimethacrylate
(Bis-GMA), hydroxyethyl methacrylate (HEMA) triethyleneg-
lycol dimethacrylate (TEGDMA), urethane dimethacrylate
(UDMA). 11

The photopolymerization of resin-based restorative mate-
rials is initiated by reaction of free radicals with methacry-
late monomers and results in the generation of a highly
cross-linked polymer structure. 12 As the photopolymerization
proceeds, the viscosity of the cross-linked polymer network
becomes so high which restricts the reaction of monomer
molecules. Thus, the photopolymerization can not be com-
pleted even in optimal conditions. The ratio of double bonds
that join the polymer network to the initial amount, expressed
in % is defined as the degree of conversion. 13 The conver-
sion of monomer to polymer in resin-based restorative ma-
terials varies between 43% to 75% and this ratio decreases
to 35% in the presence of an oxygen inhibition layer. 14 Con-
sistent with this result, studies have reported that acute re-
lease of monomers occurs in the first 24 hours. 15,16 Unreacted
monomers eluted from resin-based restorative materials have
been considered as a reason of hypersensitivity, allergic reac-
tions, local and systemic toxic effects. 17 Therefore, it is critical
to maximize the degree of conversion in order to obtain a more
biocompatible restorative material. 18 It has been reported that
the degree of conversion further increased to nearly 95% when
the oxygen inhibition layer was removed by finishing and pol-
ishing techniques. 19

Long-term monomer release of resin-based restora-
tive materials

Dental restorations are in interaction with the oral environ-
ment dynamically. As resin-based restorative materials are
expected to function for long years, they may degrade and com-
ponents of the materials release into the oral environment in
time. The reasons for degradation could be chewing forces,
microorganisms, temperature changes, enzymes or saliva.20
Mastication: While functioning, resin-based restorative mate-
rials are exposed to mechanical stress constantly. This situa-
tion results in wear on restoration surface and the release of
components from the material.20 Saliva: The main ingredient
of the saliva is water. Since dental resins are polar molecules,
water molecules easily penetrate the polymer network and ease
the release of unreacted monomers.21 In addition saliva, pH
can vary from alkaline to acid and may cause chemical deteri-
oration to dental restorations.20 Microorganisms: Lactic acid
produced by bacterias promotes the hydrolisis of the restora-
tion. In addition, oral biofilm formation may also cause degra-
dation, thus revealing different components from the restora-

tion.20,22 Enzymes: Some form of enzymes that are present
in saliva and dentinal fluid are responsible for the breakdown
of the linkages. The endopeptidases comprise matrix metallo-
proteinases and cysteine cathepsins are capable of hydrolytic
degradation of hybrid layer.23 In vitro studies confirmed the
long-term elution of monomers for 1, 3, and 12 months. 16,24,25
It was also claimed that monomer elution is expected to be in-
creased by the degradation and wear in the oral environment.
Biocompatibility studies are mainly focused on the release of
unreacted monomers in short-term period; whereas biodegra-
dation of restorative materials and metabolic by-products also
play a crucial role on potential toxicity in living tissues.26 The
long-term effects of unreacted monomers on biocompatibility
are still unclear. Long-term chronic exposure and systemic
adverse effects must also be considered when assessing the po-
tential toxicity of the eluted compounds.24

Release of formaldehyde

Small amounts of formaldehyde may be released from dental
polymers as a result of oxidation of unreacted methacrylate
groups or degradation of the oxygen inhibition surface layer27.
Oysaed et al.27 reported that using mylar strips during poly-
merization or finishing the restoration surface using sandpa-
pers caused a significant decrease in the release of formalde-
hyde. The amount of formaldehyde was still detectable even
after 115 days although the concentrations were below toxic
levels. Formaldehyde could also be released as a metabolic by-
product of TEGDMA.26 But, it has been shown that TEGDMA-
metabolites in organs have not reached toxic levels in guinea
pigs.28 Another in vitro study confirmed that the levels of
formaldehyde do not cause toxic effects in human pulmonary
cells.26

Release of Bisphenol-A

Bisphenol A (BPA) is a synthetic chemical generally found
in polycarbonate plastics and epoxy resins. Free BPA is ab-
sorbed through the skin, oral mucosa, respiratory epithelium
or gastrointestinal system. Various epidemiological studies
have reported an association between BPA exposure and obe-
sity, asthma and neuro-behavioural disorders in children.29–31
The tolerable daily intake is advised by governmental regula-
tory agencies. European Food Safety Authority (EFSA) derived
a reference dose of 0,004 mg BPA/kg32, The United States En-
vironmental Protection Agency (USEPA) determined the toler-
able daily intake as 0,05 mg BPA/kg.33 BPA is not included as
a substance in dental materials, whereas BPA derivatives such
as Bis-DMA and Bis-GMA are used in their structures.34 How-
ever, it has been shown that Bis-DMA has been hydrolyzed to
BPA through salivary esterases. The chemical structure of Bis-
GMA prevents hydrolysis at ester linkages and it is not affected
by enzymatic hydrolysis.35,36 Salivary BPA concentration de-
creased over time with different concentrations across in vivo
studies;34,37–39 the highest exposure (385 ng/mL) was mea-
sured 10 minutes after placement and lowest exposure (0,25
ng/mL) measured 1 week after placement.37 It was observed
that BPA levels in saliva returned to pretreatment levels in
8 hours40 to 1 month34 after placement. BPA concentration
in urine is another indicator to measure systemic exposure.
Urinary BPA level was increased in the range of 43%40 and
354%41 24 hours after the placement in vivo studies. How-
ever, the concentrations were similar to pretreatment levels 1
month after treatment.42–44 Maserejian et al.45 reported there
was no association between placement of resin-based restora-
tive materials and neuropsychological, behavioral or physical
development in pediatric patients over 5 years. In conclu-
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sion,40,46,47

• Photopolymerizable restorative materials should be used as
an alternative to self-curing restorative materials and Bis-
GMA should be preferred instead of Bis-DMA in resin com-
position of materials.

• Restorations should be placed with a rubber dam to reduce
elution in saliva and more than four treatments per appoint-
ment should not be performed.

• Finishing and polishing procedures should be applied to re-
move oxygen inhibition layer.

• Gargling for 30 seconds after placement of restoration is
suggested for dilution of BPA concentration.

Estrogenic effects

BPA mimics estrogen-like activity by binding to the estrogen
receptors at subtoxic concentrations.48 It has been demon-
strated that BPA and Bis-DMA significantly stimulated estro-
genic activity while Bis-GMA did not have such effect.36,49
The minimum concentration at which Bisphenol-A caused
estrogenic activity was calculated as 0.1µmol/L and above 1
µmol/L for hydroxy-4-methoxy-benzophenone (HMBP), 2,2-
dimethoxy-2-phenylacetophenone (DMPA) and 2,6-di-tetra-
butyl-p-cresol (BHT).49 Some researchers claimed that leach-
able concentrations from resin-based restorative materials
were below the reported dose required for estrogenicity,50,51
while other in vitro studies found evidences for estrogenic ac-
tivity.49,52

Systemic toxicity

The systemic intake of components released from resin-based
composites can be through oral mucosa epithelium, via denti-
nal tubules to pulp, absorption from respiratory system or
gastrointestinal tract.53–55 Potential systemic or reproductive
toxic effects of resin monomers were investigated in various
animal studies. The monomers did not reach to a dose that
would cause systemic or reproductive toxic effects and were
mostly excreted via different pathways.28,56,57 In preclinical
studies, acute oral toxicity is determined by the Lethal Dose50
(LD50), which is the calculated dose that kills 50% of the
experimental population.2 According to the European Union,
the Regulation on Classification, Labelling and Packaging, the
chemicals with LD50 of <2000mg/kg bw are necessitated to be
labelled for acute oral toxicity.58 None of LD50 values of dental
monomer and comonomers were found to be above this value
in animal studies. Therefore an acute oral toxicity can not be
expected for resin-based restorative materials.2

Local toxicity

Substances leached from resin-based restorative materials may
generate toxic effects in adjacent tissues such as gingiva, oral
mucosa or alveolar bone.2 Local toxicity is measured with a
value of Toxic Concentration50 (TC50), the concentration that
causes a reduction in cell metabolism or death by 50%).2,3
Many in vitro studies have been conducted to determine cy-
totoxicity of resin-based restorative materials and contradic-
tory results have been obtained. 19,59,60 The results show dif-
ferences depending on the resin composition of the material,
cell type or test methods. Human cell lines are found to be
more sensitive to long-term incubation with composites than
mammalian cell lines.61 Human gingival cells and 3T3 fibrob-
last cells are reported to be less sensitive than human pulp cells
in another study62. Nascimento at al.60 revealed different re-

sults between the neutral red and MTT tests. Rajic et al.63
found that cured forms of composites did not show any toxic
effect, whereas uncured forms exhibited a certain level of tox-
icity. Completely curing is not always possible due to the ex-
istence of saliva or anatomical problems in clinical conditions.
Therefore, biocompatibility should be tested in vitro and in vivo
to clarify actual effects of the restorative materials. 19

Cytotoxic effects on cell metabolism

Reactive oxygen species (ROS) are generated either by
metabolic reactions of the cells or result from exposure to ra-
diation, UV light or other environmental factors. ROS func-
tion in signaling pathways in low-moderate concentrations,
but overproduction of ROS is linked to various diseases such
as cancer, early aging, neurodegenerative disorders. The hu-
man body has a complex defense system including a vari-
ety of antioxidants that balances the cell-damaging effects of
ROS. Glutathione is a thiol antioxidant that is capable of pre-
venting damage to important cellular departments caused by
ROS.64,65 Studies have shown that concentrations of 0,1mM
Bis-GMA,66 0.33 mM TEGDMA, 1.6mM HEMA and 0.1 mM
UDMA deplete the intracellular glutathione levels and pro-
mote cell damage in a concentration-dependent manner in
human gingival fibroblasts.67 Furthermore, glutathione deple-
tion caused by TEGDMA, HEMA and Bis-GMA is associated with
subsequent increase of ROS, which may have a contribution
to the toxicity of these monomers.68–70 Antioxidants such as
N-acetylcysteine, ascorbate, Trolox may have the potential to
inhibit the detrimental effects of monomers.71,72 HEMA and
TEGDMA have been considered as reason of arrest at phases of
the cell cycle which leads to growth retardation, cytotoxicity
or apoptosis.73 Apoptosis is a programmed physiological pro-
cess of cell death, meanwhile necrosis is usually promoted by
tissue inflammation associated with clinical symptoms.74 Re-
ichl et al.75 reported that TEGDMA induces apoptosis; HEMA,
Bis-GMA and UDMA mainly induced necrotic cell death. An-
other in vivo study presented that the number of apoptotic ep-
ithelium cells was decreased in patients with amalgam restora-
tions with an aging time of 1 week while that of composite was
increased.76 The toxicity for the monomers was ranked as Bis-
GMA> UDMA> TEGDMA> HEMA. It is claimed that the highest
toxicity of Bis–GMA could be explained by the liposolubility of
Bis–GMA since the phospholipid layer constitutes a major com-
ponent of cell membrane.77

Genotoxicity studies

The human genome is constantly being damaged by different
chemical components and genome instability leads to the de-
velopment of chronic degenerative diseases. Genetic damage
is assessed in various methods such as detection of chromo-
somal or clastogenic changes, micronuclei formation, sister
chromatid exchanges, base mutations.78 The studies investi-
gating genotoxic potentials of dental polymers confirmed that
resin monomers induced DNA damage on human peripheral
blood lymphocytes, gingival fibroblasts, macrophages.79–81
Bis-GMA induced DNA strand breaks and micronucleated cells
in a dose-related manner in murine macrophages in another
study.82

Genotoxicity of composite and amalgam restorations were
analyzed by using peripheral blood cells from individuals in
some studies. Di Pietro et al.83 revealed that restorative mate-
rials exhibited genotoxic effects increased by time and number
of the fillings. Whereas, other studies did not present any evi-
dence regarding genotoxicity of composite resins.63,84,85 Fur-
ther research about genotoxicity is required as neither of these
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in vivo studies evaluated the restorative materials directly on
genetic material.

Antimicrobial properties

Components of resin-based restorative materials are thought
to have a contribution to bacterial growth. Hansel et al.86
published that comonomers EGDMA and TEGDMA promote
proliferation of cariogenic bacterias such as Streptococcus so-
brinus and Lactobacillus acidophilus. Another study revealed
that TEGDMA increased the proliferation of Streptococcus
mutans and Streptococcus salivarius in pH-dependent man-
ner.87 This situation also contributes to the explanation of
secondary caries developing under resin-containing restora-
tions. Some researchers have denied the cytotoxic effects of
resin monomers on pulp and blamed bacterial contamination.
It has been believed that the space between restorative mate-
rial/ adhesive and cavity walls creates an area for bacterial col-
onization and the acid production of the bacteria has an effect
on the pulp.88 The gap has been reduced below 1µm in new
generation adhesive systems. However, even this distance is
sufficient for the colonization of bacteria such as Lactobacillus,
whose diameter is smaller than 0.1 micrometer. 10 Streptococ-
cus mitis a bacterium that is the predominant species in soft
tissue surfaces and saliva. It was reported that co-cultivation
of Streptococcus mitis with human gingival fibroblasts caused
a significant decrease in toxic effects of HEMA and the mor-
tality of human gingival fibroblasts decreased after 48 and 72
hours.89

Conclusion

The release of free monomers from resin-based materials into
the oral cavity occurs immediately after polymerization and in
the long-term. An effective polymerization of the restorative
material plays an important role in reducing residual monomer.
The manufacturer’s recommendations such as light source,
light intensity, curing time should be followed during polymer-
ization. Rubber dam should be used in order to prevent the
monomers from joining the systemic circulation. After poly-
merization, the oxygen inhibition zone should be removed with
finishing and polishing agents.

In vitro studies have shown that monomers released into
the oral cavity have the potential to show cytotoxic effects. Re-
sults of in vitro and in vivo biocompatibility evalution of resin-
based restorative materials vary across the studies. In vitro
tests are often preferred because they are reproducible and easy
to control variables. However, in vitro studies show more sen-
sitivity to materials than in vivo studies as laboratory condi-
tions can not completely mimic clinical conditions. Therefore,
the most effective way to evaluate biocompatibility is the com-
bined use of in vitro and in vivo tests.

Endodontics is a field of dentistry where relatively urgent
applications are concentrated. For this reason, since the Covid-
19 outbreak started, endodontists in particular have difficulty
in delaying treatment. However, the full implementation of the
recommended treatment approaches and measures may make
it possible to overcome this pandemic period with the least
damage.
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