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Abstract

In this work, the method of Taylor’s decomposition on two points is suggested in order
to find approximate solutions of chaotic and hyperchaotic initial value problems and to
analyze the behaviors of these solutions. Unlike to the classical Taylor’s method, the
proposed numerical scheme is based on the application of the Taylor’s decomposition on
two points to the system of nonlinear initial value problems, and as a result an implicit
method is obtained. Stability and error analysis of the method are presented, and its high-
order accuracy and A-stability are proven. One of the advantages of the proposed method
is that it is a stable and very efficient method for chaotic problems as it is an implicit one-
step method. The most important advantage of the Taylor’s decomposition method is that
it has high order accuracy for large step sizes with a simple algorithm compared to other
methods. The applicability of the proposed method has been examined in some famous
chaotic systems; the Lorenz and Chen systems, and hyperchaotic systems; the Chua and
Rabinovich-Fabrikant systems, to emphasize both its accuracy and effectiveness. The
accuracy of the proposed method is checked by comparing the calculated results with
semi-explicit Adams-Bashforth-Moulton method and ninth order Runge-Kutta method.
The calculated results are also compared with multi-stage spectral relaxation method and
multi-domain compact finite difference relaxation method. Comparisons have shown that
the method is more accurate and efficient than the other mentioned methods for large
step sizes. The obtained results are also compared with the theoretical findings and it is
shown that the theoretical and numerical results are consistent.

Mathematics Subject Classification (2020). 65L05, 65L70, 65P20, 37M05

Keywords. system of nonlinear initial value problems, Taylor’s decomposition method
on two points, chaotic and hyperchaotic systems, Lorenz system, Chen system, Chua
system, Rabinovich-Fabrikant system

Email address: meltem.evrenosoglu@deu.edu.tr
Received: 22.03.2021; Accepted: 05.08.2021

https://orcid.org/0000-0001-5065-7068


28 M. E. Adiyaman

1. Introduction
The theory of chaos was first introduced by Lorenz [20] in order to demonstrate the

chaotic behaviour in a system of ordinary differential equations modelling the atmospheric
convection. This was the first paper to illustrate the concept of chaos by showing that
some systems are capable of producing outputs that seem random, yet are ordered. The
discovery of chaos in physical and natural systems has initiated interdisciplinary analysis
of nonlinear system of equations. This epochal discovery has a tremendous potentials for
applications such as electrical circuits, lasers, fluid dynamics, mechanical devices, popula-
tion growth, and many other scientific applications. We refer [28] for the history of chaos
theory.

Rössler [29] noticed hyperchaotic behaviors in the chemical reaction models. The main
difference between chaotic and hyperchaotic systems can be underlined as the chaotic sys-
tem consists of only one Lyapunov exponent while the hyperchaotic system is determined
by at least two positive Lyapunov exponents. In addition, the hyperchaotic systems gener-
ally have more complex dynamical behaviors compared to the behavior of ordinary chaotic
systems.

Since chaotic systems are expressed by complex dynamical systems which are char-
acterized by rapidly changing solutions, chaotic systems have high sensitivity to small
perturbations of the initial data. Computing solutions of the chaotic systems is an active
research area over the last few years. Finding accurate solutions for such problems is an
effective tool for researchers to show the accuracy and performance of their methods. It is
commonly concluded that accurate solutions for chaotic systems can only be determined
over short time intervals. The main reason of this conclusion is the sensitivity of numer-
ical solutions to numerical errors and the size of the time step. In addition, in [35] it is
shown that some of the numerical methods may fail to converge even if the size of the
time step is decreased. Some of the numerical methods used to find solutions of chaotic
and hyperchaotic problems are the piecewise-spectral parametric iteration method [16],
the piecewise successive linearization method (PSLM) [25, 26], the multistage Adomian
decomposition method [1, 19, 23], multistage homotopy analysis method [4, 5], multistage
differential transformation method [14, 15, 27], multistage variational iteration method
[7, 17, 18], multistage homotopy perturbation methods [11–13, 34], multistage spectral re-
laxation method [24], semi-implicit multistep extrapolation [10], semi-explicit composition
method [9], and composition semi-implicit methods [8]. One can find other techniques for
different types of nonlinear systems of differential equations in [30–32].

In this work, we focus on Taylor’s decomposition method on two points (simply Tay-
lor’s decomposition method) in order to approximate solutions of the chaotic systems
such as the Lorenz and Chen systems, and hyperchaotic systems such as the Chua and
RabinovichFabrikant systems. The reason for this preference is that the proposed method
is implicit, A-stable, and has highly accurate solutions. This is the most important dif-
ference of Taylor’s decomposition method compared with the classical Taylor’s method.
Taylor’s decomposition technique [6] is efficiently manipulated to approximate the solu-
tions of these nonlinear system of initial value problems as in [2], [3]. The most important
advantage of the proposed method is that it has a high order of accuracy for large step
sizes, since it is A-stable. The error analysis was given for special problems in [2] and [3].
In this work, we additionally present the error analysis and stability analysis for general
n-dimensional initial value problems. The accuracy of the computed numerical graphs and
results are checked by comparing results of ninth order Runge-Kutta method and semi-
explicit Adams-Bashforth-Moulton method [33]. They are also compared with multi-stage
spectral relaxation method (MSRM) [24] and multi-domain compact finite difference re-
laxation method [22]. Observations show that proposed method is more accurate than the



High order approach for chaotic problems 29

other methods for large step sizes. Therefore we conclude that the method is accurate,
efficient, and very easy to apply compared to other methods.

In Section 2, Taylor’s decomposition on two points is described and application of the
method to chaotic systems is given. Stability and convergence of the method are analyzed
in Section 3. In Section 4, numerical solutions of chaotic systems are given. In the
Conclusion, the study is summarized and the numerical observations are dicussed.

2. Application of Taylor’s decomposition method to chaotic and hyper-
chaotic initial value problems

Consider the initial value problem (IVP) of the form

y′(t) + a(t)y(t) = f(t), 0 < t ≤ T, y(0) = y0. (2.1)

In order to find approximate solution of (2.1) with a high order accuracy, Taylor’s decom-
position method on two points, which is given in [6], is used. Following theorem is taken
from [6] directly to describe this method.

Theorem 2.1. Let the function v(t) (0 ≤ t ≤ T ) have (p+ q +1)-th continuous derivative
and tk−1, tk ∈ [0, T ]h;

[0, T ]h = {tk = kh, k = 0, 1, . . . , N, Nh = T}.

Then the following relation holds:

v(tk) − v(tk−1) +
p∑

j=1
αjv(j)(tk) hj −

q∑
j=1

βjv(j)(tk−1) hj

= (−1)p

(p + q)!

∫ tk

tk−1

(tk − s)q(s − tk−1)p v(p+q+1)(s) ds,

(2.2)

where

αj = (p + q − j)!p!(−1)j

(p + q)!j!(p − j)!
, 1 ≤ j ≤ p,

βj = (p + q − j)!q!
(p + q)!j!(p − j)!

, 1 ≤ j ≤ q.

The proof is given in [6].

Chaotic and hyperchaotic problems are of the form

Y ′(t) = F (t, Y (t)), Y (t0) = Y0, (2.3)

where Y, Y0 ∈ Rn, n is number of the differential equations in (2.3). In this paper, Taylor’s
decomposition method is suggested to approximate solutions of chaotic and hyperchaotic
problems. For this, F must have p + q-th continuous derivative with respect to x on the
given interval. In order to find approximate solutions of (2.3), Theorem (2.1) is modified
as

Y (tk) − Y (tk−1) +
p∑

j=1
αjY (j)(tk) hj −

q∑
j=1

βjY (j)(tk−1) hj

= (−1)p

(p + q)!

∫ tk

tk−1

(tk − s)q(s − tk−1)p Y (p+q+1)(s) ds,

(2.4)

on the uniform grid

[t0, tN ]h = {tk = t0 + kh, k = 0, 1, . . . , N, Nh = tN − t0},
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where

αj = (p + q − j)!p!(−1)j

(p + q)!j!(p − j)!
1 ≤ j ≤ p,

βj = (p + q − j)!q!
(p + q)!j!(p − j)!

1 ≤ j ≤ q.

By neglecting the last term of the formula (2.4), using Y ′(t) = F (t, Y (t)) and assuming
p = q; for the approximate solution of problem (2.3) the following one step difference
scheme with 2p-order accuracy (will be proved in Theorem 3.3) is obtained as

Yk − Yk−1 +
p∑

j=1
αjF (j−1)(tk, Yk) hj −

p∑
j=1

(−1)jαjF (j−1)(tk−1, Yk−1) hj = 0, k = 1, . . . , N,

(2.5)
where Yk is the approximate vector of Y (tk), Yk and F (j)(tk, Yk) are in Rn for j =
0, . . . , 2p, n is the number of differential equations in chaotic or hyperchaotic system,

F (j)(t, Y (t)) = ∂j

∂tj
F (t, Y (t)) and

αj = (2p − j)!p!(−1)j

(2p)!j!(p − j)!

βj = (2p − j)!p!
(2p)!j!(p − j)!

= (−1)jαj .

(2.6)

Since Taylor’s decomposition method is an implicit method, a predictor method or a root
finding technique is needed. In this work, Newton’s method is preferred to find Yk by
choosing Yk−1 as initial guess in each step.

One can use the following algorithm to apply Taylor’s decomposition method to (2.3):
1. Set the values p and N ;
2. Input the values t0, tN , Y0 and F ;
3. Calculate h = (tN − t0)/N ;
4. Input k = 0; t1 = t0 and L = {Y0};
5. Calculate the values αj and βj by the formulas (2.6);
6. Calculate the derivatives of F with respect to t up to (p − 1)-th order
7. t := t1; t1 := t + h; k = k + 1
8. Solve the value Yk from the nonlinear equation

Yk − Yk−1 +
p∑

j=1
αjF (j−1)(t1, Yk) hj −

p∑
j=1

(−1)jαjF (j−1)(t, Yk−1) = 0;

9. Insert Yk to L;
10. If t1 < tN then Go to Step 7;
11. Print L.

3. Error analysis
Error analysis of the proposed method for special cases of the function F is given in

[2] and [3]. In this section, stability analysis and error analysis of Taylor’s decomposition
method for n-dimensional initial value problems of the form

Y ′(t) = F (t, Y (t)),
Y (t0) = Y0

(3.1)

are examined.
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Lemma 3.1. Let Y (t) have (2p+1) continuous derivatives on [t0, tN ], then the truncation
error τk at tk for the Taylor’s decomposition method (2.5) satisfies

∥τk∥ ≤ M h2p+1

(2p)!
, (3.2)

where M = max
t∈[t0,tN ]

∥∥∥F (2p)(t, Y (t))
∥∥∥, F (j)(t, Y (t)) = ∂j

∂tj
F (t, Y (t)) for j = 0, . . . , 2p,

Y ′(t) = F (t, Y (t)), and ∥ • ∥ denotes ∥ • ∥∞.

Proof. Using (2.4) and Y ′(t) = F (t, Y (t)), the lemma is proved as follows:

∥τk∥ ≤ 1
(2p)!

∫ tk

tk−1

∥(tk − s)p (s − tk−1)p Y (2p+1)(s)∥ ds

≤ 1
(2p)!

h2p
∫ tk

tk−1

∥F (2p)(s, Y (s))∥ ds

≤ M

(2p)!
h2p

∫ tk

tk−1

ds

≤ M

(2p)!
h2p+1.

�

Lemma 3.2. Taylor’s decomposition method on two points is A-stable.

Proof. A numerical method is A-stable if when it is applied to

y′ = λy y(0) = y0, (3.3)

where λ is any complex number with Re(λ) < 0, the numerical solution yk → 0 as k → ∞,
for any step size h > 0. So, Taylor’s decomposition method is applied to (3.3) to show
that it is A-stable.

Yk − Yk−1 +
p∑

j=1
αjF (j−1)(tk, Yk) hj −

p∑
j=1

(−1)jαjF (j−1)(tk−1, Yk−1) hj = 0,

where F (j)(tk, Yk) = λj+1Yk. Then

Yk − Yk−1 +
p∑

j=1
αjλjYk hj −

p∑
j=1

(−1)jαjλjYk−1 hj = 0,

which yields 1 +
p∑

j=1
αjλj hj

Yk −

1 +
p∑

j=1
(−1)jαjλj hj

Yk−1 = 0.

Rewriting last equation gives

Yk =

1 +
p∑

j=1
αjλj hj

1 +
p∑

j=1
(−1)jαjλj hj

Yk−1.

Backward process of the above recurrence relation gives
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Yk =


1 +

p∑
j=1

αjλj hj

1 +
p∑

j=1
(−1)jαjλj hj


k

Y0.

Taking limit of Yk as k → ∞ gives the exact solution
lim

k→∞
Yk = eλ h k Y0

= 0,

since Re(λ) < 0. Hence Taylor’s decomposition method is A-stable. �

Being A-stable means that the results of the Taylor’s decomposition method are unaf-
fected by the growth of round-off errors and the perturbations in initial data which might
cause a large deviation of final result from the exact solution for any step size h > 0.
Therefore, for any step size 0 < h < 1, Taylor’s decomposition method gives accurate
solutions.

Theorem 3.3. If F (j) is Lipschitz in Y with constant Lj, j = 0, . . . , p, L = max
0≤j≤p−1

Lj

and if the local truncation error at each step satisfies Lemma 3.1, then the global error for
(2.4) is bounded by

∥Y (tk) − Yk∥ ≤ C0 ∥Y (0) − Y0∥ + C1
M h2p

(2p)!
,

where C0 = e
t̄ L p

1−h L p β1 and C1 = C0
L for some t̄ > t0.

Proof. Subtracting equation (2.5) from (2.4) for p = q and taking the norms of both sides
yield

∥Y (tk) − Yk∥ ≤ ∥Y (tk−1) − Yk−1∥ +
p∑

j=1
βj∥Y (j)(tk) − F (j−1)(tk, Yk)∥hj

+
p∑

j=1
βj∥Y (j)(tk−1) − F (j−1)(tk−1, Yk−1)∥hj + ∥τk∥.

By defining Ek = ∥Y (tk) − Yk∥, Lipschitz property of F (j)(t, Y ) with respect to Y and
Y (j)(t) = F (j−1)(t, Y (t)) give

Ek ≤ Ek−1 +
p∑

j=1
βjhj∥F (j−1)(tk, Y (tk)) − F (j−1)(tk, Yk)∥

+
p∑

j=1
βjhj∥F (j−1)(tk−1, Y (tk−1)) − F (j−1)(tk−1, Yk−1)∥ + ∥τk∥

≤ Ek−1 +
p∑

j−1
βjhjLj−1∥Y (tk) − Yk∥ +

p∑
j=1

βjhjLj−1∥Y (tk−1) − Yk−1∥ + ∥τk∥

≤ Ek−1 +
p∑

j=1
βjhjL Ek +

p∑
j=1

βjhjL Ek−1 + ∥τk∥.

Notice that
(2p − (j + 1))!p!

(2p)!(j + 1)!(p − (j + 1))!
= ((2p − j) − 1)!(2p)!

(2p)!(j + 1)j!((p − j) − 1)!
= (2p − j)!p!(p − j)

(2p − j)(j + 1)j!(p − j)!
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which gives

βj+1 = (p − j)
(2p − j)(j + 1)

βj .

Since βj < β1 = 1
2 , j = 2, . . . , p, it is obtained that

Ek ≤ Ek−1 + L β1

p∑
j=1

hj Ek + L β1

p∑
j=1

hj Ek−1 + ∥τk∥.

Rewriting the last inequality,

Ek ≤
1 + h L β1

1−hp

1−h

1 − h L β1
1−hp

1−h

Ek−1 + 1
1 − h L β1

1−hp

1−h

∥τk∥

for sufficiently small h. Backward process of the above recurrence relation gives

Ek ≤
(

1 +
2h L β1

1−hp

1−h

1 − h L β1
1−hp

1−h

)n

E0 + 1
2h L β1

1−hp

1−h

(
2h L β1

1−hp

1−h

1 − h L β1
1−hp

1−h

)n

∥τk∥. (3.4)

Since values of 1−hp

1−h increases on [0, 1] and 1−hp

1−h → p as h → 1, the proof is completed
as follows:

Ek ≤
(

1 + h L p

1 − h L p β1

)n

E0 + 1
h L

(
h L p

1 − h L p β1

)n

∥τk∥

≤ e
tk

L p
1−h L p β1 E0 + 1

h L
∥τk∥

(
e

tk
L p

1−h L p β1

)

≤ C0 E0 + C1
M h2p

(2p)!
.

�

From the above theorem it is concluded that

Ek = O(h2p)

for E0 = 0. In other words, proposed method has 2p-order of accuracy.
All analyzes and calculations in this article are made for equal step sizes. Variable step

size can be used if one wants to make more precise calculations and keep the error in each
step less than a certain tolerance value. Suppose that one wants the local truncation error
to be less than ϵ h2p at all points tk, that is,

Mk h2p+1
k

(2p)!
≤ ϵ h2p,

where Mk = max
t∈[tk−1,tk]

∥∥∥F (2p)(t, Y (t))
∥∥∥. To achieve this goal, the step size hk can be chosen

as

hk = min
((2p)!

Mk
ϵ, h

)
.

Then, it can be easily proved that ∥τk∥ = O(h2p) and Ek = O(h2p−1) by using the above
procedures. A similar application can be found in [21].
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4. Numerical results and discussion
In this part, first, in order to compare the theoretical findings and numerical results,

Taylor’s decomposition method (TDM) is applied to a test problem in Example 4.1. To
emphasis that TDM is A-stable, Table 1, which shows that TDM results for large step
sizes are more accurate than semi-explicit Adams-Bashforth-Moulton method (SE-ABM)
[33] results, is also given in Example 4.1. Then proposed method is applied to the fol-
lowing chaotic and hyperchaotic systems to demonstrate the accuracy, efficiency, and the
power of the method. Obtained results are compared with ninth order Runge-Kutta
method (RKM9) and semi-explicit Adams-Bashforth-Moulton method to check the ac-
curacy. The obtained results are also compared with the multi-stage spectral relaxation
method (MSRM) [24] and the multi-domain compact finite difference relaxation method
(MD-CFDRM) [22]. In Tables 2, 4, 5, and 6, the results are obtained for TDM (p = 3),
RKM9, SE-ABM using 103, 104, 105 subintervals, respectively. From these tables, it is
concluded that TDM has the same accuracy as RKM9 and SE-ABM, more accurate than
MSRM and MD-CFDRM, even at larger step sizes than others. Moreover the algorithm
of proposed method is more simple than the others, especially Runge-Kutta method. So,
Taylor’s decomposition method is the most powerful method with the simple algorithm,
high order accuracy, and being A-stable.

Example 4.1. Consider the following test problem:
d x1
d t

= x1 + 2x2 − x3,

d x2
d t

= x2 + x3,

d x3
d t

= −x1 + x3,

with the initial conditions

x1(0) = 0, x2(0) = 0, x3(0) = 1.

The exact solution of the above IVP is
x1(t) = 2et − 2et cos t − et sin t,

x2(t) = et sin t,

x3(t) = 2et cos t.

(4.1)

In Table 1, the upper bounds of the errors, which are obtained from Equation (3.4) and
numerical results obtained by TDM are compared for different p values and step sizes.
In order to make comparison, SE-ABM results are given in Table 1, too. Observed and
expected orders and CPU-time values (with Intel Core i7 Cpu 3.2 GHz, 16 GB RAM
hardware and Mathematica 12 software) are also given in Table 1. From the table it can
be seen that theoretical findings and obtained numerical results are in good agreement with
each other and TDM results (especially for p=3) are much more accurate than SE-ABM
results.

In Table 1, the observed orders of Taylor’s decomposition method is calculated by using
the formula

order(h) = 1
ln 2

ln

 max
0≤i≤n

|x(ti) − xi,h|

max
0≤i≤2n

|x(ti) − xi,h/2|

 ,

where xi,j is the approximate value of x(ti), ti = i h, i = 0, . . . , j and h = 1/j.
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Table 1. Maximum errors of numerical results of TDM (p = 2, 3) and SE-ABM,
upper bounds of the errors, obtained and expected orders, and CPU-times

Obtained maximum Max Errors Upper bounds of the errors for
errors using TDM for SE-ABM TDM using Equation 3.4

h p = 2 p = 3 p = 2 p = 3
1/8 4.698×10−6 2.317×10−9 2.025×10−6 5.447×10−2 3.615×10−4

x1(t) 1/16 2.979×10−7 3.619×10−11 2.519×10−7 4.306×10−3 3.774×10−6

1/32 1.863×10−8 5.662×10−13 3.167×10−8 4.560×10−4 8.600×10−8

1/64 1.164×10−9 9.825×10−15 2.533×10−9 5.305×10−5 2.378×10−9

1/8 5.091×10−6 2.492×10−10 4.854×10−6 5.447×10−2 3.615×10−4

x2(t) 1/16 3.183×10−7 3.876×10−12 8.602×10−7 4.306×10−3 3.774×10−6

1/32 1.989×10−8 5.861×10−14 7.997×10−8 4.560×10−4 8.600×10−8

1/64 1.243×10−9 8.881×10−16 5.886×10−9 5.305×10−5 2.378×10−9

1/8 1.119×10−6 1.136×10−9 4.698×10−6 5.447×10−2 3.615×10−4

x3(t) 1/16 6.954×10−8 1.776×10−11 3.390×10−7 4.306×10−3 3.774×10−6

1/32 4.339×10−9 2.775×10−13 3.120×10−8 4.560×10−4 8.600×10−8

1/64 2.711×10−10 4.884×10−15 2.253×10−9 5.305×10−5 2.378×10−9

Observed orders Expected orders
1/8 3.97924 6.00027 3.00705 4 6

x1(t) 1/16 3.99905 5.99840 2.99202 4 6
1/32 3.99976 5.84868 3.64420 4 6
1/8 3.99956 6.00645 2.49644 4 6

x2(t) 1/16 3.99989 6.04737 3.42716 4 6
1/32 3.99999 6.04439 3.76391 4 6
1/8 4.00919 5.99970 3.79282 4 6

x3(t) 1/16 4.00231 6.00029 3.44178 4 6
1/32 4.00058 5.82828 3.79119 4 6

CPU-time
1/8 0.0156 0.0156 0.0156
1/16 0.0312 0.0156 0.0156
1/32 0.0312 0.0625 0.0156
1/64 0.0625 0.0781 0.0312

Example 4.2. Consider the Lorenz system
d x1
d t

= a(x2 − x1),

d x2
d t

= −x1 x3 + b x1 − x2,

d x3
d t

= x1 x2 − c x3,

where a, b, and c are positive constants. These equations were derived by Lorenz [20]
in the modelling of two dimensional fluid cell between two parallel plates at different
temperatures. The parameters and initial conditions are choosen as

a = 10, b = 28, c = 8/3,

x1(0) = 1, x2(0) = 5, x3(0) = 10.

Graphs of the approximate solutions obtained by TDM and phase portraits of the Lorenz
system are given in Figure 1 and Figure 2, respectively. In Table 2, approximate results
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of the Lorenz system obtained by TDM for p = 2 and p = 3 are given by comparing with
the approximate results of the methods RKM9, SE-ABM, MSRM, and MD-CFDRM.
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Figure 1. Graphs of approximate solutions of the Lorenz system obtained by
using TDM
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Figure 2. Phase portraits of the solutions obtained by TDM for the Lorenz system
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In Table 3, the observed orders of TDM are calculated by using the formula

order(h) = 1
ln 2

ln
(

xn,2n − xn/2,n

x2n,4n − xn,2n

)
,

where xi,j is the approximate value of x(ti), ti = i10
j , that is, xi,2i is the approximate value

of x(5).

Table 3. Observed orders of TDM for p = 2, 3, 4 obtained by using approximate
results of the Lorenz system

h p = 2 p = 3 p = 4
1/20 3.41463 5.95654 8.07042

x1(5) 1/40 3.91562 5.98123 7.96719
1/80 3.98215 5.99563 8.63308

1/160 3.99575 6.01454 -
1/20 3.90324 5.95708 8.05699

x2(5) 1/40 3.976 5.98247 7.97199
1/80 3.99406 5.99584 8.1702

1/160 3.99852 6.01154 -
1/20 3.96008 5.95894 8.03799

x3(5) 1/40 3.98511 5.98443 7.97686
1/80 3.99594 5.99621 7.85537

1/160 3.99897 6.00752 -

In Theorem 3.3, it was concluded that proposed method is of order 2p. From Table 3,
it is observed that calculated orders are well confirmed with theoretical aspects.

Example 4.3. Consider the Chen dynamical system

d x1
d t

= a(x2 − x1),

d x2
d t

= (c − a)x1 − x1 x3 + c x2,

d x3
d t

= x1 x2 − b x3.

This system is solved for the parameters

a = 35, b = 3, c = 28,

and the initial conditions

x1(0) = −10, x2(0) = 0, x3(0) = 37.

Graphs of the approximate solutions obtained by using TDM and phase portraits of the
Chen system are given in Figure 3 and Figure 4, respectively. In Table 4, approximate
results of the Chen system obtained by using TDM for p = 3 are given by comparing with
the approximate results of the methods RKM9, SE-ABM, MSRM, and MD-CFDRM.
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Figure 3. Graphs of approximate solutions of the Chen system obtained by using TDM
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Figure 4. Phase portraits of the solutions obtained by TDM for the Chen system

Example 4.4. Consider the Rabinovich-Fabrikant dynamical system which is a hyper-
chaotic system

d x1
d t

= x2
(
x3 − 1 + x2

1

)
+ a x1,

d x2
d t

= x1
(
3x3 + 1 − x2

1

)
+ a x2,

d x3
d t

= −2x3 (b + x1 x2) .
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Table 4. Approximate results of the Chen system obtained by using TDM,
RKM9, SE-ABM, MSRM, and MD-CFDRM

t TDM Results for p=3 RKM9 SE-ABM MSRM MD-CFDRM
x1(t)

1 -15.9049235755 -15.9049219635 -15.9049228567 -15.904923 -15.904923
2 16.3181688833 16.3159039457 16.3181198452 16.318160 16.318160
3 -10.7052451851 -10.7028677928 -10.7052684669 -10.705249 -10.705249
4 3.7711541919 3.7694543689 3.7731990657 3.771509 3.771507
5 -1.7514486088 -1.7515327933 -1.7490522600 -1.751032 -1.751032

x2(t)
1 -13.1622222778 -13.1622216884 -13.1622209599 -13.162222 -13.162222
2 6.3694451074 6.3717554354 6.3693670977 6.369432 6.369432
3 -8.4740537505 -8.4736733546 -8.4740717331 -8.474057 -8.474057
4 12.5241109861 12.5238794950 12.5251562259 12.524292 12.524291
5 2.6181188848 2.6181139950 2.6182771002 2.618147 2.618147

x3(t)
1 32.0900475842 32.0900446617 32.0900477024 32.090048 32.090048
2 40.6559495468 40.6504438689 40.6559403140 40.655948 40.655948
3 30.5025814895 30.4975124986 30.5026425038 30.502592 30.502592
4 37.0324379667 37.0369199903 37.0316502489 37.032301 37.032302
5 25.3296425751 25.3297960909 25.3253034668 25.328889 25.328889

CPU time 4.09 3.50313 3.73125

This system is solved for the parameters
a = 0.1, b = 0.98,

and the initial conditions
x1(0) = −0.5, x2(0) = 6, x3(0) = 1.1.

Graphs of the approximate solutions obtained by TDM and phase portraits of the Rabino-
vich-Fabrikant system are given in Figure 5 and Figure 6, respectively. In Table 5 ap-
proximate results of the Rabinovich-Fabrikant system obtained by using TDM for p = 3
are given by comparing with the approximate results of the methods RKM9, SE-ABM,
MSRM, and MD-CFDRM.
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Figure 5. Graphs of approximate solutions of the Rabinovich-Fabrikant system
obtained by using TDM
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Table 5. Approximate results of the Rabinovich-Fabrikant system obtained by
using TDM, RKM9, SE-ABM, MSRM, and MD-CFDRM

t TDM Results for p=3 RKM9 SE-ABM MSRM MD-CFDRM
x1(t)

10 -0.1937695597 -0.1937696325 -0.1937697037 -0.193770 -0.193770
20 0.0301646717 0.0301777927 0.0301805675 0.030179 0.030179
30 0.8787299632 0.8787274040 0.8787264034 0.878727 0.878727
40 -1.0298239954 -1.0298239610 -1.0298239266 -1.029824 -1.029824
50 1.0375504336 1.0375508411 1.0375510002 1.037551 1.037551
60 1.0340037515 1.0340050797 1.0340056666 1.034005 1.034005
70 0.7985405088 0.7985394581 0.7985404438 0.798540 0.798540
80 1.0261912353 1.0261912785 1.0261911707 1.026191 1.026191

x2(t)
10 5.0469589272 5.0469558001 5.0469551555 5.046955 5.046955
20 -1.0201349684 -1.0201358401 -1.0201360883 -1.020136 -1.020136
30 -1.8454031979 -1.8453922322 -1.8453865806 -1.845389 -1.845389
40 1.7715210364 1.7715232715 1.7715247555 1.771524 1.771524
50 -0.8786317495 -0.8786360485 -0.8786343489 -0.878634 -0.878634
60 0.2771270069 0.2771291779 0.2771264729 0.277127 0.277127
70 -0.8761434596 -0.8761345056 -0.8761233162 -0.876128 -0.876128
80 -1.9798538870 -1.9798545817 -1.9798577565 -1.979857 -1.979857

x3(t)
10 0.9644535495 0.9644535192 0.9644534897 0.964453 0.964454
20 0.0001915919 0.0001915877 0.0001915863 0.000192 0.000192
30 0.3995160522 0.3995218156 0.3995240246 0.399523 0.399523
40 0.0000928562 0.0000928614 0.0000928586 0.000093 0.000093
50 0.0000912749 0.0000912740 0.0000912747 0.000091 0.000091
60 0.0028618398 0.0028616944 0.0028617270 0.002862 0.002862
70 0.4579521073 0.4579519045 0.4579481304 0.457949 0.457949
80 0.0008755513 0.0008754129 0.0008755793 0.000876 0.000876

CPU time 7.9375 6.34375 6.76563

Example 4.5. Consider the Chua hyperchaotic system

d x1
d t

= b(x2 − a x3
1 − (1 + c)x1),

d x2
d t

= x1 − x2 + x3,

d x3
d t

= −βx2 − γ x3 + x4,

d x4
d t

= −sx4 + x2 x3,

This system is solved for the parameters

a = 0.03, b = 30, c = −1.2, β = 50, γ = 0.32, s = 0.1060,

and the initial conditions

x1(0) = 3, x2(0) = 1, x3(0) = 6, x4(0) = 1.
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Figure 7. Graphs of approximate solutions of the Chua system obtained by using TDM

Graphs of the approximate solutions obtained by using TDM, phase portraits, and 3D
phase portraits of the Chua system are given in Figure 7, Figure 8, and Figure 9, re-
spectively. In Table 6 approximate results of the Chua system obtained by using TDM
for p = 3 are given by comparing with the approximate results of the methods RKM9,
SE-ABM, MSRM, and MD-CFDRM.
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Figure 8. Phase portraits of the solutions obtained by TDM for the Chua system

Figure 9. 3D phase portraits of the solutions obtained by TDM for the Chua system
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Table 6. Approximate results of the Chua system obtained by TDM, RKM9,
SE-ABM, MSRM, and MD-CFDRM

t TDM Results for p=3 RKM9 SE-ABM MSRM MD-CFDRM
x1(t)

2 -0.1857682178 -0.1857684357 -0.1857682176 -0.170293 -0.170293
4 3.9637342754 3.9637338927 3.9637343418 3.990219 3.990219
6 5.1746286936 5.1746286655 5.1746286925 5.159513 5.159513
8 4.7199706841 4.7199707873 4.7199706975 4.648366 4.648366

10 2.8843671540 2.8843676014 2.8843672203 2.583704 2.583704
x2(t)

2 1.5451421862 1.5451421352 1.5451421838 1.551695 1.551695
4 2.5198497669 2.5198496851 2.5198497591 2.525985 2.525985
6 3.0972371198 3.0972371634 3.0972371159 3.058536 3.058536
8 1.9090383146 1.9090385989 1.9090383449 1.766664 1.76664

10 -0.7224935284 -0.7224931112 -0.7224934640 -0.980654 -0.980654
x3(t)

2 10.9965436146 10.9965439999 10.9965436135 11.014651 11.014651
4 7.1283745269 7.1283756748 7.1283746029 7.011997 7.011997
6 -6.3742256949 -6.3742237785 -6.3742254822 -6.752382 -6.752382
8 -21.8922265933 -21.8922250557 -21.8922263350 -22.334344 -22.334344

10 -27.2043968680 -27.2043973543 -27.2043968493 -27.076591 -27.076591
x4(t)

2 -1.3875689592 -1.3875690501 -1.3875689567 -1.493298 -1.493298
4 -2.8614383507 -2.8614385395 -2.8614383504 -3.597274 -3.597274
6 -5.2416766734 -5.2416765009 -5.2416766219 -7.371016 -7.371016
8 -11.9182359771 -11.9182354659 -11.9182358339 -16.055827 -16.055827

10 -16.1618725305 -16.1618730365 -16.1618724905 -22.167142 -22.167142
CPU time 6.48438 5.25313 5.82813
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5. Conclusion
In this paper, Taylor’s decomposition method is applied to the chaotic Lorenz and

Chen systems, and the hyperchaotic Rabinovich-Fabrikant and Chua systems. Numerical
results are compared with theoretical aspects and comparisons show that numerical results
are well-confirmed with the theoretical results. Furthermore, the power of accuracy and
efficiency of the proposed method is tested against the other methods and it is concluded
that proposed method is applicable, more accurate, and has great potential by having
simple algorithm than the others. Another important feature of the method is that it
is A-stable. This method can be extended to high dimensional chaotic and hyperchaotic
systems and system of nonlinear boundary value problems with variable step sizes.
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