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On the Essential Element Graph of a Lattice
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Abstract. Let L be a bounded lattice. The essential element graph of L is a simple undirected graph εL such
that the elements x, y of L form an edge in εL, whenever x ∨ y is an essential element of L. In this paper, we
study properties of the essential elements of lattices and essential element graphs. We study the lattices whose
zero-divisor graphs and incomparability graphs are isomorphic to its essential element graphs. Moreover, the line
essential element graphs are investigated.
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1. Introduction

The study of graphs associated to the algebraic structures plays significant roles in both algebra and combinatorics.
Beck [7] introduced the coloring of graphs in commutative rings as follows: Let G be a simple undirected graph which
has its vertex set as elements of the ring R and elements x, y of R form an edge in G whenever xy = 0. Later, Anderson
and Livingston introduced the zero-divisor graph of a commutative ring on non-zero elements of a commutative ring
with identity [6]. Recently, there have been many research done related to graphs of algebraic structures [4, 11, 19].

The notion of zero-divisor graph of a partially ordered set was introduced by Liu and Xue in [21]. Later, in [1],
the authors studied planarity of zero-divisor graphs of partially ordered sets. Lu and Wu in [15] gave an application to
semigroups. In [13], the authors introduced the reduced zero-divisor graphs of posets.

Simple and undirected graphs associated to lattices such as zero-divisor graphs, incomparability graphs and comax-
imal graphs of lattices are studied by many authors [2, 3, 10, 17–20]. Essential elements of a lattice has been studied
in [5]. Inspired by the notion of an essential element graph introduced in [16], we study the properties of these elements
and combinatorial properties of its associated graphs.

The necessary background on lattices and the graph theory is given in Section 2. In Section 3, we study properties
of essential elements and its graphs. In Section 4, we study the lattices whose essential element graphs are isomorphic
to its zero-divisor graphs and incomparability graphs. In Section 5, we investigated the lattices whose essential element
graphs are not line graphs of some graphs.

2. Preliminaries

In this section, we give basic terminology, definitions and notations on lattices and graph theory. For undefined
terms and notations see [12] on lattice-theoretic concepts and see [9] on the graph theory.
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2.1. Lattice Theory Foundations. A lattice L is an algebra (L,∨,∧) satisfying the following conditions;
for all u, v,w ∈ L,

(1) u ∨ u = u, u ∧ u = u.
(2) u ∨ v = v ∨ u, u ∧ v = v ∧ u.
(3) (u ∨ v) ∨ w = u ∨ (v ∨ w), (u ∨ v ∧ w = u ∧ (v ∧ w).
(4) u ∨ (u ∧ v) = u ∧ (u ∨ v) = u.

(L,≤) is an ordered set and for every u, v ∈ L the least upper bound which is called join u ∨ v and greatest lower
bound which is called meet u ∧ v exist. If there are elements 0 and 1 in L such that u ∨ 1 = 1 and u ∧ 0 = 0 for all
u ∈ L then L is a bounded lattice.

For any two elements u and v, if u ≤ v or v ≤ u then elements u and v are said to be comparable. Otherwise they are
incomparable elements.

Definition 2.1. Let L be a lattice. If there is no element a in L such that u ≤ a ≤ v, then we say that v covers u and
this is denoted by u ⪯ v.

Definition 2.2. Let L be a bounded lattice with bottom element 0 and top element 1. If a ∈ L covers 0, then a is called
atom. If b ∈ L covered by 0, then b is called coatom.

Definition 2.3. An element in a lattice L is said to be join-irreducible if it covers exactly one element, and meet-
irreducible if it is covered by exactly one element. An element that is both join- and meet-irreducible is said to be
doubly irreducible.

Definition 2.4. Let L is a bounded lattice with 0 and 1. Then, any element in L\{0, 1} is called proper element of L.

Definition 2.5. If Li are bounded lattices, then the horizontal sum of lattices Li are obtained by identifying top and
bottom elements.

2.2. Graph Theory Foundations. Let G = (V, E) be a graph with vertex set V and edge set E. If x and y are distinct
vertices in G, the length of the shortest path between x and y is denoted by d(x, y). The diameter of G is defined by
diam(G) := sup{d(x, y) : x, y ∈ G}. If a subgraph is obtained by only vertex deletion, then this subgraph is called
induced subgraph. A graph is said to be complete, if for all x, y ∈ G, xy ∈ E(G). An induced complete subgraph of G
with k vertices is called k-clique of G. A vertex x of G is called isolated if and only if xy < E(G) for any y ∈ G.

The following definition is from [14], the authors characterized the k-chordal graphs which have no induced cycles
of length greater than k.

Definition 2.6. [14] A graph is k-chordal if and only if it has no induced cycle of length greater than k for some
k ≥ 3. A chordless path v1 − v2 − ... − vi is called a simplicial path if it does not extend to any chordless path
v0 − v1 − v2 − ... − vi − vi+1. A graph is k-chordal if and only if each of its non-empty induced subgraphs contains a
simplicial path with at most k − 2 vertices.

Definition 2.7. A graph G = (X,Y; E) is bipartite if its vertex set V can be partitioned into two subsets X and Y so that
every edge has one end in X and one end in Y . If V can be partitioned into n subsets then G = (X1, ..., Xn; E) is said to
be an n-partite graph.

It is well-known that by D. König, a graph is bipartite if and only if it contains no cycle of odd length.

3. Properties of Essential Element Graphs

In this section, we prove certain properties of the essential elements of a lattice and combinatorial properties of
essential element graph of a lattice.

Definition 3.1. Let L be a lattice. The annihilator of an element x of L is the set Ann(x) := {y ∈ L : x ∧ y = 0}.

Definition 3.2. An element a of a lattice L is said to be essential, if there is no non-zero x ∈ L such that a ∧ x = 0.
In other words, an element a of a lattice L is an essential element if and only if there exists no non-zero x such that
x ∈ Ann(a).

The following definition of essential element graph of a lattice is due to Nimbhorkar and Deshmukh [16].
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Figure 2. Essential element graph εL

Definition 3.3. Let L be a lattice. The essential element graph of L is a simple undirected graph with vertex set
L\{0, 1} and any vertices x and y are adjacent if and only if x ∨ y is an essential element.

Definition 3.4. Let L be a lattice with least element 0. The zero-divisor graph Γ(L) of L is a simple undirected graph
with vertex set L\{0} and any vertices x and y are adjacent if and only if x ∧ y = 0.

Two elements x and y of a lattice are said to be comparable whenever x ≤ y or y ≤ x, otherwise they are incompara-
ble. Next we give the definition of a incomparability graph of a lattice.

Definition 3.5. Let L be a lattice. The incomparability graph of L is a simple undirected graph with vertex set L and
any two elements x and y are adjacent if and only if they are incomparable.

Example 3.6. The lattice shown in Figure 1 has an essential element d. Its essential element graph is Figure 2. Since
a ∨ c = c and c is non-essential, then a and c are not adjacent.

Lemma 3.7. Let L be a bounded lattice with a unique atom. Then every element of L is an essential element.

Proof. Let a be a unique atom of L. Then, for any x ∈ L, we have either x ∧ y = a or x ∧ y = b for a ≤ b for every
y ∈ L, since a ≤ u for every element u of L by definition. Thus any element of L is an essential element of L.

□

Now, we can give the following corollary.

Corollary 3.8. If a lattice L has a unique atom, then εL is a complete graph.

Proof. Since every element ofL is essential by Lemma 3.7, one can conclude that, for any x, y ∈ L, x∨y is an essential
element. Thus xy ∈ E(εL).

□

Proposition 3.9. Let L be a bounded lattice. Then, every subset of coatoms of L forms a clique.
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Proof. Assume that {x1, ..., xk} is a set of coatoms of L. So xi ∨ x j = 1 for any i, j ∈ {1, . . . , k}. Thus, xix j ∈ E(εL).
Hence {x1, ..., xk} is a k-clique in εL.

□

The following theorem is about induced cycles that any εL can contain. We study this in the view of Definition 2.6.

Theorem 3.10. If L is a bounded lattice, then εL is 4-chordal graph.

Proof. Let x1 − x2 be a chordless path with two vertices. If we extend this chordless path to the path x0 − x1 − x2 − x3
with four vertices, then we have to show that this path has a chord. We claim that not all x0, x1, x2, x3 are comparable.
Assume the contrary that they are all comparable. Without loss of generality, let x0 ≤ x1 ≤ x2 ≤ x3. Since x2∨ x3 = x3,
then x3 is essential. The fact that x1 ∨ x3 = x3, implies that x1 is adjacent to x3, a contradiction. We claim that not all
x0, x1, x2, x3 are incomparable. Assume that they are all incomparable. Let x1 ∨ x2 = p and x2 ∨ x3 = q. Then p and q
are distinct essential elements. It follows that p ∨ q is an essential element. Thus x1 is adjacent to x3, a contradiction.
Now suppose that, x0 ≤ x2 and x1 ≤ x3. Note that x0 ∨ x1 and x2 ∨ x3 are essential, since they are adjacent. Then
x1 ∨ x2 is essential. Therefore x0 ∨ x3 is essential and the path x0 − x1 − x2 − x3 has a chord. This argument implies
that εL is 4-chordal.

□

Lemma 3.11. If L is a lattice with a unique coatom x, then x is an essential element.

Proof. Let x be a unique coatom, then for any element y in L, we have that y ≤ x. Thus, clearly Ann(x) = 0.
□

Lemma 3.12. Let x be a non-essential element of a lattice L. If y ≤ x, then y is non-essential.

Proof. Since x is non-essential, there exist some u in L such that x ∧ u = 0. We claim that y ∧ u = 0, otherwise there
is 0 , v = y ∧ u which also satisfies u ∧ x = v, a contradiction.

□

An isolated vertex of graph is a vertex which has no edge between any other vertex of that graph. The following
proposition shows elements that forms isolated vertices.

Proposition 3.13. Let L be a bounded lattice and εL be its essential element graph. Then, x is an isolated vertex of
εL if and only if x = a ∧ b such that a and b are non-essential coatoms and Ann ∩ Ann(b) = 0.

Proof. Assume that x is an isolated vertex of εL. It follows that x ∨ u is non-essential for every u. If x is a coatom,
then xy ∈ E(εL) for some coatoms y of L, a contradiction. If x is a unique coatom, then x is an essential element and
xy ∈ E(εL) for any x ⪯ y, a contradiction. Hence x is not a coatom of L. Thus, there exist some elements a and b
in L such that x = a ∧ b. If a = b (which means that only one element covers x, say a), then any element u which
satisfies u ∧ a = 0 also satisfies u ∧ x = 0. We claim that x ∨ u = 1, otherwise x ∨ u = b ≥ a. If b is essential, then x is
adjacent to b, since x ∨ b = b. This is a contradiction. Thus, there exists such an element u in L such that x ∨ u = 1.
This implies that x is adjacent to u, a contradiction. Hence we get that a , b. Now assume that there exists a non-zero
element u ∈ Ann(a) ∩ Ann(b), then a ∧ u = 0 and b ∧ u = 0. It follows that (a ∧ b) ∧ u = 0. Hence we get u ∈ Ann(x),
since x = a∧ b. The fact that u ∈ Ann(x), u ∈ Ann(a) and u ∈ Ann(b) implies that x∨ u = v for some v ≥ a or v ≥ b or
both. If v is essential, then v is adjacent to x, since x ∨ v = v. This contradicts to our assumption. If v is non-essential,
then there exists a non-zero w such that v ∧ w = 0. Again a contradiction by induction. Therefore, u = 0 and a and b
are coatoms. Assume that x = a ∧ b such that a and b are non-essential coatoms and Ann ∩ Ann(b) = 0 . Then, a, b
and x are non-essential elements. Thus, clearly x is an isolated vertex of εL. □

The next theorem is about the diameter of εL which is an important combinatorial property for a graph.

Theorem 3.14. LetL be a lattice and εL be its essential element graph. If εL is a connected graph, then diam(εL) ≤ 2.

Proof. If x and y are adjacent then d(x, y) = 1. Assume that x and y are elements of L such that xy < E(εL). Since εL
is connected, there exists elements a and b such that x ∨ a and y ∨ b are both essential. Let x ∨ a = p and y ∨ b = q.
Since p and q are both essential, then p∨ q = u is essential. Thus, x ∨ u = u and y∨ u = u and x − u − y is a path in εL
which connects x and y. Therefore, diam(εL) ≤ 2.

□
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Theorem 3.15. Let L be a lattice. Then the followings hold:
(1) girth(εL) ∈ {3, 4,∞}.
(2) girth(εL) = 4 if and only if εL is bipartite but not a star graph.
(3) girth(εL) = 3 if and only if εL contains an odd cycle.

Proof. (1) Suppose that girth(εL) , ∞. Then, there exist a cycle of minimal length n in εL, that is, x1 − x2 − x3 − · · · −

xn − x1. Let n ≥ 5. The minimality of n implies that x1 is not adjacent to x5. So x1 ∨ x5 = u for a non-essential u ∈ L.
Since x1 ∨ u = u and x5 ∨ u = u, we have x1 − u − x5 − · · · − xn − x1 is a cycle of length n − 2 in εL. This contradicts
the minimality of n. Thus, n = 3 or n = 4. Therefore, girth(εL) ∈ {3, 4}.

(2) If we assume girth(εL) = 4, then clearly εL is not a star graph, since εL is not a tree. We shot that εL has no cycle
of odd length. Then by the result of König, εL is bipartite graph. On the contrary, we assume that x1 − x2 − · · · − xn − x1
is an odd cycle of minimum length in εL. Since girth(εL) , 3, it is clear that n ≥ 5. The minimality of n implies
that x1 is not adjacent to x5. So x1 ∨ x5 = u for a non-essential u ∈ L. Since x1 ∨ u = u and x5 ∨ u = u, we have
x1 − u − x5 − · · · − xn − x1 is a cycle of length n − 2 in εL. This contradicts the minimality of n. Thus εL has no odd
cycle. Hence εL is bipartite graph.

Conversely, let εL be a bipartite but not a star graph. Then by König Theorem girth(εL) , 3. Since εL is not a star
graph, girth(εL) , ∞. Therefore girth(εL) , 4.

(3) Result is obvious by 1-2.
□

4. Zero-divisor and Incomparability Graphs

In this section, we study the properties of lattices for which its incomparability graphs and zero-divisor graphs are
isomorphic to the their essential element graphs.

Lemma 4.1. Let L be the horizontal sum of bounded lattices Li for i ≥ 2. Then, every proper element of L is a
non-essential element.

Proof. Let L be the horizontal sum of lattices Li and x is an element of L. If x ∈ Li, then x ∧ y = 0 for some y ∈ L j

with j , i, since Li ∩ L j = {0, 1}. Otherwise, there exists z , 1 in L such that x ∨ y = z which contradicts to definition
of the horizontal sum. □

Remark 4.2. If L is the horizontal sum of lattices L1, . . . , Ln. Then, for any two elements x ∈ Li and y ∈ L j with i , j,
one can deduce that x ∨ y = 1.

Theorem 4.3. Let L be a bounded lattice. Then, L is the horizontal sum of the lattices L1, ..., Ln with each of the
lattices Li has a unique atom and a unique coatom if only if its zero-divisor graph Γ(L) is isomorphic to its essential
element graph εL.

Proof. Assume that each Li has only one proper element which is also an atom and a coatom. Then, xi ∨ x j = 1 and
xi ∧ x j = 0 for xi ∈ Li and x j ∈ L j. Hence xix j ∈ E(εL) and xix j ∈ E(Γ(L)). Now assume that each Li has more than
one proper element and ai is an atom, bi is a coatom of Li. If x and y of L belongs to same Li, then x∨ y = u for u ≤ bi

and x ∧ y = v for ai ≤ v. Thus, xy < E(εL) and xy < E(ΓL). If x and y of L belong to Li and L j respectively, then
x ∨ y = 1 and x ∧ y = 0. Thus xy ∈ E(εL) and xy ∈ E(ΓL). Therefore, we can conclude that Γ(L) is isomorphic to εL.

Conversely, suppose that Γ(L) is isomorphic to εL. Then xy ∈ E(ΓL) if and only if xy ∈ E(εL). Thus, x∨ y essential
element and x ∧ y = 0 in L. Now assume that x ∧ y = 0, then we have x ∨ y , x or x ∨ y , y. Let z , 1 be an element
of L such that x ∨ y = z. Since z is essential, there is no non-zero element in L which is a zero-divisor of z. So xz and
yz are edges in εL, but xz and yz are not edges in ΓL, since we have x ∨ z = z and y ∨ z = z, also we have x ∧ z = x and
y ∧ z = y. This is a contradiction, thus z = 1. Hence

∨n
i=1 Li = 1 and

∧n
i=1 Li = 0. Therefore, L is the horizontal sum

of lattices. □

Theorem 4.4. Let G = (X,Y; E) be a connected bipartite graph. Then, G is both zero-divisor and essential element
graph of a lattice L if and only if L has exactly two atoms a1 and a2 and exactly two coatoms b1 and b2 such that
b1 ∧ b2 = 0.
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Figure 3. A lattice L with εL is bipartite

Proof. Assume that G = X ∪ Y is a bipartite graph such that G = εL and G = ΓL. First we show that L has two atoms.
If L has one atom then εL is a complete graph by Corrollary 3.8, and ΓL is a discrete graph since x ∧ y , 0 for every
x, y ∈ L a contradiction. If we assume that L has atom other than a1 and a2, then this atom makes a C3 with a1 and a2
in ΓL. This is a contradiction because G is bipartite. Hence L has two atoms. Now we show that L has two coatoms.
If L has one coatom, then this vertex is adjacent to all other vertices in εL and isolated vertex in ΓL, a contradiction. If
there exists a coatom other than b1 and b2, then by Proposition 3.9 they form a C3 in εL, a contradiction. Hence L has
two coatoms. If b1 ∧ b2 , 0, then at least one of the b1 and b2 is non-essential, say b1. So some elements less than b1
are adjacent and this is a contradiction since partition sets must be independent.

Now assume that L is a bounded lattice with two atoms a1 and a2 and two coatoms b1 and b2 such that b1 ∧ b2 = 0.
Let a1 ≤ b1 and a2 ≤ b2. Then, the sets X = {x ∈ L : a1 ≤ x ≤ b1} and Y = {y ∈ L : a2 ≤ y ≤ b2} form a bipartite graph
εL with bipartition G = X ∪ Y , because every xi ∨ x j and yi ∨ y j is non-essential and xi ∨ y j = 1. □

Incomparability graphs of lattices and partially ordered sets are well-studied graphs [18,20]. We include the follow-
ing important theorem:

Theorem 4.5. Let εL be the essential element graph and IC(L) be the incomparability graph of a bounded lattice L.
If εL � IC(L), then 1 is the only join-reducible essential element in L.

Proof. Let εL � IC(L). If we assume that there exists an element u , 1 in L which is join-reducible, then u = a ∨ b
for some a, b ∈ L. This implies that ua and ub are edges in εL, since u is essential. However, u is not adjacent to a and
b in IC(L), since they are comparable. This is a contradiction. Therefore, there is no essential element other than 1 in
L which is join-reducible.

□

5. Line Essential Element Graphs of Lattices

In this section, we study the essential element graphs arising from bounded lattices which are, in fact, line graphs of
some simple graphs. Next, we give fundamental forbidden induced subgraph characterization of line graphs.

Theorem 5.1. [8] Let G be a graph. If G is a line graph of some simple graph if and only if none of the nine graphs
in Figure 5 is an induced subgraph of G.

In the following we give a condition on a lattice whose essential element graph is not a line graph of any graph.

Theorem 5.2. Let L be a bounded lattice. If L has a chain of non-essential elements of length ≥ 2, then εL is not a
line graph.

Proof. Assume that a1 ≤ ... ≤ ak for k ≥ 3 is a chain of length at least 2. Note that there exist an x in L such
that x ∧ ai = 0 for i ∈ {1, .., k}, since a1, ..., ak are non-essential. Then, it is obvious that the set {a1, ..., ak} forms an
independent set in εL. Notice that ai ∨ x = 1 for all i ∈ {1, .., k}. It follows that {a1, .., ak, x} has an induced K1,3 in εL
which implies that εL is not a line graph of any graph. □
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Figure 4. Forbidden induced subgraphs of line graphs

Theorem 5.3. Let L be a bounded lattice with coatom c. Let the set {x1, ..., xk} consists of proper elements of L with
each xi ≤ c for i ∈ {1, ..., k}, where k ≥ 3. If there exists an element u which is both atom and coatom. Then, εL is not a
line graph.

Proof. Since u is both atom and coatom, it follows that c ∧ u = 0 which implies that c is a non-essential element. So
either xi ∨ u = c or xi ∨ u = b for some b ≤ c. Combining the c ∧ u = 0 and b ≤ c implies that b is non-essential as
well, since b ∧ u = 0. Hence K1,k is an induced subgraph of εL. Therefore, by Theorem 5.1, εL is not a line graph. □
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